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Learning Objectives  
1. Describe the strengths and limitations of measures of 

central tendency and measures of variability.
2. Classify common statistical tests and tools.
3. Interpret results of confi dence intervals (CIs).
4. Interpret commonly used statistical tests.
5. Distinguish between p-values and CIs as measures of 

statistical signifi cance.
6. Evaluate commonly used statistical and epidemiologic 

measures.

Introduction  
 Health care changes at a blistering pace. Interventions 
that are state-of-the art today may be discredited tomorrow.  
As a result, clinicians must be able to interpret the fl ood of 
new information available every day, and to communicate it 
across disciplines in meaningful ways.
 These goals in health care practice and research are 
accomplished by the use of statistics. These analytic tools 
are not perfect, but without them, attempts to answer clinical 
and research questions would quickly become nothing more 
than decision-making by opinion and consensus. Clinicians 
would become inundated with data, and some questions 
would be time-consuming or in extreme cases, impossible 
to answer. Despite the importance of understanding how to 
use statistics and ongoing changes in pharmacy education to 
increase the emphasis on understanding research tools in the 
clinical setting, many clinicians remain uncomfortable with 
interpreting statistics found in the biomedical literature. 
This chapter helps reduce this anxiety by reviewing a 
few important statistical principles, and discussing some 
biostatistics that pharmacists are likely to encounter in the 
biomedical literature.

Descriptive Statistics  
 Descriptive estimates provide a general view of data. For 
example, the mean, median, and mode each provide different 
information about middle data values. They are referred to 
as measures of central tendency. Although the purpose of 
this chapter is not to repeat the basics of how these statistics 
are calculated, the mean is sensitive to outliers. Comparing 
the median, or the central value for a variable, to the mean 
can tell the reader about the distribution of the data. If the 
mean is different than the median, the data are likely to 
be skewed. Most of the time we talk about the arithmetic 
mean, but there are variations on this theme. For example, 
in regression analyses, the dependent variable is sometimes 
transformed to its logarithm to improve how well the model 
satisfi es underlying assumptions. But this approach also 
makes interpretation of the transformed variable more 
diffi cult, because the log values are not very meaningful to 
the reader.
 Measures of variability, including the interquartile range 
(IQR), range, standard deviation (SD), standard error of 
the mean (SEM), and variance are also useful to determine 
whether it is reasonable to infer from the sample to the 
population. The range is the interval between the minimum 
and maximum value, and the IQR is the interval between the 
75th percentile and 25th percentile values. The IQR describes 
the middle 50% of the data in the sample. The variance, 
SD, and SEM are also commonly encountered measures of 
spread in data. The variance is the measure of variation in a 
dataset for one variable, and the SD is the square root of the 
variance. The mean plus or minus two SDs will include the 
central 95% of values. The SEM is an estimate of certainty 
that a calculated sample mean represents the true mean of 
the population. As such, the SEM is an inferential statistic, 
and is not interchangeable with the SD, even though it is 
sometimes used in this way. In addition, because the SEM 
is calculated by dividing the SD by the square root of the 
number of individuals in a dataset 
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it will always be smaller than the SD, and can be erroneously 
interpreted as indicating that a set of observations is less 
variable than it really is.

Data Distributions  
 Variables may be discrete or continuous. Distributions 
generally describe how variables are spread out. The normal 
distribution is well known to clinicians, but many types 
of data encountered in clinical practice are not normally 
distributed. This section introduces some commonly 
encountered discrete and continuous distributions.

Discrete Distributions  
The binomial and Poisson distributions are two discrete 

probability distributions. The binomial distribution is used 
when considering a sample of some number of independent 
trials that have only two possible outcomes, such as some 
indeterminate measure of success or failure. Imagine that 
a coin is fl ipped 1000 times. Each time the coin is fl ipped, 
there is some probability of success or failure. The Poisson 
distribution is used most commonly when rare events are 
being considered. An example is the number of serious 
adverse drug reactions due to Drug A over some time period. 
Approximations to the binomial or Poisson distributions are 
used when use of the distribution under question would be 
onerous and when specifi c conditions exist. For example, 
the binomial distribution is useful when considering some 
number of independent trials. But if the number of trials 
performed is large and the probability of success is either 
very high or very low, the distribution will be skewed. If, 
on the other hand, the number of trials undertaken is at least 
moderately large, and the probability of success is not too 
extreme, then the distribution will be symmetric and will 
be approximated by the normal distribution. Similarly, 
when the expected number of events over a time interval of 
interest is large, the Poisson distribution is unwieldy, and a 
similar normal approximation may apply.

Continuous Distributions  
 The most well-known example of a continuous distribution 
is the normal distribution. Most clinicians are familiar with 
at least some of the features of this distribution, which is 
also referred to as a Gaussian distribution or a bell-shaped 

curve. It is symmetric around the mean, and when the mean 
is 0 and has a variance (and, thus, an SD, as well) of 1, it 
is referred to as a standard normal distribution. The area 
under the standard normal curve from one SD below the 
mean to one SD above the mean includes about 68% of the 
distribution while 95% of the distribution lies in the area 
from 2 SD below the mean to 2 SD above, and 99% of the 
area is from 2.5 SD below the mean to 2.5 SD above the 
mean.
 Data from many samples are not normally distributed, 
but when the underlying distribution is itself normally 
distributed, the central-limit theorem applies. The central-
limit theorem states that in considering a random sample, 
when the number of observations is large, the distribution 
of the mean is approximately normally distributed, even 
if the distribution of the observations in the sample being 
studied is not normally distributed. Often, 30 observations 
are used as a rule-of-thumb minimum cutoff for defi ning 
what is meant by “large.” Normally distributed data are 
rare in real life, but if there is reason to believe that the 
central-limit theorem applies, inferential statistics can be 
used. In practice, this is important because the means of 
most physiologic measurements, such as blood pressure, are 
considered to be normally distributed.

Degrees of Freedom   
 Many statistical tests depend on a factor called the 
degrees of freedom (DF). This term refers to the number of 
independent comparisons that can be made when calculating 
a given statistic. For example, in a dataset that contains 
50 persons, 49 of those individuals can be compared 
with the fi rst person. As a result, there are 49 DF for this 
calculation.

Hypothesis Testing  
 The interpretation of statistical results in the biomedical 
literature while using the log transformation is useful, it also 
makes interpreting the transformed variable more diffi cult 
because log values are often not meaningful to reader. In 
addition, transforming the log of the variable back (using 
the antilog) results in the geometric mean, rather than the 
arithmetic mean. This gives rise to the null hypothesis 
(H0), and the alternative hypothesis (HA or H1). If there is 
a difference between the study groups, the H0 is rejected. 
If no difference between groups is found, the result is 
failure to reject the H0. The latter form of interpreting H0 
is used because every study is limited, and it is impossible 
to know if there are truly no differences in the factor of 
interest between groups. The H0 and HA or H1 are typically 
expressed by saying that the groups are equal (or that there 
is no difference between them), and the groups are not 
equal (or that there are some differences between groups), 
respectively, though more specifi c ways of expressing those 
ideas are also used. For example, the HA is often stated as a 
general inequality (i.e., the mean of group 1 ≠ the mean of 
group 2), because the direction of the inequality is uncertain. 
In the uncommon case where there is certainty about the 
direction of differences between groups, the researcher may 
choose to express the HA in that direction (e.g., the mean of 
group 1 greater than the mean of group 2).

Abbreviations in 
This Chapter  
ANCOVA Analysis of covariance
ANOVA Analysis of variance
CI Confi dence interval
DF Degrees of freedom
H0 Null hypothesis
H1 or HA Alternative hypothesis
IQR Interquartile range
SD Standard deviation
SEM Standard error of the mean
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 The potential for making errors when evaluating the H0 
and HA is well known. A Type I error happens when the H0 
is rejected when it is true, thus fi nding differences where 
none exist. A Type II error is failure to reject the H0 although 
a difference is present. The probability of a Type I error, or 
the signifi cance level of a test, is denoted by alpha (α), and 
the probability of a Type II error is referred to as beta (β). 
Beta is a component of the power of a test, which contributes 
to determining the sample size needed to detect a difference 
between groups, if there is such a difference. Power is 
calculated as 1 - β. The importance of the estimated power of 
a study is highlighted mainly when the observed difference 
between groups is not statistically signifi cant. In such 
trials, sometimes called negative studies, suffi cient power 
indicates that the groups are similar, but in underpowered 
analyses, no conclusion can be drawn because there is not 
enough information to answer the question.
 Biomedical researchers often set α = 0.05 and β = 0.20 by 
convention, though there is no reason that different values of 
each cannot be used. For example, because making an error 
can have important consequences, there may be compelling 
reasons to avoid making a Type I error, even if that means 
making a Type II error, or vice-versa. For example, imagine 
that researchers develop a new screening test to detect 
colorectal cancer. In a clinical trial, the investigators fi nd 
that the new test is more sensitive and specifi c than the 
existing test, despite being more invasive and expensive. If 
the investigators have made a Type I error, and there is really 
no difference between the tests, the consequences include 
exposing the person to unneeded risks of adverse effects 
due to the invasiveness of the test. Alternately, if a Type II 
error is found, and the tests are found to be equivalent when 
they are not, patients may not be able to take advantage of 
the improved technology. 
 The power of a test is affected by several factors:  the 
signifi cance level (α), the difference between groups, the 
SD of an observation, and the sample size. Power increases 
as the difference between groups and as the sample size 
increase. Power decreases as α falls and as the SD of an 
observation increases.
 Another important consideration is the sample size 
needed to conduct the study. This consideration must take 
into account the signifi cance level, desired power, and the 
difference between means under the H0 and alternative 
hypothesis. The number of study participants needed to 
detect some difference between groups increases with the 
variance in the data, as the chosen α decreases, and as 
power increases (or β decreases). For example, suppose 
that researchers want to conduct a study in which they are 
willing to accept a 1% probability that observed differences 
between groups are due solely to chance. If the investigators 
are willing to accept a 5% probability that differences are 
due to chance instead of just 1%, the needed sample size will 
decrease. The implications of these types of decisions are 
important because a larger sample increases the time and 
expense needed to conduct a clinical study. For example, an 
odds ratio of 2.0 would indicate that the independent variable 
is associated with a 100% higher risk of the outcome, while 
an odds ratio of 75% would indicate that the independent 
variable is associated with a 25% decrease in the likelihood 
of the outcome.  In addition, when a confi dence interval (CI) 
for an odds ratio includes 1.0, the effect of the independent 

variable is interpreted as not being statistically different 
from 0, that is, there is no difference in the outcome between 
persons who received the intervention and individuals who 
did not.

One-Tailed and Two-Tailed Tests  
 A one-tailed statistical test refers to one in which the 
parameter being studied (such as the mean of some variable) 
under HA is allowed to be either less than or greater than the 
values under the H0, but not both. In contrast, a two-tailed 
test is one where values of the parameter of interest under 
HA are allowed to be less than or greater than the values 
under the H0.
 Deciding which approach to use requires some thought 
before analyzing the data. It is acceptable to test for 
differences in either direction, in which case the H0 will be 
rejected if the value of the test statistic is above or below the 
critical point. This is tantamount to saying that researchers 
will conclude that an observed difference is statistically 
signifi cant if the mean value for group 1 is above or below 
that for group 2. In general, however, use of a one-tailed test 
is analogous to stating that one has no interest in changes 
in the other direction. In addition, justifying the decision to 
use a one-tailed approach often requires information that is 
not available. As a result, this discussion focuses on the two-
tailed approach.

P-Values and Confi dence Intervals  
 A p-value is the probability of obtaining a result at least as 
extreme as the one observed, given that the H0 is true. This 
defi nition is problematic, however. P-values are conditional 
on H0, but whether the H0 is actually true is unknown. 
Furthermore, p-values are calculated using models that 
correspond to the type of data, and most models assume that 
observations are independent. Yet, depending on the type of 
study, this assumption may not be true. As a result, a p-value 
is generally not a meaningful estimate of probability, but 
more an indication of consistency between the H0 and the 
data. The result is that a large p-value suggests that the data 
are consistent with the H0 and a small p-value suggests that 
the data are not consistent with the H0. Neither, however, 
tells us whether the H0 is true.
 There are many ways to interpret p-values. Assuming that 
the signifi cance level for a study was 0.05, one approach is 
to view p-values between 0.01 and 0.05 as being signifi cant, 
those between 0.001 and 0.01 as being highly signifi cant, 
those less than 0.001 as very highly signifi cant, and p-values 
higher than 0.05 as not statistically signifi cant. The p-values 
higher than 0.05 but lower than 0.10 are referred to as 
trending toward signifi cance, but trends represent value 
judgments. In other words, a trend toward signifi cance can 
also easily be interpreted as a trend away from signifi cance. 
Because the signifi cance level is arbitrary, statistical 
signifi cance tells only that the p-value is less than the cutoff 
value chosen. Furthermore, signifi cance testing, with its 
dichotomous outcome, provides no information about the 
size of the effect. Similarly, a statistically nonsignifi cant 
p-value does not indicate that there is no association in the 
data.
 Along with p-values, CIs are used to account for the 
random error. As with signifi cance levels, the desired level 
of confi dence is chosen arbitrarily. A 95% CI, often used 
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by convention in biomedical research, indicates that, if the 
experiment were to be repeated many times, at least 95% 
of the resulting CIs constructed would include the true 
(unobservable) population mean. But this interpretation 
assumes that the statistical model being used is correct and 
that bias is negligible. These assumptions may not hold in 
all types of medical research. As a result, it is important to 
consider the CI as only a general and minimum estimate 
of uncertainty in the estimate. In addition, the higher the 
confi dence level, the wider the interval will be, because we 
need to include a wider range of values to be more certain 
that the true value of the variable of interest is included. 
There are several ways to calculate CIs. For example, we are 
interested in constructing a 95% CI for a mean. One way of 
estimating the limits of a 95% CI by multiplying 1.96 by the 
SEM, then adding and subtracting that quantity to the mean, 
respectively. The factor, 1.96, comes from the probability 
that a value will fall within about two SDs to either side of 
the mean under a standard normal distribution.
 The connection between p-values and confi dence levels 
is obvious, but represents an important pitfall. Although CIs 
can be viewed as analogous to hypothesis tests of signifi cance, 
doing so is pointless and ignores the information that CIs 
offer above what hypothesis testing provides. For example, 
the CI estimates the effect size as well as the variability in 
the estimate, whereas a p-value provides only an estimate of 
the consistency between the data and the hypothesis.

Incidence Rates, Prevalence Rates, Odds, and 
Odds Ratios  
 Incidence rates, prevalence rates, odds, and odds ratios 
are commonly encountered in epidemiologic research. The 
incidence rate is an estimate of the instantaneous rate of 
developing disease. It is calculated by dividing the number 
of persons who develop disease in a population over a given 
time by the summed amount of time that people in the study 
were at risk of developing the disease,

If 100 people are observed for a year, and are at risk of 
disease for that time, the denominator of the incidence rate 
would be 100 person-years.   
 Although incidence refl ects the rate at which people 
develop disease, prevalence estimates the number of 
people who have a condition at a particular point in time. 
Like incidence, prevalence is an important epidemiologic 
measure. In addition, by dividing the proportion of persons 
with a disease by the proportion of persons without the 
disease 

it is possible to estimate the prevalence odds. This relation 
holds for other measures, as well. In a case-control study, the 
odds ratio is the ratio of cases to controls among the exposed 
persons, divided by the ratio of cases to controls among the 
unexposed persons. An odds ratio of 1.0 indicates that the 
independent variable is not associated with outcome. Values 
greater than 1.0 indicate that the independent variable is 
associated with higher risk of the outcome, while values lower 
than 1.0 indicate that exposure to the independent variable is 
associated with lower risk of outcome. In case-control studies 

(discussed in detail in the Pharmacoepidemiology chapter), 
control subjects can be selected using different methods. 
One such method is called incidence-density, or risk-set, 
sampling in which control subjects are selected from among 
all persons at risk of the event at the time the event occured. 
When this method is used, the control subjects are chosen 
from among individuals at risk of experiencing the outcome 
when the event of interest occurs for a person. Under this 
condition, the odds ratio provides a valid estimate of the 
incidence rate ratio.

Contingency Tables  
 Contingency tables are useful to estimate the association 
between variables. When constructed to examine the 
relation between two variables, the table includes two rows 
and two columns, though any number of rows or columns 
can be used to accommodate variables with more than two 
categories (Figure 1-1). Within this 2 X 2 table, the variables 
must be categorized so that each term has only two possible 
results. One variable is arbitrarily assigned to the rows of 
the table, and the other to the columns. Each cell of the table 
contains the number of individuals who meet the criteria 
for both variables, such as exposed, with outcome, or not 
exposed, no outcome. By convention, row and column totals 
are calculated and written in the right and bottom margins, 
respectively. The grand total, or sum of all individuals in the 
table, is also written in the lower right-hand corner of the 
table.
 Before performing statistical tests using a contingency 
table of any size, the expected values for each of the cells 
are calculated, which represent expected counts if the H0 
is true. This information permits comparisons of expected 
and observed cell totals, which provides an opportunity to 
visually evaluate how close the two types of data are.  
 The expected value for each cell is the product of the row 
and column totals, divided by the grand total. In addition, 
two other measures can be estimated from observed and 
expected values. First, by cross-multiplying and dividing 
the observed estimates

we can estimate the odds ratio. In a case-control study 
where risk-set sampling has been used, the odds ratio is an 
estimate of the incidence rate ratio Second, the standardized 
mortality (or morbidity) ratio can be estimated by dividing 
the observed number of events by the expected number of 
events, and multiplying that number by 100%. Values of 
this ratio that are less than, equal to, or greater than 100% 
indicate that the risk of the outcome in the study population 
is reduced, the same as, or exceeds that of the general 
population, respectively.  

Common Statistical Tests  
 There are many statistical tests used to evaluate study 
data. To further complicate matters, multiple tests may be 
appropriate for a given situation. It is critically important 
to be familiar with the assumptions underlying a specifi c 
test, the number of groups being compared, whether the 
samples are independent or paired, and whether the data 
are nominal, ordinal, or continuous. Statistical tests are 

number of subjects developing disease

total time at risk of disease for subjects followed

P

1 − P

AD

BC
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sometimes described as being parametric or nonparametric. 
These categories refer to whether the data follow a known 
distribution or not. Continuous data are generally analyzed 
using parametric tests, such as the t-test, whereas categorical 
data are often analyzed using nonparametric tests, such as 
the chi-square test (χ2).
 The z-test is used to make an inference about the mean of 
the sampling when the underlying distribution is normal or 
the central-limit theorem applies, and the variance is known. 
Yet, the variance is often not known or the analyst may have 
reason to believe that the sample and population variances 
are different. In such a case, a t-test, rather than the z-test, is 
used.
 Proportions can be evaluated using the binomial 
distribution if there are only two possible outcomes, such as 
success and failure, or present and absent for simplicity. For 
example, a study might compare the percentage of persons 
with breast cancer in a sample compared with the general 
population. As mentioned earlier, when the number of trials 
is large, the binomial distribution is hard to use. If the number 
of trials is moderately large and the probability of success in 
each trial is not too extreme in either direction, the central-
limit theorem applies, and a normal approximation to the 
binomial distribution can be used.
 The Poisson test is used when considering uncommon 
conditions, because the expected number of events per 
unit of time follows a Poisson distribution. When using 
the binomial distribution, the focus is on a fi nite number 
of trials, in which the number of events is limited to the 
number of trials. Under the Poisson distribution, however, 
the potential number of trials is infi nite and, as a result, 
the number of events can also be unlimited. As with the 
binomial distribution, when the expected number of events 
per unit time is large, the Poisson distribution becomes 
diffi cult to use. When the number of expected events per 
unit time is at least 10, the normal approximation to the 
Poisson distribution is used.
 Paired tests, such as the paired t-test, apply when estimates 
from one sample are compared with estimates in a matched 
sample. An example of related data is a pre-post design 
in which study participants act as their own experimental 
control. This particular design is often used in clinical drug 
trials.

 Some tests require that the analyst assume the variances 
between samples are equivalent. To test this assumption, 
we can assess the ratio of sample variances using the F 
test. This test is used because the ratio of sample variances 
follows an F distribution with n1-1 and n2-1 DF. When the 
F test is used for this purpose, it is sensitive to departures 
from normality. 
 Analysis of variance (ANOVA) methods permit 
comparison of more than two groups. For example, to 
examine the effect of smoking on the severity of pulmonary 
disease, rather than examining only the two categories of 
either no exposure to tobacco smoke or any exposure, the 
study could assess the relation between degree of pulmonary 
disease and never smokers, passive smokers, former 
smokers, current light smokers, current moderate smokers, 
and current heavy smokers. When the effect of one variable 
on the outcome is analyzed, a one-way ANOVA is used.
 When ANOVA indicates a difference exists among the 
several groups, further analysis must be done to determine 
which groups are different from one another. Although 
t-tests are used to compare pairs of groups, making many 
comparisons increases the chance of fi nding a statistically 
signifi cant difference between groups. To account for this 
issue, multiple-comparison procedures are used to ensure 
that the chance of fi nding signifi cant differences between all 
possible groups is held constant. There are many multiple-
comparison procedures, such as the Bonferroni adjustment, 
Scheffé test, and the Honest Signifi cant Difference 
methods.
 In the Bonferroni adjustment, the initial signifi cance 
level is divided by the possible number of independent two-
group comparisons. For example, if there are 10 groups, 
there are 45 possible two-group combinations. If α is set 
a priori at 0.05, 0.05 divided by 45 gives an adjusted α of 
0.0011. To reject or fail to reject the H0 for each comparison 
would be based on the adjusted α. Note that some of the 
comparisons may not be independent, in which case, the 
Bonferroni adjustment will be conservative. 
 The one-way ANOVA is used to estimate the effect of 
one factor on the dependant variable. In this model, we are 
interested in estimating the mean of all groups considered 
together, the difference between the mean of a specifi c group 
and the overall mean, and the random error between the 
overall mean plus the group mean and a single observation. 
This is also called a one-way ANOVA fi xed-effects model 
because the groups being compared have been fi xed by 
the study design. An alternative to the fi xed-effects model 
approach is the random-effects model. In this variation, an 
assessment is made on overall differences between groups 
and the general breakdown of total variation into between-
groups and within-group components. Like the fi xed-
effects model, a random-effects one-way ANOVA model 
is assessed using the F test. In addition to the one-way 
model are two-way and multiple ANOVA approaches. The 
two-way ANOVA is used when the effects of one variable 
are analyzed while controlling for the effects of the other 
variable. This model also allows us to examine whether 
the effects of a variable on the outcome differ by the level 
of a second variable. This type of assessment is done by 
including an interaction term—the product of the variables 
of interest—in the model, and interpreting the results of the 
statistical test for the two variables. For example, the effects 

Figure 1-1. 2 X 2 Contingency Table
Outcome yes Outcome no

Exposure yes A B Row 1 total (R1)
Exposure no C D Row 2 total (R2)

Column 1 
total (C1)

Column 2 
total (C2)

Grand Total 
(GT)

The odds ratio is estimated by calculating AD

BC
.

The expected value for a particular cell is calculated as the product of the 
row total and the column total, divided by the grand total.  Using the table 
above, the expected value for cell A is.

Expected values for the other cells are calculated in the same way.

R
1
C

1

GT
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of age and sex on some outcome can be assessed using a 
two-way ANOVA. To do this, the effect of age and sex (also 
called the main effects), and a third (interaction) term, age 
X sex, on the outcome are modeled. By generalizing this 
approach in an n- (or multi-) way ANOVA, it follows that the 
effect of higher order interaction terms on an outcome can 
also be estimated, such as a three-term product (e.g., age X 
sex X race).
 Analysis of covariance (ANCOVA) is another variation on 
the ANOVA theme. Like multiway ANOVA, an ANCOVA 
models the effects of more than one independent variable 
on the outcome. However, an ANOVA model compares the 
effect of categorical groups on the mean outcome, whereas 
ANCOVA provides the fl exibility to estimate and control for 
the effect of continuous independent variables, or covariates, 
on the outcome. Similarly, it is possible to model more than 
one outcome in an ANOVA or ANCOVA setting with the 
multiple ANOVA or multiple ANCOVA.

Nonparametric Tests  
 When data are distributed normally or normal 
approximations apply, techniques like those discussed above 
are commonly used. When assumptions of normality cannot 
be made, and the data do not follow a known parametric 
distribution, or are categorical, nonparametric methods are 
used to test hypotheses. A few nonparametric tests are the 
Wilcoxon signed-rank and rank-sum tests, the χ2 test, and 
the Kruskal-Wallis test, among many others.
 The Wilcoxon signed-rank test is analogous to the paired 
t-test. The Wilcoxon signed-rank test considers the difference 
between the observation and the H0, taking into account 
the direction and relative size of the observed differences. 
Instead of the precise magnitude of the difference, the relative 
magnitude is considered, with greater weight, or higher rank, 
given to the larger differences. A similar situation exists 
when data are collected from two independent samples. If 
the data measures are continuous, the t-test for independent 
samples can be used. When the outcome data are ordinal, 
however, a nonparametric approach, such as the Wilcoxon 
rank-sum test, should be used. 
 Chi-square tests (and variations of it) are commonly used 
to test hypotheses when the data are categorical, but they 
can also be used for other purposes, such as testing for the 
variance of a normal distribution. When using the χ2 test 
to evaluate hypotheses pertaining to variances, deviations 
from normality are important. If the underlying distribution 
is not normal, the results of the tests are likely to be invalid. 
In addition, all expected values must be at least 5 in order 
to use the χ2 test, otherwise, the Fisher’s exact test is used. 
McNemar’s test is a nonparametric test used to evaluate 
categorical data from matched pairs.
 Just as the ANOVA is a generalization of the t-test, the 
Kruskal-Wallis test is a generalization of the Wilcoxon 
rank-sum test and serves as a nonparametric approach to 
ANOVA. The Kruskal-Wallis test allows hypothesis testing 
when we have more than two samples and ordinal data.
 Two methods commonly seen in survival, or time-to-
event, analyses are the log-rank test and life table analysis. 
The log-rank test allows comparison of the events of two 
or more groups, with the H0 that there are no differences 
between groups at any point along the times curves. This 
test has g-1 DF, where g is equal to the number of groups 

being compared. If the analyst believes that the early part of 
the survival curve should be more heavily weighted, the Peto 
test may be used instead of the log-rank test. For example, in 
considering the effects of two drugs on survival of persons 
with cancer, there may be evidence that early diagnosis 
and treatment with one of the drugs is more important than 
treatment at some later point. In this case, the Peto test 
would be appropriate, or at least the results of the two tests 
should be compared.
 Life tables provide an estimate of the rate of an event of 
interest, by comparing the occurrence in a group between 
adjacent, small time periods. One of the advantages of 
using life tables is that they can be used to summarize 
large amounts of data without sacrifi cing statistical detail. 
Imagine that a group of individuals has been observed 
over some time period, which is subdivided into mutually 
exclusive, contiguous intervals. Estimating the percentage 
of individuals in a group who are expected to survive (or 
not have the event of interest) to the end of one of the time 
intervals is done by multiplying the probabilities of surviving 
to the end of each of the previous time intervals. If the 
goal is to estimate the proportion of individuals in a group 
expected to survive to the end of the fourth time interval, 
the estimate is calculated by multiplying the proportion of 
the group that survives to the end of the fi rst interval by the 
proportion who survive to the end of the second interval by 
the proportion who survive to the end of the third interval.

Correlation  
 Correlation methods are used to show the general linear 
relation betweenship variables. Values of the correlation 
coeffi cient, r, vary from positive one to negative one (+1 
to -1), where the respective extremes indicate perfect 
agreement and disagreement. Positive correlation values 
indicate that as one variable increases, so does the other. 
Conversely, a negative correlation indicates that as one 
variable increases, the other decreases. If the correlation 
coeffi cient is 0, the variables are not related, though lack of 
an observed association may also refl ect limits in the data 
collected. For example, if inclusion criteria are particularly 
restrictive, an artifi cial association or lack of one may be 
observed. It is critically important to recognize that variables 
may be related without a causal relationship existing, that 
is, correlation is not causation. Similarly, simply saying that 
variables are correlated is not informative. It is preferable 
to indicate how strongly the linear relation is and in what 
direction.
 There are several types of correlation measures, including 
Kendall’s rank-correlation, Pearson’s product-moment 
correlation, and Spearman’s rank-order correlation. Kendall’s 
correlation measures the relationship between ordinal 
variables, Pearson’s correlation assesses the association 
between approximately normally distributed continuous 
variables, and the Spearman method is used when at least 
one of the variables is not normally distributed. 
 Other types of correlation coeffi cients estimate the degree 
of agreement within or between raters. These measures are 
referred to as interclass or intraclass correlation. An example 
of this type of measure is the kappa (κ) statistic, which is used 
to describe the degree of agreement by several observers of 
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the same subject. Specifi cally, if we are interested in how 
reproducibly a variable is measured by different surveys 
or different tools or observers, κ is used to compare the 
observed and expected probabilities of agreement between 
the different measurements. In general, κ is estimated using 
a one-tailed test, because negative values typically do not 
provide useful information.
 When the correlation coeffi cient is squared (r2), the result 
is the coeffi cient of determination. This value represents the 
percentage of the variance in the dependent variable that 
is explained by the independent variable. Note that in the 
context of a regression model, the r2 increases with the number 
of covariates in the model, but building such a model is not 
a headlong pursuit of highest r2. To help construct a model 
that maximizes the variance in the dependent variable, but 
that is also relatively parsimonious, the adjusted r2 is used. 
This measure includes a penalty for including unnecessary 
independent variables. For example, we expect r2 to rise 
with each independent term added to the model, but the 
adjusted r2 may increase or decrease depending on whether 
and how much a specifi c term contributes to explaining the 
total model variation. 

Regression  
 Regression methods are used to estimate the relation 
between variables. Simple regression describes the relation 
between a single independent variable and the dependent 
variable; multiple regression is used when there are more 
than one independent variable. These methods provide 
explanation and prediction of expected relations within the 
range of the data. Extrapolation of model results outside of 
the observed range of data is not recommended.
 A variety of regression methods exist, including linear, 
logistic, survival, and Poisson models. Linear regression 
methods are used when there is assumed to be a straight-line 
relation between the dependent and independent variables. 
When the dependent variable is binomial, logistic regression 
is used. Survival data are analyzed using proportional 
hazards regression (and related) methods. Major assumptions 
underlie each of these models, though there are methods 
that provide some fl exibility when assumptions are not met. 
For example, the logistic model typically requires that the 
outcome have only two possibilities, but the ordered logistic 
model can be used when the dependent variable has more 
than two categories. Similarly, the proportional hazards 
assumption is an important part of survival analysis, but 
when this assumption does not hold, allowing the effect of 
variables to vary over time (time-varying covariates) may 
be useful.

Linear Regression  
 Like all statistical methods, appropriate use of the 
regression models depends on whether certain assumptions 
are met. The assumptions underlying the linear regression 
model are shown in Table 1-1.
 The general form of the linear regression line is:

μ{Y|X}  = β0 + β1X1 + … + βnXn 

where μ{Y|X} refers to the mean of the dependent variable, 
given the values of the independent variable(s), X1 - Xn, β0 
is the intercept of the line, measured in the same units as 
the dependent variable, and β1-βn are the slopes of the lines. 
Another name for β is coeffi cient. The slope of the line 
(or coeffi cient) is the change in the value of the dependent 
variable resulting from a 1-unit change in the independent 
variable. For example, in a simple regression model, if 
the coeffi cient is 1.0, the value of the dependent variable 
increases by one for each 1-unit increase in the independent 
variable. Of course, this interpretation is dependent on 
the scale of the independent variable. If, for example, the 
independent variable has been transformed to its logarithm, 
the coeffi cient would still be the change in the mean of 
dependant variable for each 1-unit change in independant 
variable, but the unit change would be interpreted as a 
change on the particular log scale, such as doubling or a 
10-fold increase. In multiple linear regression, any given 
coeffi cient represents the change in the mean value of 
dependant variable for each 1-unit change in independant 
variable, assuming the other variables are held constant, or 
adjusting for the other variables.
 Dummy, or indicator, variables can be used when an 
independent variable has more than one level. For example, 
to examine the effect of sex on blood pressure, one way 
of coding sex is as a single variable that has two different 
values, one for males and one for females. Another way to 
approach this issue is to split sex into two separate variables, 
which have a value of 0 if the characteristic is not present 
or a value of 1 if it is present. As a result, in a simple linear 
regression model where dummy variables are used to model 
the relation of sex on the outcome, the model would look 
like this: 

μ{Y|X} = β0 + β1Male + β2 Female.

In this model, for Male study participants, Female will equal 
0, and β2Female will drop out of the equation. Similarly, for 
female study participants, Male will equal 0, and β1Male 
will drop out of the equation.
 The slope and intercept (also called the constant) in a 
regression model can be evaluated by testing the hypothesis 
that these terms are equal to 0. If we accept the H0 that the 
slope is 0, this observation suggests that the independent 
variable does not contribute to explaining or predicting 
the dependent variable, or that the relation between the 
parameters is not linear (in a linear model). When the H0 
is rejected, we generally conclude the opposite, although 
other models with linear components (curvilinear graphs, 
for example) may also fi t the data well. Under the test for 
the intercept, if we fail to reject the H0 that the intercept 
is 0, we can remove the intercept from the model. This 
step is analogous to forcing the line through the origin, but 
observations for some variables are generally not available 
when some independent variables, like age, equal 0.  As 
a result, we are generally not interested in the statistical 
signifi cance of the intercept.

Logistic Regression  
In logistic regression, the goal is to estimate the relation 

between study variables and an outcome that can be 
categorized into two groups, such as disease or no disease, 
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or severe pain or no severe pain. There are generalized 
logistic methods, such as ordered logistic regression, that 
allow modeling an outcome with more than two categories; 
however, this discussion is focused on the dichotomous-
outcome logistic model.
 As with other regression models, the β coeffi cients in a 
logistic regression model indicate how much the dependent 
variable changes with a 1-unit change in the independent 
variable. In multiple logistic regression, the coeffi cient 
represents the relationship between each independent 
variable and the dependent variable when all other 
independent variables are held constant. The result of the 
logistic regression model is the odds ratio, regardless of the 
type of underlying study. The odds ratio quantifi es the odds 
of the outcome in those exposed to the independent variable 
divided by the odds of the outcome (the dependent variable) 
in unexposed persons. For example, an odds ratio of 2.0 
would indicate that the independent variable is associated 
with a 100% higher risk of the outcome, while an odds 
ratio of 75% would indicate that the independent variable 
is associated with a 25% decrease in the likelihood of the 
outcome.  Additionally, when a confi dence interval for an 
odds ratio includes 1.0, the effect of the independent variable 
is interpreted as not being statistically different from 0, that 
is, there is no difference in the outcome between persons 
who received the intervention and individuals who did not.
 Note that the interpretation of the β coeffi cients may 
differ based on the type of variable and how it is coded. 
When the independent variable of interest has only two 
possible outcomes, coded as 0 and 1, for example, the odds 
ratio provides an estimate of the likelihood of the outcome  
between individuals with the variable equal to 1 and those 
with the variable equal to 0.  When the independent variable 
has more than two possible categories, the odds ratio is 
derived from comparing persons with the variable equal 
to one level to persons in the reference, or baseline, group. 
Similarly, when the independent variable is continuous, the 
odds ratio represents the change in the likelihood of the 
outcome associated with a 1-unit increase in the value of the 
independent variable. It is worth noting that the scale of the 
independent variable is very important here. For example, 
a 1 mm of mercury increase in blood pressure may not be 
clinically signifi cant. On the other hand, if the variable is 
measured on a small scale, 1 unit may be far too large.

Survival Analysis  
These methods apply to questions where the outcome is 

time until an event takes place. Events of potential interest 
may include progression of disease, recurrence of a condition, 
and, of course, death, among many others. One advantage of 
survival analysis techniques is that these methods account 
for incomplete observation, or censoring. Censoring refers 
to situations in which the analyst knows something about an 
individual’s experience, but the exact time until the outcome 
is unknown. For example, an individual may withdraw 
from a study, be lost to follow-up, or may not have the event 
being studied by the time the study ends. In addition, we 
may consider survival data as being right- or left-censored. 
Right censoring occurs when the observation period ends 
and some persons have not yet had the event of interest. 
Left censoring happens when the event of interest happens 
at some time before the start of observation. Observations 

may also be interval-censored, which occurs when the 
event happens at some unknown time between scheduled 
observation points. For example, if a subject’s disease 
progresses some time between the scheduled follow-up 
appointments at 3 and 12 months, interval censoring has 
occurred. Another mechanism of incomplete observation is 
called truncation, but censoring is inherently different from 
truncation. Specifi cally, censoring occurs at the individual 
level while truncation is a design issue. Thus, if observation 
does not begin until some specifi ed time after the start of 
exposure, the dataset is left-truncated. If all the people in a 
study experience the event before the start of the study, the 
dataset is right-truncated.
 Survival data are often analyzed using Cox proportional 
hazards models. The major assumption underlying this 
model is the proportional hazards assumption. Although 
hazard generally refers to the chance that some event will 
occur, this assumption states that the hazard—defi ned 
as the instantaneous potential per unit time for a person 
to experience the event of interest, given that the person 
survives until that time—is proportional to that for any other 
individual, and is independent of time. The proportional 
hazards assumption can be tested statistically and by 
examining curves on a survival graph. For example, if 
survival curves cross, the proportional hazards assumption 
does not hold. 
 Methods for addressing situations when the proportional 
hazards assumption does not hold include examining the 
model more closely to determine which covariates contribute 
nonproportionally, stratifying on the exposure variable, 
or using an extended model in which some variables are 
modeled to permit them to vary over time.

Interpreting Model Results  
Once a survival analysis model is constructed, it is 

important to consider how to interpret the results. When the 
independent variable is measured on a nominal scale with 
two possible categories, the β coeffi cient for the variable 
represents the change in the log hazard for a 1-unit change 
in the covariate. Categorical variables that have more than 
two levels are interpreted as in the logistic model. That is, 
the β coeffi cient represents the change in log hazard for the 
group compared with the reference or baseline category. 
Similarly, for covariates measured on a continuous scale, 
the β coeffi cient represents the change in the log hazard for 
a 1-unit change in the value of the variable. The key here, 
though, is to make sure that the scale is appropriate. When 
there is more than one independent covariate in the model, 
the effect of the covariate is interpreted as that for a 1-unit 
change in the variable, assuming all other terms are held 
constant. 

Poisson Regression  
Poisson regression models the number of events, with 

the following assumptions that the incidence rate refl ects 
how often events occur, that the incidence rate multiplied by 
the exposure provides an estimate of the expected number 
of events, that during very small exposure periods, the 
probability of more than one event taking place is small, and 
that nonoverlapping exposures are mutually independent. 
Coeffi cients from Poisson models represent the change in 
the log incidence rate for a 1-unit change in the independent 
variable.
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Missing Data  
 For many reasons, data are often missing or unusable. 
Study participants may not understand a question, or refuse 
to answer. Data collection may rely on different people, and 
as a result, vary in completeness. Unexpected events may 
prevent a person from completing a questionnaire or survey. 
If missing information obscures data and relations that are 
important for the analysis, bias is introduced, which can 
result in the use of the data being signifi cantly hampered.
 To better understand the effect of missing data, it is 
necessary to consider the patterns and mechanism of 
missingness. Patterns of missing data refer to which variables 
and values are present and which are not. For example, in 
univariate missingness, data for a single variable are not 
available. A related pattern of missingness, called unit and 
item nonresponse, occurs when study participants do not 
complete a survey. Longitudinal studies can suffer from 
attrition or other loss-to-followup. Drug safety studies can 
provide an example of this pattern of missingness. When 
large amounts of data are missing, some variables may not 
be observed together. This limitation results in an inability 
to estimate the association between affected variables or 
even if estimates can be derived, they may be misleading. 
Last, situations in which variables that were not observed at 
all may present missing-data problems.
 In addition to the patterns described above, the 
mechanisms that result in missing data are important to 
consider. The central issue is whether the values in the 
database are related to missing data. If missingness does not 
depend on the values of the data, missing or observed, the 
mechanism is called missing completely at random. Despite 
its name, this mechanism does not imply that the pattern of 
missingness is itself random, just that it is independent of 
the data. The next step on this continuum is called missing 
at random, and this mechanism applies when the missing 
data depend on the data values that are observed, and not 
on those that are unobserved. The third mechanism is called 
not missing at random, and it applies when the missing 
data depend on the missing values. When data are missing 
completely at random, the observed data represent a random 
sample of all the data. On the other hand, when the missing 
data are not missing at random, the subsample analyses for 
the missing variables may be biased. An example is when 
fi nal clinical measures are missing because of death. Simply 
ignoring the missingness will bias the fi ndings toward 
more favorable outcomes. The ANOVA methods are not 
well-suited to dealing with missing data; missed regression 
models are preferred. However, good study design and 
conduct are the fi rst line of defense against missing data. 
Analytic strategies are a distant second.

Summary Measures 
of Effect  
 In addition to literacy in statistics, clinicians must also be 
comfortable using the vocabulary of epidemiology. A few of 
the terms and concepts from this fi eld are discussed briefl y 
below.

Absolute and Relative Differences  
 The terms “absolute” and “relative” are commonly used 
in the biomedical literature, typically when discussing the 
rate of some event. For example, in a clinical trial comparing 
the effects of a new drug with a placebo, the relative risk 
reduction is estimated by subtracting the percentage of 
persons in the treatment group who have the outcome from 
the percentage of persons with that event from the control 
group, divided by the percentage of persons who have the 
event in the control group. In contrast, the absolute risk 
reduction is simply the numerator of the above ratio. That is, 
the percentage of persons in the control group who have the 
outcome, less that in the active comparator group. Relative 
measures are often larger than absolute measures, and as a 
result, are more commonly reported in the literature. Yet, a 
large relative reduction may translate into few events, and 
absolute measures may be more meaningful to consumers 
and purchasers of health care. Similarly, relative measures 
are generally viewed as being more relevant for etiologic 
questions, whereas absolute measures are more applicable 
for policy questions. This observation makes some sense 
because it is easy to imagine that employers and payers 
are likely to be interested in the absolute number of events 
like injuries, cases of disease, or number of missed days or 
work.
 When the absolute risk reduction is expressed as a decimal 
(i.e., 1% = 0.01), its inverse is called the number-needed-
to-treat. This estimate refers to the number of persons who 
must receive a treatment for some amount of time to prevent 
one undesirable outcome or to achieve one good result. 
For example, in the Oxford league table of analgesics in 
acute pain, the numbers-needed-to-treat to provide 50% or 
greater acute pain relief are listed for a variety of drugs. An 
analogous measure, the number-needed-to-harm, refers to 
the number of persons who must receive a treatment to cause 
one death or other serious injury. The number-needed-to-
harm is calculated in exactly the same way as the number-
needed-to-treat, except that the outcome being considered 
is some undesirable outcome. Although a small number-
needed-to-treat indicates that a drug is highly effi cacious, 
a large number needed to harm is preferable because it 
indicates greater safety. 
 Sensitivity and specifi city are concepts often used in 
discussions of diagnostic tests. Sensitivity of a new test 
indicates the percentage of persons who will have a positive 
result using the new test and who really have the condition 
according to the gold standard method. Specifi city refers 
to persons who do not have the condition according to 
the standard who also have a negative test using the new 
test. These two concepts are closely linked, and while we 
would like to have high values for each measure, many 
times, it is a careful trade-off between them. Receiver-
operator characteristic curves are a tool used to show the 
performance of a new test graphically. The true-positive 
rate (sensitivity) is plotted along the Y-axis and the false-
positive rate (1-specifi city) along the X-axis. A 45-degree 
line is drawn to show where the test is no better than chance, 
and the area under the curve indicates how the test performs, 
with higher values indicating better characteristics.
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Conclusion: Avoiding 
Common Pitfalls  
 Last, it is also important to understand how to recognize 
and avoid common problems, errors, and barriers to 
understanding statistics in the biomedical literature. Some of 
these potential pitfalls are discussed in this chapter; however, 
the reader is encouraged to seek out discussions devoted 
to these topics. A few common errors include relying on 
statistical software to make decisions, inattention to detail 
when collecting data, assuming that one statistical method 
fi ts all questions, dumping poorly organized information into 
unclear charts and graphs, and failure to consult a statistician 
before data collection. In addition, while post-hoc analyses 
are useful for generating hypotheses, it is important to 
distinguish these data from the results of a priori hypothesis 
testing. Each problem is the foundation for numerous other 
issues, and addressing them early will benefi t the researcher 
and the reader. 
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