Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data

Patrick F. Smith, Pharm.D.

University at Buffalo
Buffalo, New York

NONPARAMETRIC STATISTICS

I. DEFINITIONS

A. Parametric statistics

1. Variable of interest is a measured quantity.
2. Assumes that the data follow some distribution which can be described by specific parameters a. Typically a normal distribution
3. Example: There are an infinite number of normal distributions, all which can be uniquely defined by a mean and standard deviation (SD).
B. Nonparametric statistics
4. Variable of interest is not measured quantity. Mean and SD have little meaning.
5. Does not make any assumptions about the distribution of the data
6. "Distribution-free" statistics
C. Dependent variable
7. The variable of interest, the outcome of which is dependent on something else
D. Independent variable
8. The variable that is being tested for an effect on the dependent variable
E. Example
9. Does high-dose ciprofloxacin lead to seizures?
a. Seizures $=$ dependent variable
b. Dose $=$ independent variable

II. PARAMETRIC STATISTICS

A. Developed primarily to deal with categorical data (non-continuous data)

1. Example: disease vs no disease; dead vs alive
B. Nonparametric statistical tests may be used on continuous data sets.
2. Removes the requirement to assume a normal distribution
3. However, it also throws out some information, as continuous data contains information in the way that variables are related.

Some Commonly Used Statistical Tests		
Normal theory-based tests	Corresponding nonparametric tests	Purpose of test
t test for independent samples	Mann-Whitney U test; Wilcoxon rank sum test	Compares two independent samples
Paired t test	Wilcoxon matched pairs signedrank test	Examines a set of differences
Pearson correlation coefficient	Spearman rank correlation coefficient	Assesses the linear association between two variables
One-way analysis of variance (F test)	Kruskal-Wallis analysis of variance by ranks	Compares three or more groups
Two-way analysis of variance	Friedman two-way analysis of variance	Compares groups classified by two different factors

III. NONPARAMETRIC PROS AND CONS

A. Nonparametric pros

1. Nonparametric tests make less stringent demands of the data.
a. For a parametric test to be valid, certain underlying assumptions must be met.
i. example: For a paired t test, assume that: data are drawn from normal distribution; every observation is independent of each other, and the SDs of the two populations are equal. Data are continuous.
b. Nonparametric tests do not require these assumptions.
i. can be used to evaluate data that are not continuous
ii. no assumptions about distributions, independence, etc.
B. Nonparametric cons
2. If using for a continuous data set, nonparametric tests throw information inherent in continuous data.
3. Reduces power to detect a statistical difference a. A more conservative approach
4. Example: For data from a normally distributed population, if the Wilcoxon signed-rank test requires 1000 observations to demonstrate statistical significance, a t test will only require 955 .

IV. CONTINGENCY TABLES

A. Contingency tables are used to examine the relationship between subjects' scores on two qualitative or categorical variables.
B. One variable determines the row categories; the other variable defines the column categories.
C. Example: In studying the association between smoking and disease, the row categories in the figure below denote the categories of smoking status while the columns denote the presence or absence of disease.

V. CHI-SQUARED TEST

A. Commonly used procedure, uses contingency tables
B. Used to evaluate unpaired samples (unrelated groups)
C. Often used to evaluate proportions
D. Is there a difference in the proportion of viral infections in patients administered a vaccine? ($12 / 100$ vs. $2 / 100$)
E. Assumes nominal data (no ordering between variable groups)
F. Limited when the numbers of subjects in any "cell" is low (rule of thumb, <5)
G. General logic

1. Given two groups (vaccine vs control), the EXPECTED infection rate if the vaccine has no effect would be equal among the two groups. This is the null hypothesis. The chi-squared test compares the EXPECTED frequency of a particular event to the OBSERVED frequency in the population of interest.
H. Formulas

$$
\mathrm{X}^{2}=\sum \frac{(O-E)^{2}}{E}
$$

with $\mathrm{df}=(\mathrm{r}-1)(\mathrm{c}-1)$
Expected Frequencies (E) for each cell:

$$
E_{i j}=\frac{T_{i} \times T_{j}}{N}
$$

I. Distribution

Chi-squared, by strict definition, is not a true nonparametric test. It assumes a distribution that can be described by a single parameter, degrees of freedom.
J. Chi-squared example problems (refer to Example Problem handout)
J. Chi-squared example problems (refer to Example Problem handout)

VI. FISHER'S EXACT TEST

A. Alternative to chi-squared for 2×2 contingency tables

1. Improves accuracy when expected frequencies are small (<5) or sample size is small $(\mathrm{n}=20)$
2. Calculates exact probabilities

a	b	$(a+b)$
c	d	$(c+d)$
$(a+c)$	$(b+d)$	N

$$
\mathbf{P}_{\text {(outcome) }}=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!a!b!c!d!}
$$

VII. MCNEMAR'S TEST OF SYMMETRY

A. Chi-squared test requires samples to be independent of each other.
B. McNemar's test is used when samples are related (similar to paired test).
C. There are often times where measures may be repeated.
D. Example. Does drug X cause insomnia?

1. Patients may be questioned about insomnia before and after starting the drug.
2. The researcher asks the question, "Do more patients have insomnia since starting the drug?"
E. Refer to Example Problems handout

VIII. KRUSKAL-WALLIS TEST

A. Compares two independent samples
B. Values of a variable are transformed to ranks.

1. Tests that there is no shift in the center of the groups (that is, the centers do not differ)
C. If there are only two groups, the procedure reduces to the Mann-Whitney test-the analogue of the unpaired t test.

IX. WILCOXON SIGNED-RANK TEST

A. Nonparametric analogue of the paired test
B. Compares the rank values of variables pair-by-pair

1. The sum of the ranks associated with positive and negative differences is computed.
2. The test statistic is the lesser of the two sums of ranks.
C. Refer to Example Problems handout
J. Chi-squared example problems (refer to Example Problem handout)

VI. FISHER'S EXACT TEST

A. Alternative to chi-squared for 2×2 contingency tables

1. Improves accuracy when expected frequencies are small (<5) or sample size is small $(\mathrm{n}=20)$
2. Calculates exact probabilities

a	b	$(a+b)$
c	d	$(c+d)$
$(a+c)$	$(b+d)$	N

$$
\mathbf{P}_{\text {(outcome) }}=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!a!b!c!d!}
$$

VII. MCNEMAR'S TEST OF SYMMETRY

A. Chi-squared test requires samples to be independent of each other.
B. McNemar's test is used when samples are related (similar to paired t test).
C. There are often times where measures may be repeated.
D. Example. Does drug X cause insomnia?

1. Patients may be questioned about insomnia before and after starting the drug.
2. The researcher asks the question, "Do more patients have insomnia since starting the drug?"
E. Refer to Example Problems handout

VIII. KRUSKAL-WALLIS TEST

A. Compares two independent samples
B. Values of a variable are transformed to ranks.

1. Tests that there is no shift in the center of the groups (that is, the centers do not differ)
C. If there are only two groups, the procedure reduces to the Mann-Whitney test-the analogue of the unpaired t test.

IX. WILCOXON SIGNED-RANK TEST

A. Nonparametric analogue of the paired test
B. Compares the rank values of variables pair-by-pair

1. The sum of the ranks associated with positive and negative differences is computed.
2. The test statistic is the lesser of the two sums of ranks.
C. Refer to Example Problems handout

X. SPEARMAN RANK CORRELATION COEFFICIENT

A. Nonparametric analogue of linear regression and the correlation coefficient

Nonparametric analogue of linear regression and the correlation coefficient (r)

B.

Height	Rank	Weight	Rank	d
31	1	7.7	2	-1
32	2	8.3	3	-1
33	3	7.6	1	2
34	4	9.1	4	0
35	5.5	9.6	5	0.5
35	5.5	9.9	6	-0.5

$$
\left.\mathbf{R}_{s}=6\left(-1^{2}+-1^{2}+2^{2}+0+0.5^{2}+-0.5^{2}\right) / 6^{3}-6\right)=0.81
$$

For statistical significance, can look up critical values from table or obtain from software package.

EXAMPLE PROBLEMS

NONPARAMETRIC STATISTICS

Example Problem 1: Association between tryptophan dietary supplements and eosinophiliamyalgia syndrome (EMS). A number of subjects from a particular area are evaluated; 80 patients with EMS were identified, along with 200 matched controls. Is there a statistically significant association between tryptophan use and EMS ?

- Unrelated groups, categorical (yes/no) data - chi-squared is appropriate

Observed Results:

	EMS	No EMS	Total	
Tryptophan use	Yes	$\mathbf{4 2}$	$\mathbf{3 4}$	76
	No	$\mathbf{3 8}$	$\mathbf{1 6 6}$	204

(42 of 76 patients taking tryptophan had EMS, compared to 38 of 204 not taking tryptophan)

Expected values if no association exists (null hypothesis):

The rate of EMS in the overall population, assuming no effect, would be 80/280 (28.6\%). $(.286 * 76=21.7 ; .286 \times 204=58.3)$. The No EMS cells can then be calculated from subtracting the total (ex: $76-21.7=54.3$).
$E_{11}=\frac{76 \times 80}{280} \quad E_{12}=\frac{76 \times 200}{280}$
$E_{21}=\frac{204 x 80}{280} \quad E_{22}=\frac{204 \times 200}{280}$
To evaluate significance, one needs a mean and measure of dispersion (ex. - standard deviation, standard error, variance, etc.). The chi-squared test is based on a Poisson distribution, where mean $=$ variance); therefore, the chi-squared test assumes that the variance is equal to the expected mean value.
$\mathrm{X}^{2}=\sum \frac{(O-E)^{2}}{E} \quad$ Therefore, in this example:
$X^{2}=(42 / 21.7)^{2} / 21.7+(34-54.3)^{2} / 54.3+(38-58.3)^{2} / 58.3+(166-145.7)^{2} / 145.7=36.4$
\rightarrow Look up the result in a chi-squared table (a 2×2 contingency table has 1 degree of freedom). To be significant at the 0.05 level, X^{2} must be >3.84. Since $36.4 \gg 3.84$, the result is highly significant.

Critical Values for the Chi-Squared Distribution

| | | 0.10 | 0.05 | 0.025 | 0.01 |
| ---: | ---: | ---: | ---: | ---: | ---: | 0.005

Eample Problem 2:

A sociological study evaluated the characteristics of marriage by religion; 256 people were surveyed for religion and marital status. The results were as follows:

	Protestant	Catholic	Jewish	None	Other	Total
Never	29	16	8	20	0	73
Married	75	21	11	19	1	127
Divorced	21	6	3	13	0	43
Separated	8	3	1	0	1	13
Total	133	46	23	52	2	256

Is there a relationship between marital status and religion?

SYSTAT - chi-squared output

WARNING: More than one-fifth of fitted cells are sparse (frequency < 5). Significance tests computed on this table are suspect.

| Test statistic | Value | df | Prob |
| :---: | :---: | :---: | :---: | :---: |
| Pearson chi-squared | 22.718 | 12.000 | 0.030 |

What happened??

Omitting sparse cells: Leave out 'other' and 'separated':

	Protestant	Catholic	Jewish	None	Total
Never	29	16	8	20	73
Married	75	21	11	19	126
Divorced	21	6	3	13	43
Total	125	43	22	52	242

| Test statistic | Value | df | Prob |
| ---: | ---: | ---: | ---: | ---: |
| Pearson chi-squared | 10.368 | 6.000 | 0.110 |

There is no statistically significant difference between the groups $(\mathrm{p}=0.11)$

Example Problem 3: McNemar Test of Symmetry

In November of 1993, the U.S. Congress approved the North American Free Trade Agreement (NAFTA). Let's say that two months before the approval and before the televised debate between Vice President Al Gore and businessman Ross Perot, political pollsters queried a sample of 350 people, asking "Are you for, unsure, or against NAFTA?" Immediately after the debate, the pollsters contacted the same people and asked the question a second time. Here are the results:

BEFORE\$ (rows) by AFTER\$ (columns)

	for	unsure	against	Total
for	51	22	28	101
unsure	46	18	27	91
against	52	49	57	158
Total	149	89	112	350

Percents of total count BEFORE\$ (rows) by AFTER\$ (columns)

	AFTER				
	for	unsure	against	Total	N
for	14.571	6.286	8.000	28.857	101
unsure	13.143	5.143	7.714	26.000	91
against	14.857	14.000	16.286	45.143	158
Total	42.571	25.429	32.000	100.000	
N	149	89	112		350

	Test statistic	Value	df	Prob
	Pearson chi-squared	11.473	4.000	0.022
	McNemar	Symmetry chi-squared	22.039	3.000

The McNemar test of symmetry focuses on the counts in the off-diagonal cells (those along the diagonal are not used in the computations). We are investigating the direction of change in opinion. First, how many respondents became more negative about NAFTA?

Among those who initially responded For, 22 (6.29\%) are now Unsure and 28 (8\%) are now Against. Among those who were Unsure before the debate, 27 (7.71\%) answered Against afterwards. The three cells in the upper right contain counts for those who became more unfavorable and comprise $22 \%(6.29+8.00+7.71)$ of the sample. The three cells in the lower left contain counts for people who became more positive about NAFTA $(46,52$, and 49) or 42% of the sample.

The null hypothesis for the McNemar test is that the changes in opinion are equal. The chisquared statistic for this test is 22.039 with 3 df and $\mathrm{p}<0.0005$. You reject the null hypothesis. The pro-NAFTA shift in opinion is significantly greater than the anti-NAFTA shift.

Example Problem 4: Wilcoxon Signed-Rank Test

Evaluate the effect of a diuretic in healthy volunteers:

	Daily UOP				
Subject	No drug	+ Drug	Difference	Rank of difference	Signed rank of difference
1	1600	1490	-110	5	-5
2	1850	1300	-550	6	-6
3	1300	1400	+100	4	+4
4	1500	1410	-90	3	-3
5	1400	1350	-50	2	-2
6	1010	1000	-10	1	-1

$W=$ sum of signed ranks $=\mathbf{- 1 3}$
If the drug has no effect, the ranks associated with a positive change should be similar to the ranks associated with a negative change; hence, the sum (W) should $=0$.

How large must W be to call this a statistically significant difference? Refer to Critical Values table:

\mathbf{N}	Critical Value	\mathbf{P}
5	15	.062
6	21	.032
	19	.062
7	28	.016
	24	.046
8	32	.024
	28	.054
9	39	.020
	33	.054
10	45	.02
	39	.048
11	52	.018
	44	.054
12	58	.02
13	50	.052
	65	.022
14	57	.048
	73	.02
	63	.05
15	80	.022
	70	.048

*Due to the nature of discrete possible values of W, p values at traditional breakpoints are usually not possible (ex.: $\mathrm{p}=0.05$).

