

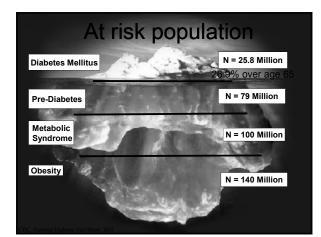
Conflict of Interest Disclosures

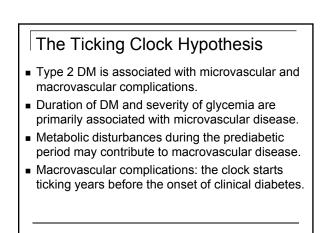
 Michael P. Kane, Pharm.D. has received research funding from Novartis Pharmaceuticals, Inc. and is a member of the Boehringer Ingelheim/Eli Lilly & Co. Speaker's Bureau.

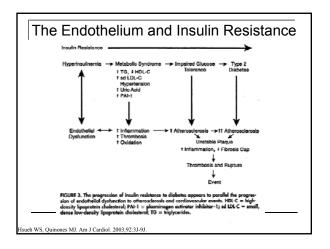
Learning Objectives

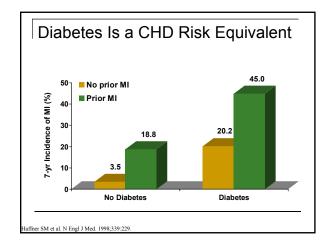
The Endocrine Group, LLP

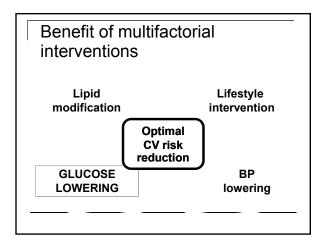
Albany, NY

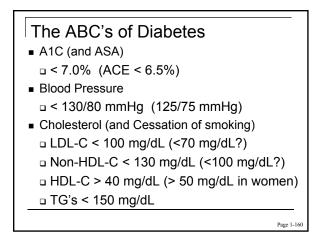

- Demonstrate an understanding of the normal regulation of blood glucose with respect to the actions of insulin, cortisol, growth hormone, glucagon, and incretins in glucose homeostasis.
- Identify differences between prediabetes, type 1 diabetes mellitus (DM), type 2 DM, and gestational diabetes, including differences in diagnostic criteria and clinical presentation.
- 3. Explain sick-day rules for a patient with diabetes.
- 4. Compare agents used in the treatment of DM, including mechanisms of action, adverse effects, contraindications, and overall effectiveness.
- Select appropriate insulin regimens for patients based on desired onset, peak, and duration of insulin effects.
- 6. Individualize a comprehensive glycemic treatment and monitoring plan for a patient with DM.
- 7. State appropriate lipid and blood pressure targets for patients with DM.
- Discuss short-term and long-term complications associated with diabetes as well as strategies to prevent or slow their progression


Page 1-136


- Insulin decreases glucose; all other hormones increase blood glucose.
- Diabetes management: It is all about the food!
- The bigger they are (A1C), the harder they fall.
- With oral therapy, add, do not substitute, therapies.
- Diabetes management: It is more than just (treating) blood glucose.
- Diabetes is a CV disease risk equivalent.
- Fix the fasting (glucose) first.
- Fifty percent of patients with type 2 DM present with endorgan damage at the time of diagnosis.


Page 1-138





Haffner SM et al. JAMA. 1990;263:2893-8

ADA Diabetes Classification

Type 1 Diabetes

 $\hfill\square$ Autoimmune Beta-cell destruction (includes LADA or Type 1 $\frac{1}{2}$ DM)

Previously known as IDDM, juvenile onset, and ketosis prone diabetes

Type 2 Diabetes

- Progressive insulin secretory defect in the face of insulin resistance
- $\hfill\square$ Previously known as NIDDM, and adult onset diabetes
- $\hfill\square$ Makes up 90-95% of all diabetes cases, multiple RF's
- Diabetes-related complication found in 50% at Dx

ADA. Diabetes Care 1997; 20:1183-97.

Page 1-138

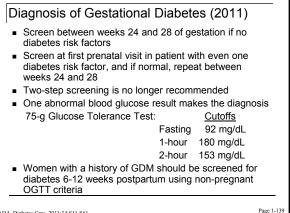
ADA Diabetes Classification Gestational Diabetes Mellitus Onset of diabetes during pregnancy; 200,000⁺/year Other Specific Types Genetic Defects (includes MODY) Exocrine pancreatic disease Endocrinopathies Drug/Chemical Induced Additional Terms Type 1 ½ diabetes (LADA) MODY Double-double diabetes ADA. Diabetes Care 1997, 20:1183-97.

ADA 1997 Diagnostic Guidelines

- Symptoms of diabetes with casual Plasma Glucose >200 mg/dL
- Fasting Plasma Glucose >126 mg/dL*
- 2 hr Plasma Glucose >200 mg/dL (after a 75-g OGTT)*

* Should be confirmed by repeat testing on a different day

ADA. Diabetes Care 1997; 20:1183-97


A1C as Diagnostic Criteria for Diabetes Mellitus (2010)

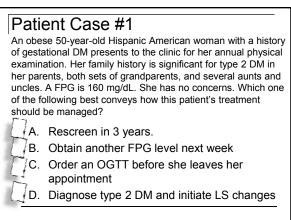
- A1C > 6.5%
- A1C performed using a method that is certified by the National Glycohemoglobin Standardization Program (NGSP) and standardized or traceable to the Diabetes Control and Complications Trial reference assay.
- Point-of-care A1C assays are not sufficiently accurate at this time to use for diagnostic purposes.

DA. Diabetes Care. 2010;33:S12-S61

Page 1-139

Page 1-140

es Care. 2011;34:S11-S61


Page 1-139

Patient Case #1

An obese 50-year-old Hispanic American woman with a history of gestational DM presents to the clinic for her annual physical examination. Her family history is significant for type 2 DM in her parents, both sets of grandparents, and several aunts and uncles. A FPG is 160 mg/dL. She has no concerns. Which one of the following best conveys how this patient's treatment should be managed?

- - A. Rescreen in 3 years.
 - B. Obtain another FPG level next week
 - C. Order an OGTT before she leaves her appointment
 - D. Diagnose type 2 DM and initiate LS changes

Workbook Page 1-140; Answer: Page 1-168

orkbook Page 1-140; Answer: Page 1-168

Prediabetes

- Hyperglycemia that does not meet diagnostic threshold for DM
 - Impaired Fasting Glucose (IFG): 100-125 mg/dl
 - Impaired Glucose Tolerance (IGT): 140-199 mg/dl 2 hours after a 75g oral glucose load
 - □ A1C: 5.7-6.4%

DA. Standards of Medical Care in Diabetes. Diabetes Care 2012;35(S1):S11-S63.

Interventions for the Prevention of Diabetes in Patients with Prediabetes

- Weight loss of 7%
- Increase in physical activity to at least 150 minutes/week of moderate activity (such as walking). Follow-up counseling appears to be important for success
- Drug Therapy
 - Metformin
 - α-Glucosidase inhibitors
 - Orlistat
 - TZD
- Monitor for development of DM annually

Page 1-140

Prevention of Type 2 Diabetes: Completed Trials in IGT or GDM						
Trial	Journal/Year	Treatment	Results (Risk reduction)			
Da Qing IGT an Diabetes Study		Diet +/or exercise	31%-46%			
Finnish Prevention Stud (FPS)	N Engl J Med ^I Y 2001	Intensive lifestyle	58%			
Diabetes	N Engl J Med	Metformin	31%			
Prevention	2002	Lifestyle changes	s 58%			
Program (DPP)		Troglitazone	23%			
STOP-NIDDM	Lancet 2002	Acarbose	25%			
TRIPOD	Diabetes 2002	Troglitazone	55%			
XENDOS	Diabetes Care 2004	Orlistat	37%			
DREAM	Lancet 2006	Rosiglitazone	60%			
ACT NOW	N Engl J Med 2011	Pioglitazone	72%			

Type 1 Diabetes PATHOPHYSIOLOGY

- Autoimmune B-cell Destruction
 Islet cell cytoplasmic autoantibodies
 - Insulin autoantibodies
 - Antibodies to glutamic acid decarboxylase . (GAD)
- Loss of Insulin Secretion

eFronzo RA. Diabetes. 2009;58:773-95

- Molecular mimicry model
- Direct environmental toxin

Page 1-141

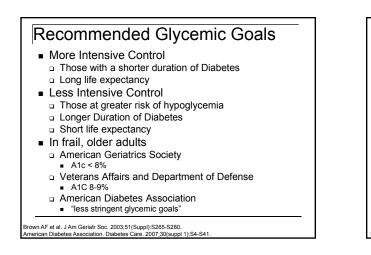
Type 2 Diabetes PATHOPHYSIOLOGY Insulin Resistance Relative insulin deficiency

- Increased hepatic glucose production
- Neuroendocrine dysfunction
 Decreased amylin secretion
 - Impaired incretin effect
- Increased gastric emptying rate

From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus Ralph A. DePronzo

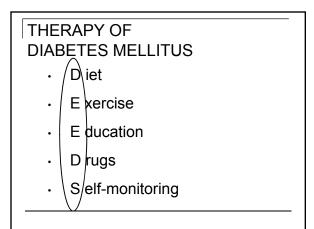
The Ominous Octet Decre B-cell Incretin Effect)Fat ecreased Insuli Gut ecretion Lipolysis Alpha Kidnev HYPERGLYCEMIA cell Brain HGP Uptake Liver Neurotransmitter Dysfunction Muscle nzo RA. Diabetes. 2009;58:773-95 Page 1-14

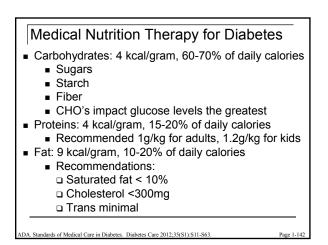
Page 1-141


General Goals of Therapy

- Eliminate symptoms
- Avoid hypoglycemia
- Achieve/maintain IBW
- Normalize growth/development
- Prevent long-term complications
- Obtain Glycemic Goals

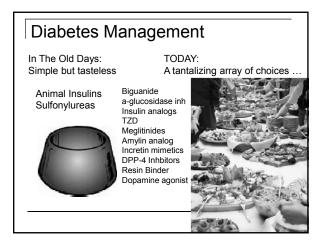
Glycemic Goals of Therapy in Diabetes


Goal	ADA	AACE
A1C	< 7%*	≤ 6.5%
Premeal plasma glucose (mg/dL) 7		< 110
Postprandial plasma glucose (mg/dL)	< 180†	< 140
*An A1C of \geq 7% should serve as a call to action t therapy with the goal of achieving an A1C level as nondiabetic range as possible or, at a minimum, d to 7%.	close to the	,


Nathan DM, et al. Diabetes Care. 2006;29:1963-72. American Association of Clinical Endocrinologists. Endocr Pract. 2007;13(suppl 1):3-68

A1C and A	Average Blood Glucose
A1C	Average Blood Glucose
6.0%	126 mg/dL
7.0%	154 mg/dL
8.0%	183 mg/dL
9.0%	212 mg/dL
10.0%	240 mg/dL
11.0%	269 mg/dL
12.0%	298 mg/dL
eAG	= (28.7 X HbA1c) – 46.7

Nathan DM et al. Diabetes Care. 2006;29:1963-72.


Page 1-14

Physical Activity Recommendations

- At least 150 min/week of moderate intensity aerobic physical activity (50-70% of max heart beat) OR
- 90 min/week of vigorous aerobic activity (>70%) of max heart beat)
 - Done at least three days a week without doing 2 consecutive days in a row

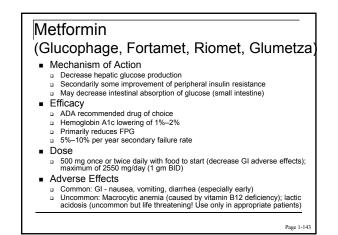
ADA. Standards of Medical Care in Diabetes. Diabetes Care 2012;35(S1):S11-S63

 Resistance exercise is recommended for type 2 patients three times weekly

Treatment Option	S
Oral Options Sulfonylureas Biguanide 	Parenteral Options Amylin Analogue Symlin (pramlintide) otors/Incretin Mimetic Byetta (exenatide) Victoza (liraglutide) Insulin Basal Prandial Mixed

Ominous Octet:	
Ommous Octet.	
New Paradigm for treatment of	T2DM
GLP-1	
SU, Meglitinide, GLP-1, DPP-4(-) ↑ Decreased OPP-4(-)	↑ TZD's↓
Decreased Insulin	creased
	ipolysis)
α-glucosidase (-)	Adipocytes
Islet-a cell TZD's	тва
DPP-4 (-)	
	SGLT2 AT
Amylin GLP-1.	Glucose
α-cell Amylin	Reabsorption
Increased J D2,AG	Kidney
Glucagon Secretion Increased	
MET Decreased	
TZD's Brain Glucose	L.
BA Seq	Muscle TZD's
D2 AG ₁ Dysfunction	Page 1-141 MET ↑

Drug & Primary Glycemic Effect					
Fasting	Mixed	PPG			
Metformin	Sulfonylurea	Regular insulin			
NPH insulin (HS)	TZD	Lispro/Aspart/ Glulisine insulins			
Detemir insulin	Bile Acid Resin	Alpha-glucosidase			
Glargine insulin	Liraglutide	Meglitinide			
	Exenatide weekly	DPP-4 Inhibitors			
		Bromocriptine			
		Symlin			
		Exenatide			


Sulfonylureas (Glimipizide, Glipizide, Glyburide) Mechanism of Action

- Insulin secretagogue
- Efficacy
- A1C lowering of 1-2% (The bigger they are...)
 Mixed glucose effect (Fasting and PP)
- 50% of max dose; 80% of effect
- 5-10% primary failure rate; 5-10%/yr secondary
- Dose
- Glimepiride 1-8 mg QD, glyburide 2.5 mg 10 mg BID, glipizide up to 5-20 mg BID, 20 mg QD for XL
- Adverse Effects
- Hypoglycemia (esp. glyburide in elderly) Weight gain
- Less common: Rash, photosensitivity, dyspepsia, nausea

Sulfonylureas

(Glimepiride, Glipizide, Glyburide)

- Contraindications
- Hypoglycemic unawareness
- Severe liver or kidney disease
- Advantages Works quickly (within hours)
- Effective
- High initial response rate
- Inexpensive
- Disadvantages
 - Hypoglycemia
 - Weight gain
 - Eventual treatment failure
 - Cardiovascular concerns?

Metformin (Glucophage, Fortamet, Riomet, Glumetza) Contraindications

- Serum creatinine of \geq 1.5 mg/dL in men; \geq 1.4 mg/dL or greater in women
- Creatinine clearance less than 50 mL/minute?
- Severe hepatic, pulmonary, or cardiac disease
- Hold for 24 hours before and after procedures using contrast dye
- Advantages
- Improved CV outcomes? (UK Prospective Diabetes Study obese patients)
- No hypoglycemia as monotherapy
 Weight neutral
- High initial response rate
- Positive lipid effects
- Inexpensive
- Disadvantages
- Patients eventually stop responding to therapy
 Gastrointestinal SE's especially early
- Lactic Acidosis (in inappropriate candidates)

Page 1-143

Page 1-143

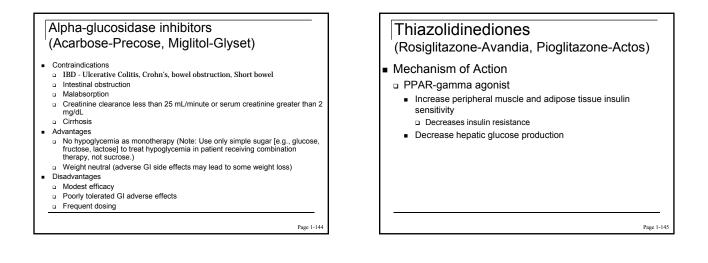
Meglitinides (Repaglinide-Prandin, Nateglinide-Starlix)

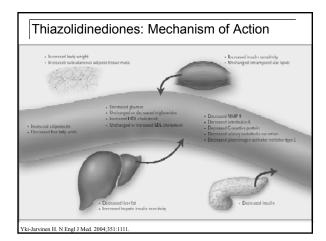
- Mechanism of Action
- Short-acting Insulin secretagogue
- Efficacy
 - Hemoglobin A1c reduction of 0.5%–1% (Repag > Nateg) as monotherapy or add-on therapy
 - A1c reductions of 1.5%–1.8% in combination with metformin or thiazolidine Reduces postprandial blood glucose
 - Mealtime (e.g., 3 times/day) dosing may reduce adherence
 - Dose Repaglinide (Prandin): 0.5–1 mg 1–15 minutes before meals; mean daily dose 16 mg
- Nateglinide (Starlix): 60-120 mg before meals
- Adverse Effects
 - Hypoglycemia (< sulfonylurea)
 - Modest weight gain (< sulfonylurea)

Page 1-144

Page 1-144

Meglitinides (Repaglinide-Prandin, Nateglinide-Starlix)


- Contraindications
 - Hypoglycemic unawareness
 - Severe renal / hepatic impairment Repaglinide together with gemfibrozil
- Advantages
 - Rapid onset of action
- Less hypoglycemia and weight gain compared with sulfonylurea
 Targets postprandial glucose
- Disadvantages
 - Hypoglycemia
 - Weight gain
 - Frequent dosing
 - Eventual treatment failure


(Acarbose-Precose, Miglitol-Glyset) Mechanism of Action Inhibits the enzyme α-glucosidase, found along the brush border of the small intestine; responsible for the breakdown of complex carbohydrates into glucose, thus delaying and reducing post-meal carbohydrate absorption (and postprandial blood glucose) Efficacy

Hemoglobin A1c reduction of 0.5%–1%

Alpha-glucosidase inhibitors

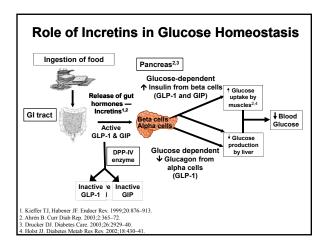
- Reduces postprandial blood glucose
- Mealtime (e.g., 3 times/day) dosing (may reduce adherence) Dose
- Acarbose (Precose): 25 mg with first bite of meal; start every day and then increase weekly to 2 times/day; then 3 times/day with meals to decrease GI adverse effects Miglitol (Glyset): 25 mg with first bite of meal
- Adverse Effects
- Common: Flatulence, abdominal discomfort, diarrhea; occur in up to 80% of patients but may diminish after 4–8 weeks of therapy Rare: Liver function test (LFT) elevation

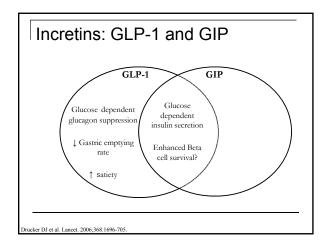
TZD's (Rosiglitazone-Avandia, Pioglitazone-Actos) fficacy Hemoglobin A1c lowering of 0.8%–1.5% Mixed blood glucose lowering effect Long lag time before observe glycemic effect (weeks); maximal effect 8–12 weeks Increases HDL-C (both) and lowers TG (pioglitazone) Dose Pioglitazone (Actos): 15–45 mg/day Rosiglitazone (Avandia): 1–2 mg/day, up to 8 mg/day (twice-daily is more effective) September 23, 2010: FDA restricted access program Adverse Effects Weight gain Fluid retention (especially with insulin, NSAID, GC, or DHP-CCB use) Heart failure exacerbation "Atypical" bone fractures (hands and feet) Potential myocardial infarctions (rosiglitazone)

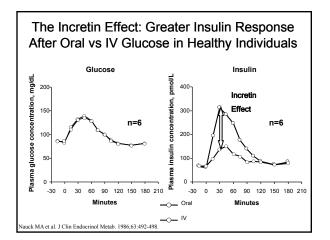
- Bladder cancer
- Rare hepatotoxicity

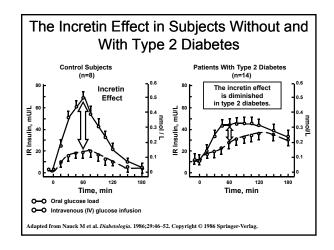
Page 1-145

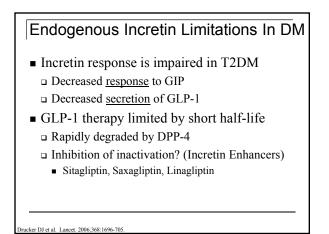
TZD's

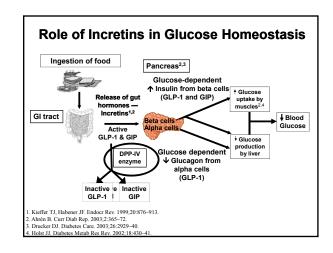

- (Rosiglitazone-Avandia, Pioglitazone-Actos)
 - Contraindications
 - ALT > 2.5 ULN
 NYHA Class III and IV HF
- Advantages
 - No hypoglycemia as monotherapy
 - Several favorable metabolic effects
 - Can use in renal insufficiency
 - Potential B-cell sparing effect?
 - Can induce ovulation in women with PCOS
- Disadvantages
 - Delayed onset of action
 - Adverse effects (weight gain, edema, fractures)
 Boriodia LET monitoring recommendad
 - Periodic LFT monitoring recommended
 Can induce ovulation in women with PCOS

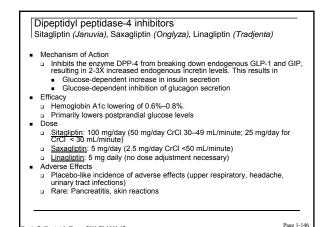

Page 1-145

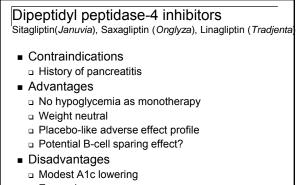

The Incretin Effect


- Insulin secretory response is greater to oral glucose than IV glucose
- Accounts for up to 60% of post-prandial insulin secretion in healthy individuals
- Attributed to hormones released from intestinal mucosal cells upon GI exposure to nutrients
 GLP-1 (Glucagon-like peptide-1)
 - GIP (Glucose-dependent insulinotropic polypeptide)


Idris I and Donnelly R. Diabetes Obes Metab. 2007;9:153-65.

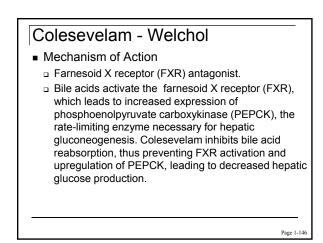


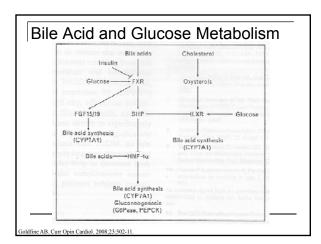


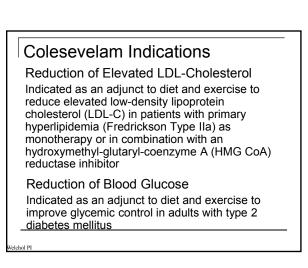

DPP-IV Inhibitors: Mechanisms of Action

- Prolong t_{1/2} of endogenous GLP-1 & GIP by inhibiting their inactivation by DPP-4
 Increase GLP-1 levels 2-3x normal
- Target T2DM pancreatic defects
 Increase glucose-dependent insulin secretion
 Decrease inappropriate glucagon secretion
- No effect on gastric emptying, satiety, or weight
- May help preserve Beta-cell function

Prucker DJ et al. Lancet. 2006;368:1696-705.




aetta R, Corsini A. Drugs. 2011;71:1441-67



Expensive

Page 1-146

Colesevelam - Welchol

Mechanism of Action

Farnesoid X receptor (FXR) antagonist. Bile acids activate the farnesoid X receptor (FXR), which leads to increased expression of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme necessary for hepatic gluconeogenesis. Colesevelam inhibits bile acid reabsorption, thus preventing FXR activation and upregulation of PEPCK, leading to decreased hepatic glucose production.

Efficacy

- Hemoglobin A1c lowering of 0.4%-0.6%
- Mixed blood glucose-lowering effect
- LDL-C reduction of 15%–18%
- Dose
 - 625-mg tablets, 3 tablets twice daily or 6 tablets every day with meals Suspension 3.75 g/packet, 1 every day with largest meal
- Adverse Effects

 - Constipation/dyspepsia
 - Potential TG increase (don't use if TG > 500 mg/dL)

Page 1-147

Colesevelam - Welchol

- Contraindications
- Bowel obstruction
- Triglycerides greater than 500 mg/dL
- History of hypertriglyceridemia-induced pancreatitis
- Advantages
 - No hypoglycemia as monotherapy
 - Low-density lipoprotein cholesterol lowering of 15%–18%
- Disadvantages
- Modest A1c efficacy
- High pill burden
- May raise TG
- Potential for drug interactions (levothyroxine, ezetimibe, phenytoin)

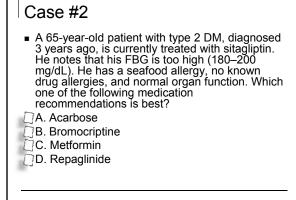
Page 1-147

Page 1-147

Bromocriptine - Cycloset

- Mechanism of Action
 - Dopamine receptor agonist
- Dopamine receptor agons: Glucose-lowering mechanism is unknown but improves glucose and energy metabolism and does NOT increase plasma insulin concentration; acts to reset aberrant central neurometabolic control of peripheral metabolism toward normal in patients with diabetes, resulting in a reduction in insulin resistance; improves glucose and energy metabolism through activation of central nervous system dopaminergic pathways responsible for metabolic control (Cylcoset PI). Efficacy Hemoglobin A1c lowering of 0.4%–0.6%
 Mixed glucose effect (modest fasting and PPG)
- Dose
- 0.8-mg tablet each morning (within 2 hours of waking) with food; titrate by 0.8 mg/week to mean daily dose of 4.8 mg (6 tablets) q AM
 Adverse Effects
- Nausea/vomiting
- Asthenia
- Constipation п
- Dizziness
- Somnolen

Page 1-147


Bromocriptine - Cycloset Contraindications Hypersensitivity to ergot derivative or dopamine Lactation (may inhibit) Syncopal migraines Advantages Unique mechanism of action Disadvantages Modest efficacy Adverse effects

Combination Oral Diabetes Medications

- Actoplus Met—Pioglitazone and metformin
- Avandamet—Rosiglitazone and metformin
- Avandaryl—Rosiglitazone and glimepiride
- Duetact—Pioglitazone and glimepiride
- Glucovance-Glyburide and metformin
- Janumet—Sitagliptin and metformin .
- Janumet XR—Sitagliptin and metformin XR .
- Jentadueto-Linagliptin and metformin
- . Kombiglyze XR—Saxagliptin and extended-release metformin
- Metaglip—Metformin and glipizide
- Prandimet—Repaglinide and metformin

- Advantages
 - Convenience
 - Compliance
 - Efficacy
 - Dose Sparing
 - Single co-pay
- Disadvantages Potential for
 - multiple SE's
 - Dosing Inflexibility

Case #2

- A 65-year-old patient with type 2 DM, diagnosed 3 years ago, is currently treated with sitagliptin. He notes that his FBG is too high (180–200 mg/dL). He has a seafood allergy, no known drug allergies, and normal organ function. Which one of the following medication recommendations is best? A. Acarbose B. Bromocriptine
- C. Metformin
- D. Repaglinide

Workbook Page 1-148; Answer: Page 1-168

Workbook Page 1-148; Answer: Page 1-168

Amylin Analog - Pramlintide (Symlin) Mechanism of Action Synthetic analog of human amylin Inhibits glucagon secretion in a glucose-dependent manner Reduces the rate of gastric emptying

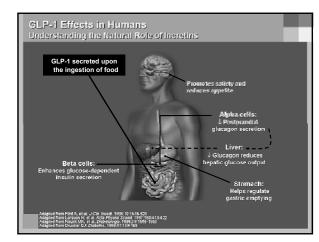
- Increases satiety
- Efficacy
- Hemoglobin A1c lowering of 0.5%–0.7%
 Primarily lowers postprandial glucose levels
- Dose
 - Type 1 DM: Initiate at 15 mcg subcutaneously with meals daily, increase by 15 mcg per dose every 3–7 days based on tolerability and response; maximum of 60 mcg with meals
 - Type 2 DM: Initiate at 60 mcg with meals, increase to 120 mcg with meals in 3–7 days
- Adverse Effects
 - Nausea
 - Vomiting
 - Hypoglycemia with insulin (mealtime insulin doses must be reduced by 50% at drug initiation!)

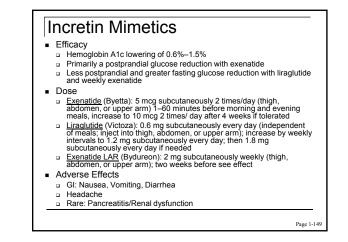
Pramlintide (Symlin) Contraindications

- Gastroparesis
- Hypoglycemic unawareness (Neuroglycopenia)
- Hemoglobin A1c greater than 9%
- Patients unwilling to self-monitor blood glucose
- Advantages
 - Use is associated with weight loss
- Disadvantages
- Gastrointestinal adverse effects Requires three additional injections per day (cannot be mixed with insulin)
- Modest A1C reduction
- May reduce the rate and extent of absorption of drugs that require rapid absorption (pain relievers, antibiotics, and oral contraceptives); separate administration by at least 1 hour

Endogenous Incretin Limitations In DM

- Incretin response is impaired in T2DM Decreased response to GIP

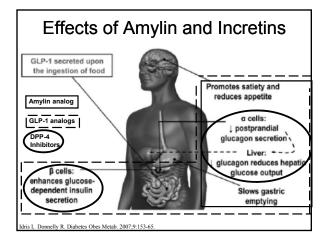

 - Decreased secretion of GLP-1
- GLP-1 therapy limited by short half-life
 - Rapidly degraded by DPP-4
 - Inhibition of inactivation? (Incretin Enhancers)
 - Sitagliptin, Saxagliptin, Linagliptin
 - Analogues resistant to DPP-4? (Incretin) Mimetics)
 - Exenatide, Liraglutide


cker DJ et al. Lancet. 2006;368:1696-705

Incretin Mimetics

- Mechanism of Action
 - Synthetic analog of human glucagon-like peptide-1, resistant to DPP-4, results in supraphysiologic (pharmacologic) incretin levels, causing
 - a glucose-dependent increase in insulin secretion
 - a glucose-dependent inhibition of glucagon secretion

- reduced gastric emptying
- increased satiety



Incretin Mimetics Contraindications Gastroparesis Pancreatitis Exenatide and Ex LAR: Creatinine clearance < 30 mL/minute Liraglutide and Ex LAR: Personal or family history of medullary thyroid carcinoma or in patients with multiple endocrine neoplasia syndrome type 2 (MEN2) Advantages Use is associated with weight loss (2-3 kg) Convenient dosing B-cell sparing effect? Disadvantages Gastrointestinal adverse effects Requires 1-2 injections per day Modest A1C reduction May reduce the rate and extent of absorption of drugs that require rapid absorption (pain relievers, antibiotics, and oral contraceptives); separate administration by at least 1 hour

Cost

Page 1-149

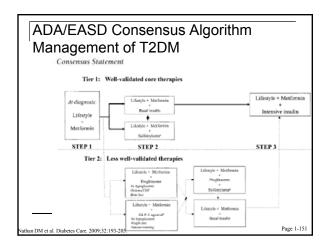
Incretin Comparison						
	GLP-1 Activation	DPP-4 Inhibition				
[↑] Insulin	+++	+++				
↓Glucagon	+++	++				
↓ Gastric emptying	+++					
↑ Satiety	+++					
Hypoglycemia	+/-	+/-				
Nausea/Vomiting	+++					
Weight	Loss	No Change				
Route of admin	Injection	Oral				
	e.g. exenatide, liraglutide	e.g. sitagliptin, saxagliptin, linagliptin				

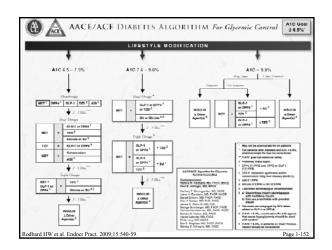
Case #3

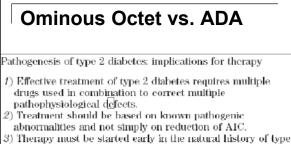
- A patient with type 2 DM receiving premeal insulin is interested in a "new" drug that he heard will allow him to significantly decrease his premeal insulin doses and allow better glycemic control. This drug is which one of the following?
- A. Liraglutide
- B. Metformin
- C. Pramlintide
- D. Bromocriptine

Workbook Page 1-150; Answer: Page 1-168

Case #3

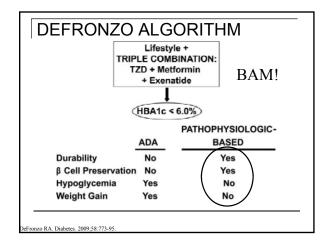

- A patient with type 2 DM receiving premeal insulin is interested in a "new" drug that he heard will allow him to significantly decrease his premeal insulin doses and allow better glycemic control. This drug is which one of the following?
- A. Liraglutide
- B. Metformin
- C. Pramlintide
- D. Bromocriptine


Workbook Page 1-150; Answer: Page 1-168.


Considerations for Initiation of Drug Therapy

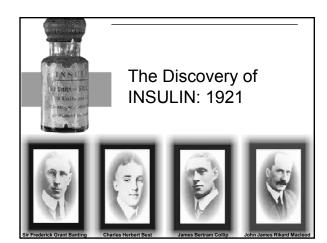
- Baseline A1C/ Blood sugars
- Organ Function
- Cl's to therapy
- Duration of DM
- SMBG
- Hypoglycemic Unawareness
- Baseline Weight
- Route of administration
- Start with single or combination drug therapy?
- Cost

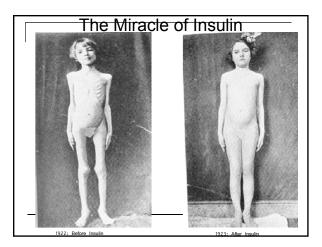
Page 1-150



 Therapy must be started early in the natural history of 2 diabetes to prevent progressive β-cell failure.

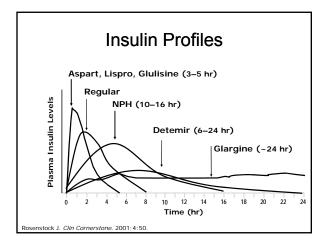
DeFronzo RA. Diabetes 2009;58:773-795.

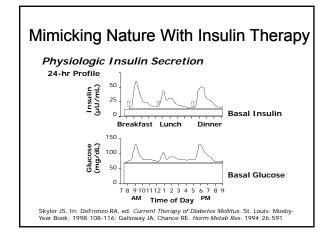

Case #4 J.L. is a 48-year-old obese white woman with type 2 DM, currently receiving metformin 1 g twice daily, whose postprandial blood glucose is higher than desired, and her most recent hemoglobin A1c is 7.5%. Which one of the following best represents how J.L.'s diabetes regime should be changed? regimen should be changed? A. Increase the metformin dose to 850 mg three times/day. B. Substitute metformin with a sulfonylurea. C. Add a bedtime dose of neutral protamine Hagedorn (NPH) insulin. []D. Add sitagliptin 100 mg orally every day.

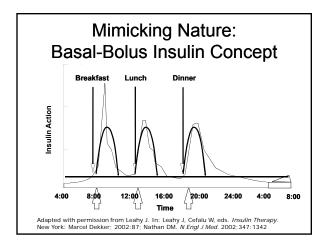

Workbook Page 1-153; Answer: Page 1-168.

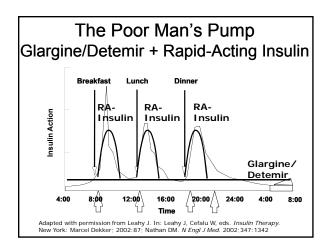
Case #4

- J.L. is a 48-year-old obese white woman with type 2 DM, currently receiving metformin 1 g twice daily, whose postprandial blood glucose is higher than desired, and her most recent hemoglobin A1c is 7.5%. Which one of the following best represents how J.L.'s diabetes regime should be changed? regimen should be changed? A. Increase the metformin dose to 850 mg three times/day. B. Substitute metformin with a sulfonylurea.
- C. Add a bedtime dose of neutral protamine Hagedorn (NPH) insulin.
- D. Add sitagliptin 100 mg orally every day.

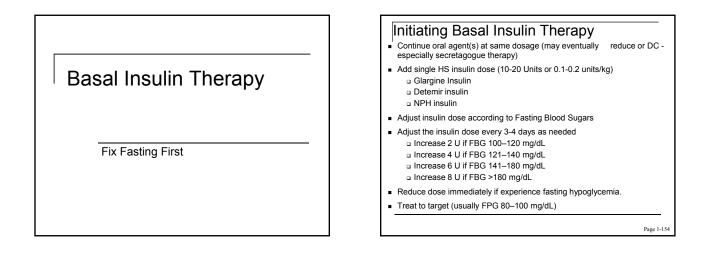

Workbook Page 1-153; Answer: Page 1-168

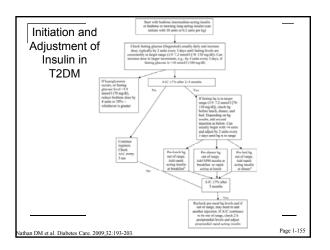






Comp	arison o	f Human	Insulin	s
Insulin	Onset	Peak	Duration	
Lispro, Aspart, Glulisine	5-15 mins	1-2 hrs	3-5 hrs	
Human Regular	30-60 mins	2-4 hrs	6-8 hrs	
Human NPH	1-2 hrs	6-12 hrs	10-16 hrs	
Insulin Detemir	3-4 hrs	Peakless	6-24 hrs	
Insulin Glargine	4-6 hrs	Peakless	~24 hrs	Page 1-153



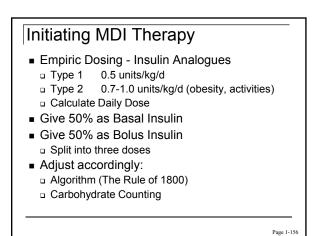

The Concept of Basal/Bolus Basal Insulin (detemir, glargine, NPH) Decreases fasting/preprandial glucose production Requires consistent (constant) insulin levels Approximates 50% of daily insulin needs Equivalent doses Bolus Insulin (regular, aspart, glulisine, lispro) Limits PPHG Requires immediate insulin peak Each meal requires 10-20% of daily insulin reguirements

Glucose Monitoring and Insulin Titration

Target Blood Glucose	Target Insulin		
Fasting (Pre-breakfast)	Bedtime or pre-dinner NPH, detemir, glargine		
Pre-lunch	Pre-breakfast regular, aspart, glulisine, lispro		
Pre-dinner	Pre-breakfast NPH/pre-lunch regular, aspart, glulisine, lispro		
Bedtime	Pre-dinner regular, aspart, glulisine, lispro		

Page 1-154

Case 5


- C.D. is a 19-year-old white woman, just given a diagnosis of type 1 DM. She weighs 80 kg and has normal renal function (serum creatinine 0.6 mg/dL). Which one of the following is the most appropriate empiric basal insulin and dose?
 A. Aspart 20 units at bedtime.
 B. Glargine 20 units at bedtime.
- C. Regular insulin 40 units at bedtime.
- D. NPH 40 units at bedtime.

Workbook Page 1-156; Answer: Page 1-168.

Case 5

- C.D. is a 19-year-old white woman, just given a diagnosis of type 1 DM. She weighs 80 kg and has normal renal function (serum creatinine 0.6 mg/dL). Which one of the following is the most appropriate empiric basal insulin and dose?
- C A. Aspart 20 units at bedtime.
- B. Glargine 20 units at bedtime.
- \square C. Regular insulin 40 units at bedtime.
- D. NPH 40 units at bedtime.

Workbook Page 1-156; Answer: Page 1-168

Page 1-156

Page 1-156

Correctional	Insulin	Dosing

- Rule of 1800 (<u>Rapid acting</u> insulin)
 - 1800/current daily insulin dose equals the mg/dl change of glucose per 1 unit insulin
 - Titrate dose using algorithm
 - Example: Patient from last example
 - 40 units insulin/day 1800/40= 45 mg/dl per unit
 - Blood Glucose
 - < 80 Subtract 1 unit from usual premeal insulin dose
 - 80-125 Use usual premeal dose
 - 126-170 Add 1 unit to usual premeal dose
 - 171-215 Add 2 units to usual premeal dose
 - 216-260 Add 3 units to usual premeal insulin
 - dose Add 3 units to usual premearins

Correctional Insulin Dosing

- Rule of 1500 (<u>Regular</u> insulin)
 u (1500/current daily insulin dose) equals mg/dl change of glucose per
 - 1 unit insulin Titrate dose using algorithm
 - Example:
 - 50 units insulin/day 1500/50= 30 mg/dl per unit
 - Blood Glucose < 80 Subtract 1 unit from usual preme
 - < 80 Subtract 1 unit from usual premeal insulin dose
 - 80-110 Use usual premeal dose 111-140 Add 1 unit to usual premeal dose
 - 141-170 Add 2 units to usual premeal dose
 - 171-200 Add 3 units to usual premeal insulin
 - dose

Insulin to Carbohydrate Ratio

Rule of 500

- (500/total current daily insulin dose) equals the insulin/carbohydrate ratio
- Titrate dose using algorithm
- Example:
 - 50 units insulin/day 500/50 = 10
 - Insulin/carbohydrate ratio equals 1 unit of insulin for every 10 grams of CHO ingested

 B.L. is a 70-year-old patient with type 2 DM, diagnosed 28 years ago. His indirect measure of endogenous insulin secretion (C-peptide level) is undetectable, and he receives a basal/bolus insulin regimen of glargine and lispro insulins. His insulin requirements total 100 units of insulin per day.

Page 1-156

- 6. Which one of the following is Bill's insulin sensitivity?
 A. 5 mg/dL
- D B. 10 mg/dL
- C. 15 mg/dL
- 🗍 D. 18 mg/dL

Workbook Page 1-157; Answer: Page 1-168

Case #6

- B.L. is a 70-year-old patient with type 2 DM, diagnosed 28 years ago. His indirect measure of endogenous insulin secretion (C-peptide level) is undetectable, and he receives a basal/bolus insulin regimen of glargine and lispro insulins. His insulin requirements total 100 units of insulin per day.
- 6. Which one of the following is Bill's insulin sensitivity?
 - 🜉 A. 5 mg/dL
- U B. 10 mg/dL
- (] C. 15 mg/dL
- [] D. 18 mg/dL

Workbook Page 1-157; Answer: Page 1-168.

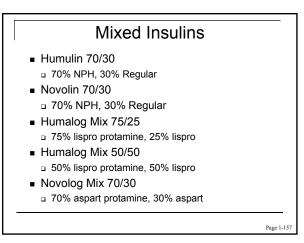
Case #7

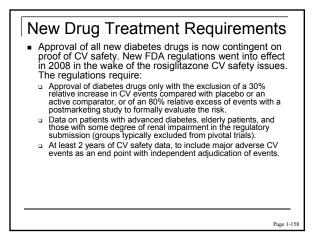
- B.L. is a 70-year-old patient with type 2 DM, diagnosed 28 years ago. His indirect measure of endogenous insulin secretion (C-peptide level) is undetectable, and he receives a basal/bolus insulin regimen of glargine and lispro insulins. His insulin requirements total 100 units of insulin per day.
- 7. Which of the following is Bill's insulin/carb ratio? A. 5
- A.
- B. 10
- D D. 18

Workbook Page 1-157; Answer: Page 1-168.

Case #7

- B.L. is a 70-year-old patient with type 2 DM, diagnosed 28 years ago. His indirect measure of endogenous insulin secretion (C-peptide level) is undetectable, and he receives a basal/bolus insulin regimen of glargine and lispro insulins. His insulin requirements total 100 units of insulin per day. 7. Which of the following is Bill's insulin/carb ratio? A. 5
- B. 10 C. 15 D. 18

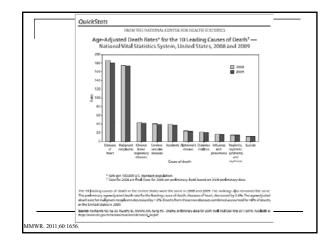

Workbook Page 1-157; Answer: Page 1-168

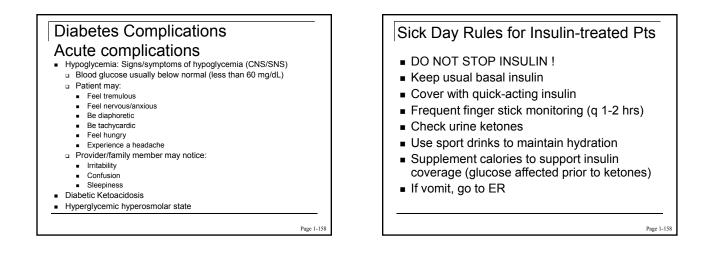

Case #8

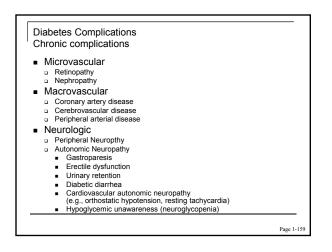
 B.L. is a 70-year-old patient with type 2 DM, diagnosed 28 years ago. His indirect measure of endogenous insulin secretion (C-peptide level) is undetectable, and he receives a basal/bolus insulin regimen of glargine and lispro insulins. His insulin requirements total 100 units of insulin per day. 8. Bill's presupper reading today is 184 mg/dL (goal of 130 mg/dL), and he plans to eat 60 carbohydrates at dinner. Which one of the following represents what his pre-dinner lispro insulin dose should be? 📕 A. 5 B. 10 J C. 15 D. 18

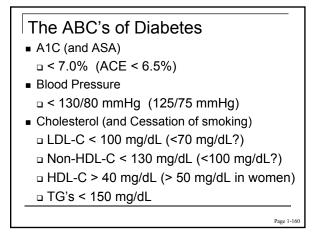
Vorkbook Page 1-157; Answer: Page 1-168

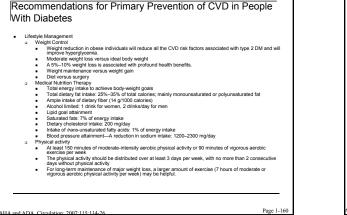
Case #8 B.L. is a 70-year-old patient with type 2 DM, diagnosed 28 years ago. His indirect measure of endogenous insulin secretion (C-peptide level) is undetectable, and he receives a basal/bolus insulin regimen of glargine and lispro insulins. His insulin requirements total 100 units of insulin per day. 8. Bill's presupper reading today is 184 mg/dL (goal of 130 mg/dL), and he plans to eat 60 carbohydrates at dinner. Which one of the following represents what his pre-dinner lispro insulin dose should be? A. 5 B. 10 C. 15 D. 18 Workbook Page 1-157; Answer: Page 1-168

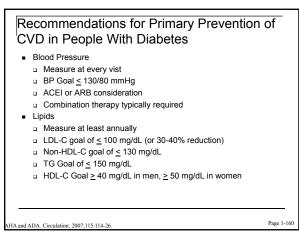


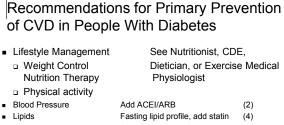

	Study drug	Trial acronym	Turget envolument (n)	Population studied	Primary composite autcome	HF reported as secondary outcome
I	DPP-N islabiture Scoogliptin	SAVOR THE 53	16,500	Age 240 y + setchidael CV diases coder multiple dat borres	CV death, nonlineil Mi, or worken: University modes	Ye
	Stepleris	16005	14000	Age 250 y + presiding	CV deats, serviced ML, serviced	Yes
	Aloglipiprin	EXAMPLE	5400	Age 218 y = ACS	CV death, noriford MI,	tio
	Unoglatin	CAROLPIA	6000	Age 40:85 y = extributed CV statute or dictores end orgon domoge or maliple CV risk forces	CV dects, school Mi, school anale, and usatilite original	t ko
	G23-1 monpher og					411
	Energificia Janua weekiyi	105.05.	9500	Age 218 y + ony level of CV risk (CV disease in 60%)	CV deeth, reinhouil Mi, or received and a	Ym
	Lingilutida	LEADER	8754	Age 250 y + antibilitied CV diacons or choose renal follow or choose HF OR oge 250 y + CV risk forten	CV dech, norifoni M, or norifoni ancie	Ym
	Ubliamotide	EUXA	6000	Age 230 y + ACS	CV dects, scréctol Mi, scréctol stroke, or unatoble onoino	Yes
	Dulegiunide	4EMI-0	9622	Age 250 y + emblished CV doesne or oge 255 y + actributed vascular disease or oge 260 y + multiple CV risk lockes	CV decth, noráctal M, or soráctal anola	Ye
	SGL12 inhibitors Conoglification	CANNAS	4331	Age 230 y = emblished or is high risk for CV disease	CV deaths, recolored MI, and survival precise	t-lo
	8 10775		4000	Age 18 y + kinny of alter previous M, unatoble origino, multivesal INI or GABG, atole, or peripherol ordinae attentio	CV starts, scidenti MI, und serviced atolia	Na
	Combined PPAR s Alegituzor	/y ogoriat	6000	Aga>16y+ACS	CV deaths, received MI, cred serviced atrias	Richety and point
guilar D. Am Heart J.	health health glorgine	Otori	12500 (netwise potent with early type 2 dictores, IG7, and PG)	Age 250 y with satisficited CV disease	2 primary and points: (1) CV death, analond M, or restrict analog (2) compacts shows = researchingtons or HP heapholization	Yes


The Cost of Diabetes - Per 24 Hours


(105 Million Americans with Diabetes or Pre-Diabetes)


- 4900 New Diagnoses of Diabetes
- 810 Deaths
- 230 Amputations
- 120 Cases of Kidney Failure
- 55 People Going Blind



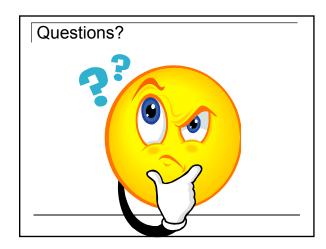

Recommendations for Primary Prevention of CVD in People With Diabetes

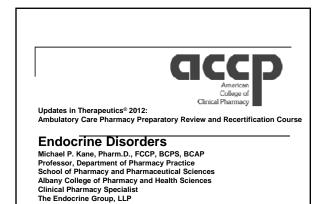
Tobacco

- Ask each diabetes patient about tobacco use status at every visit. Advise every tobacco user to quit.

- Assess tobacco user's willingness to quit. Assess tobacco user's willingness to quit. Assist patients willing to quit with counseling and by developing a plan to quit. Follow-up, referral to special programs, or pharmacotherapy (e.g., nicotine replacement, bupropion) should be incorporated as needed.
- Antiplatelet Aspirin therapy (75–162 mg/day) recommended in diabetes patients with increased CV risk (10-year risk of 10% or greater) Men 50 years old with one additional risk factor
- Women 60 years old with one additional risk factor (family history of CVD, HTN, smoking, dyslipidemia, or albuminuria). CI's to ASA: ASA allergy, bleeding tendency, existing anticoagulant therapy, recent GI bleeding, clinically active hepatic disease.
- Other antiplatelet agents may be a reasonable alternative for patients with high risk. Do not recommend Aspirin therapy for patients younger than 21 years (risk of Reye syndrome).

AHA and ADA. Circulation; 2007;115:114-26. Page 1-16




- Tobacco
- Antiplatelet Agents
- Glycemic Control

Stop smoking – refer (1) Start daily ASA (3) Your pick (5)

HA and ADA. Circulation; 2007;115:114-26.

My Diabetes Check-List Epidemiologic and interventional evidence define these interventions/targets = HbA₁₀ \leq 7% (6%?) (Metabolically friendly) = Blood Pressure \leq 130/80 mm Hg (ACEI/ARB) = LDL-cholesterol \leq 70 mg/dL (Statin) Daily ASA use for vascular protection Smoking Cessation Immunizations (Influenza, Pneumococcus) Urinalysis Daily Feet Inspection Annual Dilated Eye Exams Realistic Exercise Program Weight Loss (5-10%) Dental Exams (Peridontal Disease)

Conflict of Interest Disclosures

 Michael P. Kane, Pharm.D. has received research funding from Novartis Pharmaceuticals, Inc. and is a member of the Boehringer Ingelheim/Eli Lilly & Co. Speaker's Bureau.

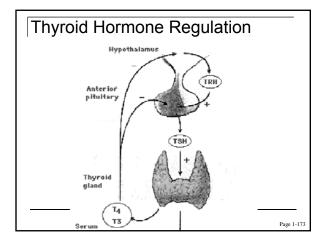
Learning Objectives

Albany, NY

- Identify the most vulnerable patient populations receiving thyroid hormone replacement, understanding the importance of consistent levothyroxine replacement.
- Review the pharmacotherapy of Graves disease, including the advantages and disadvantages of antithyroid drugs versus radioactive iodine and surgery.
- Recommend appropriate patient-specific pharmacotherapy for the treatment of polycystic ovary syndrome.
- Recognize the clinical presentation and treatment of a patient with adrenal insufficiency.
- Medically manage a patient presenting with hyperprolactinemia.
- Compare and contrast the available weight-loss medications with respect to efficacy and adverse effects, and design a patient-specific treatment plan for a patient who wishes to lose weight.

Page 1-170

Learning Objectives


- Compare and contrast the role of drug therapy, transsphenoidal surgery, and radiation therapy for a patient with a diagnosis of acromegaly, and design a patient-specific pharmacologic treatment/monitoring plan.
- Describe the typical clinical features of patients with growth hormone deficiency, and design an appropriate pharmacologic treatment and monitoring plan based on patient-specific factors.
- Identify indications when patients with Cushing syndrome would be candidates for pharmacologic treatment.
- List symptoms of hyperaldosteronism and recommend appropriate drug therapy for its treatment.
- List appropriate monitoring parameters for a patient with testosterone deficiency receiving testosterone replacement therapy.

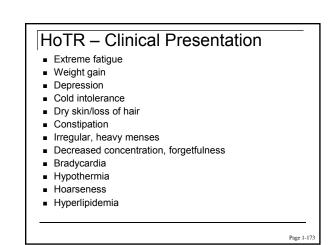
Page 1-170

Endocrine Disorders

- Thyroid Disease
- PCOS
- Pituitary Disease
 - Prolactinomas
 - Growth Hormone Excess and Deficiency
- Obesity
- Adrenal Disease
 - Addison's Disease
 - Cushing's Syndrome
 - Hyperaldosteronism
- Male Hypogonadism

Thyroid Disease - Clinical Pearls HoTR: the great masquerader For primary thyroid disease, any test result (with one exception) below normal is consistent with HoTR, whereas any test result (with one exception) above normal is consistent with HTR; the one exception is TSH. TSH is the best test for screening patients for thyroid disease. The typical T4 replacement dose is about 1.6 mcg/kg T4 requirements increase by 40%–50% during pregnancy Although 5%–10% of postpartum women develop thyroiditis during the 12 months post-pregnancy, postpartum thyroiditis occurs in 25% of women with T1DM 10% of cold thyroid nodules are malignant. Every patient who gets a prescription for a thioamide should also receive a prescription for a complete blood cell count.

HoTR - Causes


- latrogenic causes (surgical management or RAI for HTR, external radiation)
- Autoimmune (Hashimoto's thyroiditis)
- Medications (lithium, interferon)
- Cretinism
- Iodide deficiency
- Postpartum thyroiditis
- Post-inflammatory thyroiditis
- Secondary causes (pituitary or hypothalamic disease)

Page 1-173

Drug-induced Thyroid Disease

- Iodine-containing contrast dyes
- Amiodarone
- Iodinated Glycerol
- Lithium
- Alpha-Interferon
- Anti-thyroid Drugs
- Thyroid Hormone

Page 1-173

HoTR - Diagnosis

- Physical examination
 - Blood pressure and heart rate
 - Thyroid palpation and auscultation
- Laboratory evaluation
 - High TSH (in primary disease; TSH is low or low-normal in secondary disease); levels greater than 5 mIU/mL with symptoms or 10 mIU/mL without are typically treated (normal 0.4–4 mIU/L)
 - Low TT4 (normal 5–12 mcg/dL)
 - Low FT4 (normal 0.7–1.9 ng/dL) Low TT3 (normal 80–180 ng/dL)

 - Thyroid autoantibodies (antithyroid peroxidase and antithyroglobulin autoantibodies) are present in most patients with Hashimoto.
 - □ Low RAI uptake (RAIU)—Normals are 3%–16% at 6 hours and 8%-25% at 24 hours; 1311
 - Thyroid scan (123I or 99mTc)

Page 1-17

HoTR - Screening

- The U.S. Preventive Services Task Force, 2004, found insufficient evidence to recommend for or against routine screening for thyroid disease in adults.
- The American Thyroid Association currently recommends that everyone older than 35 years be screened with a TSH test every 5
- years. The American Association of Clinical Endocrinologists recommends that all women be tested for HoTR (by TSH level) by 50 years of age (sooner if they have a family history of thyroid disease) as well as those who are or planning to become pregnant.
- Thyroid ultrasound—Sound waves that image the thyroid gland; typically done when thyroid nodule is detected on physical examination
- Thyroid fine-needle aspiration—Biopsy of nodule to determine whether benign or malignant: firm, irregular, and fixed nodules; cold nodules as identified by thyroid uptake scan; presence of cervical lymphadenopathy; and patients with history of external neck irradiation during childhood have greater likelihood of malignancy

Updates in Therapeutics[®] 2012: Ambulatory Care Pharmacy Preparatory Review and Recertification Course

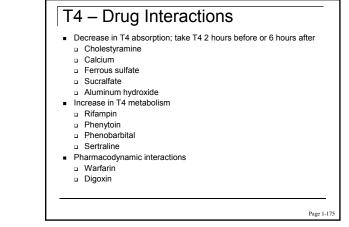
HoTR - Treatment

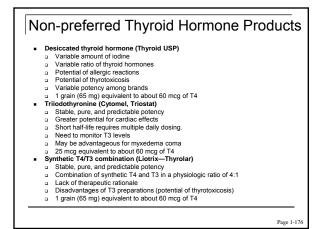
- Levothyroxine (use a high-guality brand preparation: Levothroid, Levoxyl, Synthroid, Unithroid)—Treatment of choice
 - Rationale for use
 - Stable, pure, and predictable potency
 - Serum T3 concentration controlled physiologically
 - Long half-life, allows daily dosing
 - Twelve dosages available
 - Drug of choice—American Thyroid Association/American Association of Clinical Endocrinologists
 - Different products may not be therapeutically equivalent. Mean replacement dosage of 1.6 mcg/kg of body
 - weight per day; typically recommended to take on empty stomach

Page 1-17

HoTR - Treatment

Levothyroxine Dosing


- Appropriate pace of replacement depends on
 - Duration of the HoTR
 - Severity of the HoTR
 - Presence of other, associated medical disorders
- Use initial doses of 12.5 mcg to full replacement dose.
- Titrate dose to normalization of TSH level (primary) disease); check TSH 6-8 weeks after each dose change, every 3-6 months during first year of diagnosis, and annually thereafter.


Page 1-17

HoTR – At Risk Populations Need for Consistent T4 Dosing

- Pregnant women
 - Treat even mildly elevated TSH (e.g., more than 3 mIU/L). Increase T4 replacement by 30% with first detection of pregnancy
- Increase T4 replacement by 30% with first detection of pregnancy.
 Monitor TSH monthly and adjust dose accordingly (goal 1–2 mIU/L).
 Suggestion for routine screening (see above under Screening)
 Typically, a 40%–50% dose increase is required during pregnancy.
 An appropriate maternal replacement dose poses no threat to the fetus; maternal HoTR increases risk of miscarriage and decreased IQ of offspring.
 Infants (congential HoTR): Replace T4 with dose of 10–15 mcg/kg; can crush and mix with formula or breast milk; monitor with FT4 levels for first 6 months of life and then TSH thereafter
 Patients with thyroid cancer (panillary and followed cancers): Lee binker T4
- Patients with thyroid cancer (papillary and follicular cancers): Use higher T4 doses for target TSH of 0.1–0.2 mIU/L. Patients with preexisting cardiac disease: Start low (12.5 mcg) and go slow (12.5-mcg increments every 6–8 weeks). Patients with preexisting osteopenia/osteoporosis
- Older people: Start low (12.5 mcg) and go slow (12.5-mcg increments every 6-8 weeks).

Page 1-175

Patient Case #1

Ms. G. is a 44-year-old, 50-kg white woman with recently diagnosed Hashimoto's thyroiditis. She experiences weight gain, constipation, cold intolerance, and extreme fatigue. Her medical history is significant for hyperlipidemia and HTN. Her current medications include atorvastatin 10 mg once daily, HCTZ 25 mg once daily, and calcium carbonate 500 mg 2 times/day. Which one of the following is the most appropriate thyroid hormone replacement therapy for this patient?

- A. Synthroid 50 mcg once daily
- B. Cytomel 50 mcg 3 times daily
- C. PTU 100 mg 3 times daily
- D. Levothroid 150 mcg once daily

Workbook Page 1-176; Answer: Page 1-214

Patient Case #1

Ms. G. is a 44-year-old, 50-kg white woman with recently diagnosed Hashimoto's thyroiditis. She experiences weight gain, constipation, cold intolerance, and extreme fatigue. Her medical history is significant for hyperlipidemia and HTN. Her current medications include atorvastatin 10 mg once daily, HCTZ 25 mg once daily, and calcium carbonate 500 mg 2 times/day. Which one of the following is the most appropriate thyroid hormone replacement therapy for this patient?

- A. Synthroid 50 mcg once daily
- D B. Cytomel 50 mcg 3 times daily
- C. PTU 100 mg 3 times daily
- D. Levothroid 150 mcg once daily

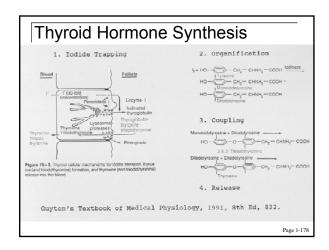
Workbook Page 1-176; Answer: Page 1-214

HTR - Causes

- Toxic diffuse goiter (Graves' disease)
- Toxic adenoma
- Toxic multinodular goiter (Plummer disease)
- Painful subacute thyroiditis
- Silent thyroiditis, including lymphocytic and postpartum variations
- Iodine induced HTR (Jod-Basedow)
- Excessive ingestion of thyroid hormone . (factitious)
- Drugs (amiodarone)
- Tumor (excessive pituitary TSH or trophoblastic disease)

Page 1-176

HTR – Clinical Presentation

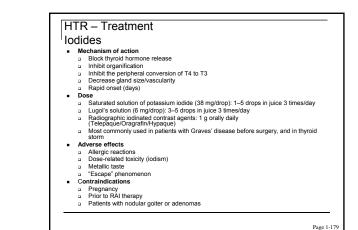

- Heat intolerance or increased sweating
- Tremor
- Palpitations and tachycardia
- Nervousness and irritability
- Frequent bowel movements or diarrhea
- Less frequent, shorter, and lighter menses
- Fatigue and muscle weakness
- Thyroid enlargement
- Weight loss despite an increased appetite .
- Exophthalmos and/or pretibial myxedema (in Graves' disease)
- Insomnia

Page 1-177

HTR - Diagnosis

- Physical examination
- Blood pressure and heart rate
- Thyroid palpation and auscultation (to determine thyroid size, nodularity, and vascularity) Π.
- Neuromuscular examination
- Eye examination (detect evidence of exophthalmos/ophthalmopathy)
- Dermatologic examination Cardiovascular examination
- Lymphatic examination (nodes and spleen)
- Laboratory evaluation
- Low TSH (in primary disease; TSH is high in secondary disease)
- High TT4
- High FT4
 - High TT3
- Thyroid autoantibodies (TSH receptor antibody [TRAb], thyroid-stimulating immunoglobulin [TSI]) High RAIU
- Thyroid scan (¹²³I or ⁹⁹mTc)

Page 1-177


HTR - Treatment

- Radioactive iodine (¹³¹I)
 - Most common treatment of HTR
 - Contraindication in pregnancy and in nursing mothers
 - Very high risk of subsequent HoTR
- Surgery
 - TOC for thyroid cancer, respiratory or swallowing difficulties
 - Find an experienced surgeon!
 - Hypothyroidism
- Drug Therapy

HTR – Treatment Thioamides

- Mechanism of action
 Inhibits organification and coupling; PTU also inhibits the conversion of T4 to T3
 Delayed effect (weeks) Dose
- PTU: 300–600 mg/day in two or three divided doses; preferred in pregnancy (first trimester), lactation and thyroid storm) Methimazole (Tapazole): 30–60 mg/day in one or two divided doses; longer half-life, better adherence, LESS HEPATOTOXICITY; recommended thioamide unless first trimester of pregnancy
- Offen used before RAI therapy or surgery; may use for 18–24 months in Graves disease in attempt at disease remission verse effects Benign: Rash, fever, arthralgias Δdv
- - Severe: Agranulocytosis, hepatitis
- Patient information
- Report fever, sore throat, flulike symptoms, abdominal pain, dark urine, or lightly colored stool. When getting a prescription for thioamide, be sure to get one for a complete blood cell count.

Page 1-178

HTR - Treatment **Beta Blockers** Mechanism of action Manage sympathetic-mediated symptoms. Inhibit peripheral T4 conversion (propranolol, nadolol). Very quick onset of effect (hours) Dose Propranolol 120–160 mg/day in three or four divided doses; maximum 640 mg/day Nadolol 80 mg/day in one or two divided doses; maximum 320 mg/dav Used until more specific antithyroid therapy takes effect Adverse effects Hypotension Bradycardia Fatigue

Page 1-17

Pharmacists' Role in Patient Care and Monitoring

- Convey to patients the importance of adherence.
- Assess the patient for signs and symptoms of under- and overreplacement at each visit.
- Monitor for and prevent drug-drug interactions.
- Identify the most vulnerable thyroid disease patient populations with the greatest risk of adverse outcomes with inconsistent thyroid hormone replacement therapy.

Page 1-179

Case #2

- Mrs. L. is a 38-year-old woman with newly diagnosed Graves' disease who experiences fatigue, heat intolerance, tremor, and palpitations. She has no significant medical history and is currently taking no medications. Laboratory results include the following: TSH less than 0.01 mIU/L (0.4–4); FT4 3.3 ng/dL (0.7–1.9); and TT3 368 ng/dL (80–180). Initiation of which one of the following regimens will reduce her symptoms within hours? reduce her symptoms within hours?
- A. PTU 100 mg 3 times/day
- B. Methimazole 10 mg 2 times/day
- C. Lugol's solution 10 drops 3 times/day
- D. Nadolol 40 mg 2 times/day

Workbook Page 1-180; Answer: Page 1-214.

Case #2

- Mrs. L. is a 38-year-old woman with newly diagnosed Graves' disease who experiences fatigue, heat intolerance, tremor, and palpitations. She has no significant medical history and is currently taking no medications. Laboratory results include the following: TSH (0.7–1.9); and TT3 368 ng/dL (80–180). Initiation of which one of the following regimens will reduce her symptoms within hours? A. PTU 100 mg 3 times/day
- B. Methimazole 10 mg 2 times/day
- C. Lugol's solution 10 drops 3 times/day
- D. Nadolol 40 mg 2 times/day

Workbook Page 1-180; Answer: Page 1-214.

Polycystic Ovary Syndrome **Clinical Pearls**

- PCOS is the most common endocrinopathy in reproductive-age women, with an estimated prevalence of 5%–10%; affecting 6–7 million women.
- PCOS is associated with a high risk of infertility (75%) and is the most common pathologic cause of anovulation.
- PCOS is associated with a higher risk of endometrial cancer compared with age-matched women without PCOS.
- Because of insulin resistance, PCOS is associated with higher risks of metabolic syndrome, HTN, dyslipidemia, type 2 DM, and cardiovascular disease compared with women without PCOS. Also a greater incidence of obstructive sleep apnea and depression.

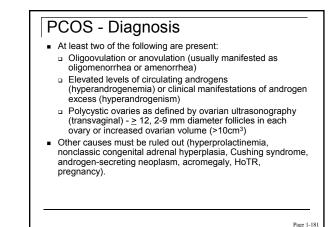
Page 1-180

PCOS - Pathophysiology

- Hypothalamus-pituitary-ovarian abnormality Ovarian-induced increase in gonadoropin-releasing hormone results in abnormal increase in LH/FSH ratio with resulting increase in ovarian testosterone production.
- Insulin resistance
 - Increase in endogenous insulin levels caused by insulin resistance in muscle and adipose tissues results in excess androgen production by the ovaries (which remains sensitive to insulin), causing increased testosterone production.
 - Excess insulin also decreases hepatic synthesis of sex hormone-binding globulin (SHBG), which normally binds free testosterone, resulting in increased hirsutism.

Page 1-180

Page 1-181


PCOS - Clinical Presentation

- Chronic anovulation most often manifesting as oligomenorrhea (fewer than nine menses per year) or amenorrhea. Anovulatory cycles may lead to dystunctional uterine bleeding, decreased fertility, and a higher prevalence of endometrial hyperplasia and carcinoma. Cutaneous manifestations of hyperandrogenemia a Hisutism (hair on sternum, upper abdomen, or upper back compared to upper lip or areolae)
- Acne Male pattern hair loss (androgenic alopecia); other virilizing features such as clitormegaly and increased muscle bulk suggest an alternative diagnosis Hyperandrogenemia (e.g., elevated levels of total or free testosterone/ androstenedione)

- Characteristics of insulin resistance
 Acanthosis nigricans (raised velvety brown discoloration on nape of neck, axilla, knuckles, elbow) Overweight/obese (especially increased visceral adiposity)
- 40% with impaired glucose tolerance, 10% with type 2 DM by age 40 (because of insulin resistance an OGT is recommended for all women with POOS and a BMI greater than 27) Nonaicoholic steatohepatilis (NASH) Higher risk of coronary artery disease, HTN, low high-density lipoprotein cholesterol, high triglycerides, and obstructive sleep apnea
- Abdominal obesity
- Symptoms typically begin around menarche

Page 1-181

Page 1-181

PCOS - Goals of Treatment

- Improve symptoms and quality of life.
- Increase fertility (for most women).
- Prevent concomitant morbidity

PCOS - Treatment

- Pharmacist role in patient care/monitoring
- Educate patient regarding disease and appropriate lifestyle modifications. Encourage patient adherence.
- Develop a plan to assess effectiveness of medications/lifestyle modifications
- Monitor for drug adverse effects and drug-drug interactions.
- No single drug treats the entire PCOS. Treatment focuses on the management of the complication/concern and should be individualized. Determine whether the patient seeks pregnancy or not and proceed from there.
- Lifestyle modifications-Improve all PCOS-specific complications Weight loss: Modest reductions in body weight (5%-7%) through lifestyle modification have been associated with reductions in androgen levels and improved ovulatory function.
- Exercise: Aerobic exercise decreases insulin resistance (regardless of weight loss).

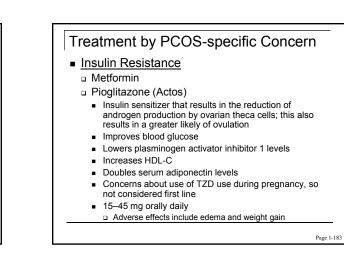
Treatment by PCOS-specific Concern

nfertility

- Weight loss
- Clomiphene (Clomid, Serophene)—Recommended for patients wishing to become pregnant; an antiestrogen that induces a rise in FSH and LH, resulting in ovulation
 - Dose: 50–100 mg/day for 5 days initiated on day 5 of cycle
 - Adverse effects: hot flashes, breast discomfort, ovarian hyperstimulation syndrome, abdominal distention/bloating
 - Cls: pregnancy, liver disease. Increased likelihood of multiple births
- Metformin: Decreases endogenous insulin levels by inhibiting hepatic glucose production; the lower insulin concentration results in the reduction of androgen production by ovarian theca cells with a 4-fold increased potential of ovulation
- Dose: 1–2 g/day: Improves blood glucose & lipid profile. Lowers rates of spontaneous miscarriage and gestational diabetes who conceive while taking metformin.

Page 1-182

- Oral contraceptives
 - Estrogen-progestin combination ideally with a nonandrogenic progestin (norgestimate, desogestrel, drospirenone [e.g., Yaz])
 - Controls hirsuitsm and acre, is effective treatment of oligomenorhea and amenorrhea, and protects against unopposed estrogenic stimulation of the endometrium
 - Potential adverse effects on insulin resistance and glucose tolerance, vascular reactivity, and coagulability are concerns. Spironolactone
- Possesses moderate antiandrogenic effects when administered in large doses (100–200 mg/day); decreases adrenal androgen production; use with OC as risk for pregnancy (feminization of male infants) and breakthrough bleeding
- Spironolactone and oral contraceptives appear to be synergistic.

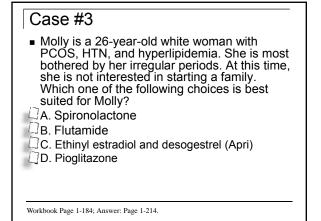

Page 1-182

Treatment by PCOS-specific Concern

- Hyperandrogenism/Hirsutism (con't)
- Metformin Eflornithine (Vaniqa)

 - Inhibits ornithine decarboxylase, leading to a decreased rate of hair growth Use of hair removal techniques is still required. 13.9% cream applied to affected areas of face 2 times/day (8 hours apart) Do not wash skin for 8 hours after application.
 - Adverse effects include pruritus, burning/tingling skin, dry skin, and rash.
- Flutamide
 - Potent nonsteroidal antiandrogen, inhibits binding of androgen in target tissue; 250 mg once daily; hepatotoxicity concerns limit its use (check liver function tests [LFTs] monthly for first 4 months and then periodically); Cls include liver disease and pregnancy; adverse effects include the following: hot flashes, galactorrhee, nausea
- Cyproterone
 - AntiandrogenOften used in combination with OCs
- Decreased libido, tiredness, and LFT changes
 Topical minoxidil (2-5%) for alopecia

Page 1-182


Treatment by PCOS-specific Concern Menstrual Irregularities Oral contraceptive Endometrial Hyperplasia Oral contraceptive Progestin challenge if > 3 months of amenorrhea; endometrial biopsy if \geq 1 yr or if endometrial thickness on ultrasound is > 14 mm

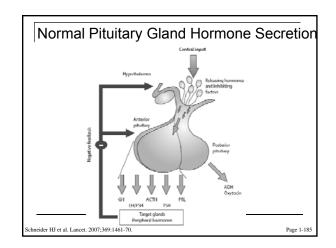
Page 1-183

Polycystic Ovary Syndrome Utility of Individual Treatment Choices

Table 1.

Drug		Use		
	Llirsutism or Acne	Oligomenorrhea Amenorrhea	Ovulation Induction	Insulin Lowering
Oral contraceptives	Х	Х		
Spironolactone	Х			
Flutamide	х			
Clomiphene			Х	
Metformin	Х	Х	Х	Х
Pieglitazon	Х	Х	х	Х

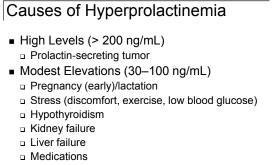
Case #3


- Molly is a 26-year-old white woman with PCOS, HTN, and hyperlipidemia. She is most bothered by her irregular periods. At this time, she is not interested in starting a family. Which one of the following choices is best suited for Molly? A. Spironolactone B. Flutamide
- C. Ethinyl estradiol and desogestrel (Apri)
- D. Pioglitazone

Workbook Page 1-184; Answer: Page 1-214.

Pituitary Disease - Clinical Pearls

- Prolactinomas represent the most common type of pituitary tumor and the fifth most common endocrine disorder.
- Prolactin is the erythrocyte sedimentation rate of the hypothalamus.
- Drug-induced hyperprolactinemia is associated with prolactin concentrations of less than 100 ng/mL.
- Multiple endocrine neoplasia type 1 syndrome (MEN1): The three P's (pituitary, parathyroid, and pancreas)
- Growth hormone (GH) excess in childhood results in giantism; GH excess in adults results in acromegaly.


Page 1-184

Prolactinomas

- Prolactinoma
 - Pituitary tumor (adenoma) that secretes excessive amounts of prolactin
 - Prolactin is the hormone that stimulates milk production by the breasts; secreted by lactotroph cells of the anterior pituitary; its production is typically under the inhibitory control of dopamine
 - Represents the most common type of pituitary tumor
 - □ Represents the 5th most common endocrine disorder
 - May exist "silently" in 5% of the adult population
 - Micro- versus macroadenoma
- Hyperprolactinemia
 - Prolactin level greater than 30 ng/mL
 - Normal prolactin level: 15–25 ng/mL

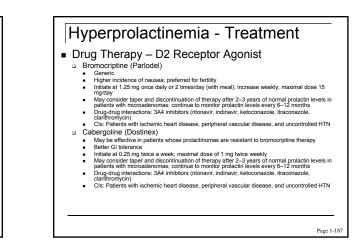
Page 1-185

"Stalk" Effect

Drug-Induced Hyperprolactinemia

- Typically associated with levels < 100 ng/mL</p>
- Drugs
 - Dopamine antagonists
 - (a) Phenothiazines/antipsychotics
 - (b) Tricyclic antidepressants
 - (c) Metoclopramide
 - Selective serotonin reuptake inhibitors
 - Estrogen-progesterone
 - Methyldopa
 - Verapamil
 - Gonadotropin-releasing hormone analogs (leuprolide, goserelin, naferelin)

Page 1-186


Hyperprolactinemia -Clinical Presentation Women Typically of reproductive age; present early in course of adenoma Irregular menstrual periods or amenorrhea Infertility Galactorrhea Reduction in sex drive Vision loss/headache possible (microadenoma) Osteoporosis (long-term) Men Present in 50s and 60s, more likely to have macroadenoma. resent late Manifestation of sex hormone production decrease Decreased libido Erectile dysfunction Loss of body hair Vision loss/headache more likely (macroadenoma)

Page 1-186

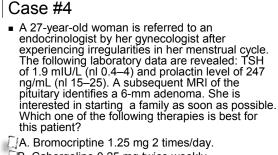
Osteoporosis (long term)

- Hyperprolactinemia Diagnosis
- Signs or symptoms
- Elevated prolactin level (> 30 ng/mL)
- Imaging studies (MRI, CT) of the pituitary gland
- Find cause
- Consider complete pituitary hormone evaluation (especially macroprolactinomas)

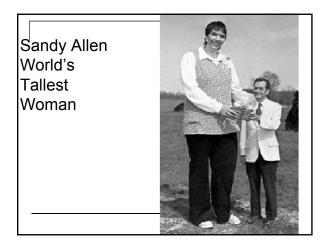
Page 1-186

Hyperprolactinemia - Treatment

- Transsphenoidal surgery: Reserved for patients resistant to or intolerant of pharmacologic therapy; microadenomas have better response rate than macroadenomas
- Radiotherapy: Reserved for patients resistant to or intolerant of pharmacologic therapy and surgery; normalization of prolactin levels may take years; risk of radiation-induced hypopituitarism
 - Stereotactic radiation (gamma knife)
 - External beam radiation


Page 1-186

Case #4


- A 27-year-old woman is referred to an endocrinologist by her gynecologist after experiencing irregularities in her menstrual cycle. The following laboratory data are revealed: TSH of 1.9 mIU/L (nl 0.4–4) and prolactin level of 247 ng/mL (nl 15–25). A subsequent MRI of the pituitary identifies a 6-mm adenoma. She is interested in starting a family as soon as possible. Which one of the following therapies is best for this patient?
- A. Bromocriptine 1.25 mg 2 times/day.
- B. Cabergoline 0.25 mg twice weekly.
- C. Clomiphene 50 mg once daily for 5 days.
- D. Metformin 1000 mg 2 times/day

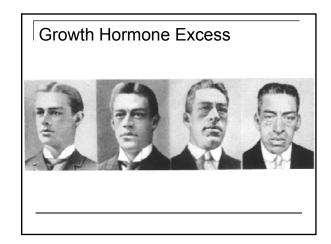
Workbook Page 1-187; Answer: Page 1-214.

Updates in Therapeutics® 2012: Ambulatory Care Pharmacy Preparatory Review and Recertification Course

- B. Cabergoline 0.25 mg twice weekly.
- C. Clomiphene 50 mg once daily for 5 days.
- D. Metformin 1000 mg 2 times/day
- Workbook Page 1-187; Answer: Page 1-214.

Growth Hormone Excess - Causes

- Pituitary adenoma (cause of greater than 95% of all cases)
- Rarely caused by tumors of the pancreas, lung, ovary, or breast (ectopic GH or GH-RH secreting)
- May be part of the MEN1 syndrome
 - Pituitary tumor
 - Parathyroid hyperplasia
 - Pancreatic tumor (gastrinoma or insulinoma)


Acromegaly - Clinical Presentation

- Children (Giantism) vs. Adults (Acromegaly)
- Enlarged hands and feet (new ring/shoe size)
- Excessive sweating
- Coarse facial features
- Multiple skin tags
- Deepened voice
- Osteoarthritis
- Sleep apnea
- Headache/Visual disturbances
- Increased risk of DM, colonic polyps, colon cancer, and coronary artery disease

Page 1-188

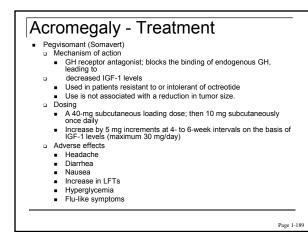
Acromegaly - Diagnosis

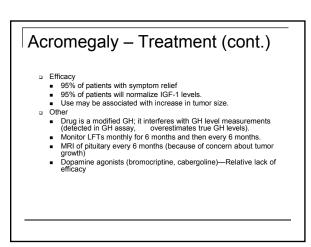
- Elevated insulin-like growth factor 1 (IGF-1) (somatomedin C) levels
 - ideal screening test
 - normal levels vary with sex and age
- Elevated serum GH level in the fasting state and after an OGTT (normals suppress GH to less than 1 ng/mL after OGTT)
- MRI with special cuts of the pituitary showing a pituitary tumor
- Check old photographs

Acromegaly - Treatment Goals

- Relieve symptoms
- Normalize IGF-1 levels (for age and sex) and GH level less than 1 ng/mL after glucose challenge
- Preserve normal pituitary function
- Reduce mortality (cardiovascular, pulmonary, and oncologic causes)

Acromegaly - Treatment


- Transsphenoidal surgery (find an experienced neurosurgeon!)
 - TOC for most patients with GH-producing adenomas 75% efficacy in microadenomas, less than 50% in macroadenomas
- Potential of postsurgical pituitary injury (e.g., pan-hypopituarism)
 Stereotactic radiosurgery


- Typically reserved for macroadenomas that have invaded neighboring tissues and nerves (reserved for patients with residual GH excess after surgery or pharmacotherapy)
 Full effect not seen until months to years later
- High risk of hypopituitarism
- Drug therapy
- Used when surgery is contraindicated or has failed
- Dopamine agonists, somatostatin analogs, GH receptor antagonist

Page 1-18

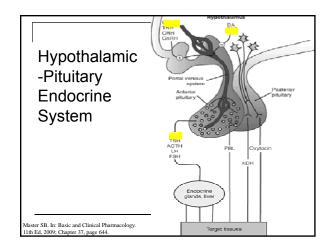
Page 1-189

Acromegaly - Treatment Acromegaly - Treatment Octreotide and Octreotide LAR (Sandostatin, Sandostatin LAR) Mechanism of action Somatostatin analog; binds to somatostatin receptors and causes direct inhibition of GH secretion Lanreotide SR and Lanreotide Autogel Long-term treatment can reverse some soft tissue manifestations of disease. Reduces tumor size (Somatuline Depot) Dosing Synthetic analog of somatostatin Octreotide 50–100 mcg subcutaneously every 8–12 hours Can switch to octreotide LAR, 20 mg intramuscularly every 4 weeks Dose to GH levels less than 1 ng/mL and IGF-1 levels less than 2 units/mL. Slow Release Dose to Gri levels less than 1 ng/mL and 16+-1 levels less than 2 units/mL. Adverse effects Gt: Diarrhea, Nausea, Gl cramps Fever Dizziness Hyper or hypoglycemia (alters the balance of counter-regulatory hormones) Cholelithiasis (inhibits gallbladder contractility) Hypothyroidism (rare; may suppress pitultary release of TSH) Drug interactions Start with 60 mg intramuscularly every 2 weeks and titrate Depot 90 mg deep subcutaneously every 4 weeks for 3 Typutyrouters Trug interactions Cyclosporine, β-Blockers, Calcium channel blockers months; then adjust dose on the basis of GH and IGF-1 levels . Efficacy 95% of patients with symptom relief Two-thirds of patients will normalize IGF-1 levels Page 1-188

Follow-up Monitoring

- Improvement of symptoms and soft tissue changes
- OGTT-stimulated GH levels q 6-12 months
- IGF-1 levels q 6-12 months
- Consider repeat of pituitary MRI annually
- Assess pituitary function annually (e.g., TSH, ACTH, FSH/LH)
- Colonoscopy
- Address CV risk factors

Case #5


- Brad is a 54-year-old man who has had transphenoidal surgery to remove a GHsecreting pituitary adenoma. His GH and IGF-1 levels remain elevated 3 months later. Which of the choices is the best initial drug treatment for his acromegaly? [] A. Genotropin B. Sandostatin
- C. Somavert
- D. Humatrope

Workbook Page 1-190; Answer: Page 1-214.

Case #5

- Brad is a 54-year-old man who has had transphenoidal surgery to remove a GHsecreting pituitary adenoma. His GH and IGF-1 levels remain elevated 3 months later. Which of the choices is the best initial drug treatment for his acromegaly?
- A. Genotropin
- B. Sandostatin C. Somavert
- D. Humatrope

Workbook Page 1-190; Answer: Page 1-214.

Growth Hormone Deficiency Causes Idiopathic Pituitary injury (tumor, surgery, radiation therapy, trauma, infection)

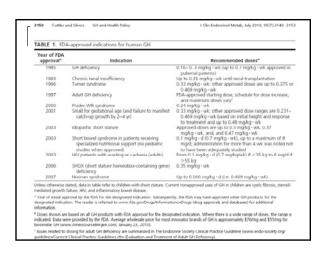
Growth Hormone Deficiency Clinical presentation GHD in children (Short Stature) a Height of two standard deviations or more below age- and sex-matched population means and below the third percentile for height in a specific age group a Central obesity/low muscle mass

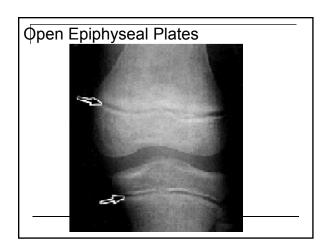
- Decreased growth velocity/ delayed skeletal maturation
- GHD in adults
- Lethargy and fatigue Central obesity/low muscle mass
- Decreased strength
- Decreased bone mineral density
- 1.8 million children in US with short stature
- Estimated 1 in every 10,000-15,000 children
- 2 million adults in US with GHD

Page 1-190

Page 1-190

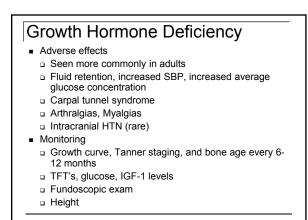
Growth Hormone Deficiency


- Diagnosis
 - Rule out other causes of growth delay (malnutrition, HoTR).
 - Low GH levels (< 10 ng/mL) following GH provocation test (insulin, arginine).
 - Low insulin-like growth factor 1 (IGF-1) levels (two standards below the standard reference range).


Growth Hormone Deficiency

- Therapy Goals
- Achieve normal adult height (in children)
 Initiation at an early chronologic age and prior to onset of puberty associated with greatest increase in height
 Increase muscle mass/reduce adiposity

Page 1-190


Page 1-191

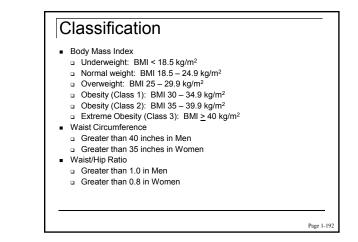
GH Deficiency - Treatment

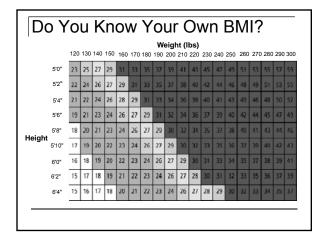
- Somatropin (Recombinant GH) Genotropin, Humatrope, Norditropin, Nutropin, Omnitrope, Saizen, Serostim, Tev-Tropin, Zorbtive)
 - Dosing
 - Administer in the evening; Nutropin Depot 1-2/month SQ
 - <u>Children</u>: 0.175–0.35 mg/kg/week given as daily, twice weekly or 3 times/week subcutaneous injections;
 - minimum 5 cm/year linear growth expected.
 - Drug Discontinuation
 - <u>Adults</u>: Lower doses, typically non-weight based, recommended; 0.2 mg/day
 - Contraindications
 - Active malignancy

Growth Hormone Deficiency - Other Treatments

- Recombinant IGF-1 products
 - Mecasermin (Increlex) Recombinant Insulin-like Growth Factor-1
 - Mecasermin rinfabate (Iplex)
 - Recombinant Insulin-like Growth Factor-1 with IGFBP-3
- Recombinant Growth Hormone Releasing Hormone
- Semoralin (Geref)

Obesity - Clinical Pearls


- Better living through BETTER LIVING
- Obesity is a lifelong disease.
- Weight loss is hard: weight maintenance is HARDER. Patients need achievable goals and expectations.
- A good pharmacist motivates, supports, encourages, empathizes, advocates, and does not judge.
- Obesity studies typically have 30-40% patient dropout rates.
- One pound of fat equals 3500 calories.
- Goal weight loss is typically 1-2 lb/week until target weight is met.
- U.S. Food and Drug Administration (FDA)-approved medications combined with changes in lifestyle result in a 3%–5% greater weight loss (3–5 kg) compared with changes in lifestyle and placebo.
- Because there is no single cause of overweight and obesity, there is no single way to prevent or treat overweight and obesity that will help everyone.


Page 1-19

The Scope of the Problem

- More than two-thirds of adults in the United States are overweight or obese, and more than one-third are obese (NHANES 2003-2006 and 2007-2008).
- Overweight and obesity are associated with many coexisting conditions, including HTN, glucose intolerance, dyslipidemia, and obstructive sleep apnea.
- Obesity is associated with an increased risk of death from CV disease, diabetes, kidney disease, and some cancers (colon, breast, esophageal, uterine, ovarian, kidney, and pancreatic)

Page 1-192

Risk Factors of Overweight and Obesity

Type 2 DM

- Coronary artery disease
- High LDL-C
- Stroke
- Hypertension .
- Nonalcoholic fatty liver disease
- Gallbladder disease
- . Sleep apnea
- Osteoarthritis
- Polycystic ovary syndrome
- Physical inactivity

Medications Associated with Weight Gain

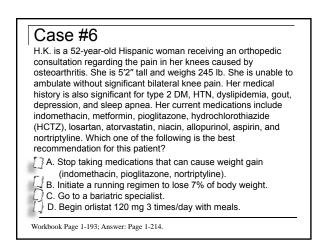
- Insulin
- Thiazolidinediones
- Sulfonylureas
- Antipsychotics (especially atypicals)
- TCA's/SRI's
- Lithium
- Valproic acid
- Glucocorticoids
- Oral contraceptives
- Medications associated with edema: Gabapentin, pregabalin, nonsteroidal anti-inflammatory drugs, dihydropyridine calcium channel blockers

Page 1-193

Treatment Goals

- Prevent additional weight gain.
- Reduce weight and maintain weight loss.
- Control concomitant risk factors.
- Prevent obesity-related health problems and mortality.

Case #6


H.K. is a 52-year-old Hispanic woman receiving an orthopedic consultation regarding the pain in her knees caused by osteoarthritis. She is 5'2" tall and weighs 245 lb. She is unable to ambulate without significant bilateral knee pain. Her medical history is also significant for type 2 DM, HTN, dyslipidemia, gout, depression, and sleep apnea. Her current medications include indomethacin, metformin, pioglitazone, hydrochlorothiazide (HCTZ), losartan, atorvastatin, niacin, allopurinol, aspirin, and nortriptyline. Which one of the following is the best recommendation for this patient?

A. Stop taking medications that can cause weight gain

- (indomethacin, pioglitazone, nortriptyline).
- B. Initiate a running regimen to lose 7% of body weight.
- C. Go to a bariatric specialist.

D. Begin orlistat 120 mg 3 times/day with meals.

Workbook Page 1-193; Answer: Page 1-214

General Treatment Principles of **Obesity/Overweight Management**

Lifestyle changes - Recommended for BMI >30 kg/m2 or BMI greater than 25-30 kg/m2 with comorbidities

Diet modification

Diet Composition vs. Total Calories

Short-term (6-12 months) benefits sustained long-term?

- Low fat
- Ornish

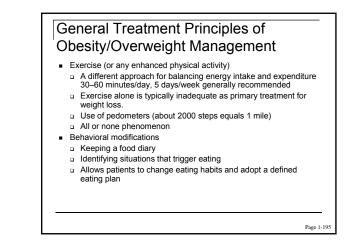
Very low-fat diets have been associated with slowing or reversing atherosclerosis.

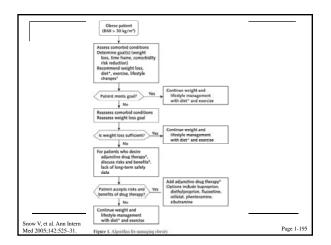
- Low carbohydrate
 - Atkins (high protein and high fat)
 - South Beach
- Very low-calorie diets
- Total energy intake below 800 kcal/day High attrition rates and weight rebound
- Page 1-194

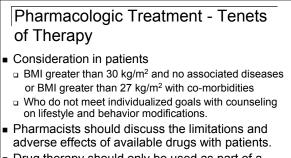
General Treatment Principles of Obesity/Overweight Management Diet modification Balanced-deficit Zone Weight Watchers
 Particular food type

- Low glycemic index
 The Diet, Obesity, and Genes (Diogenes) study
 Low-energy-density diet
 Highlight specific foods: Grapefruit

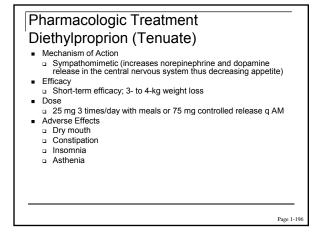
- Portion control diets: Portion size is controlled by manufacturer of frozen meals, breakfast bars, or beverages used at breakfast and/or lunch (meal and snack replacement).
- Commercial and Self-help programs
- Overeaters Anonymous TOPS (Take Off Pounds Sensibly) Weight Watchers Jenny Craig

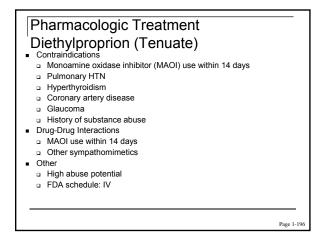

- Herbalife
- LA Health e-Diets


Page 1-194

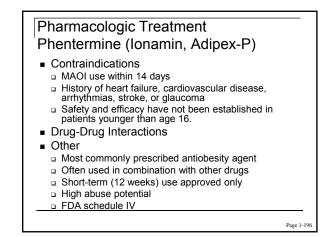

General Treatment Principles of **Obesity/Overweight Management**

- Diet modification
 - Adjuncts to effective dietary management
 - Eating breakfast
 - Adding dietary fiber
 - Eating at regular meal intervals
 - Use of meal replacements (e.g., Slim-Fast)
 - Involvement of dieticians
 - Limit consumption of sugary beverages
 - Increase number of daily fruit and vegetable servings. Limit restaurant/fast food meals.
 - Tailoring diet therapy
 - Higher satiety with high-protein, high-fiber diet
 - Low-fat diet for patient with hyperlipidemia Avoid high-protein diets in patients with renal disease.


Page 1-194



Drug therapy should only be used as part of a complete program including diet, lifestyle change, and regular physical activity



Pharmacologic Treatment Phentermine (Ionamin, Adipex-P) Mechanism of Action

- Sympathomimetic; suppresses appetite
- -Efficacy Short-term efficacy; 3- to 4-kg weight loss
- Dose
- 15–37.5 mg 3 times/day before meals
- 15–30 mg every morning (resin)
- Adverse Effects
- Palpitations, tachycardia Elevated blood pressure
- Dry mouth
- Constipation Insomnia
- - Asthenia
- Pulmonary HTN and valvular heart disease seen in combination with fenfluramine or dexfenfluramine (Phen-Fen)

Page 1-19

Pharmacologic Treatment Pharmacologic Treatment Orlistat (Xenical, Alli) Orlistat (Xenical, Alli) Mechanism of Action Contraindications Chronic malabsorption syndrome Gastric and pancreatic lipase inhibitor; reduces absorption of Cholestasis dietary fat (approximately 30%) Safety not established in pregnant or lactating women Efficacy Drug-Drug Interactions 3 to 4-kg weight loss Fat-soluble vitamins Dose Cyclosporine G0 mg(over the counter) or 120 mg (prescription) 3 times/day with Warfarin meals (containing fat) Other Adverse Effects Because of the potential for fat-soluble vitamin (ADEK) deficiency, daily multivitamin use is required (2 hours before or after orlistat) GI adverse effects: caused by malabsorption of fat (oily spotting, flatus with discharge, fecal urgency, fecal incontinence-—but no FDA schedule: Nonscheduled diarrhea); bloating, and cramping 30%–40% discontinuation rate Use is associated with twice the LDL-C reduction expected with weight loss alone. Page 1-19 Page 1-19

Pharmacologic Treatment Natural and Herbal Products

- Chromium picolinate
- Ephedra
- Green tea extract
- Bitter orange
- Guar gum

Approved Medications with Weight-loss Properties (not approved for weight loss)

Page 1-197

- Exenatide (Byetta)
- Liraglutide (Victoza)
- Pramlintide (Symlin)
- Topiramate(Topamax)
- Lamotrigine (Lamictal)
- Zonisamide (Zonegran)
- Fluoxetine (Prozac)
- Bupropion (Wellbutrin, Zyban)

Pharmacologic Treatment Investigational Agents

- Phentermine/topiramate (Qnexa)—originally rejected by the FDA 10/29/10 because of safety concerns (birth defects and heart problems); but Endocrinologic and Metabolic Drugs Advisory Committee voted 20-2 in favor on Feb 22, 2012. Also urged the agency to require a post-approval trial to monitor for cardiovascular side effects.
- Nattrexone and bupropion (Contrave)— Rejected by FDA Feb 1 2011due to safety concerns; has asked for a long-term study to demonstrate that the drug does not raise the risk of MI (increases pulse rate and BP)
- Lorcaserin (Lorgess)—Serotonin-2C agonist; rejected by the FDA 10/21/10; caused tumors in rats
- Tesofensine—Combined multi-amine reuptake inhibitor Rimonabant—Cannabinoid receptor blocker; approved and marketed in Europe but not approved by the FDA because of increased incidence of depression and anxiety

Page 1-19

Surgical Treatment

- Historically, recommended for BMI greater than 40 kg/m² or BMI greater than 35 kg/m² with comorbidities (DM, sleep apnea, cardiovascular disease, joint disease).
- Gastric bypass
 - A 30- to 40-kg weight loss maintained for 10 years
 - Decreased morbidity and mortality Demonstrated to reverse T2DM n.

 - Serious nutritional deficiencies associated—Iron, B12, folate, calcium 0%–1% risk of postsurgical mortality (refer to bariatric surgeon who performs these procedures frequently)
- Laparoscopic adjustable gastric banding A 20- to 30-kg weight loss maintained for 5 years
- Decreased morbidity and mortality Approved 1/11 in BMI of 30 40 and at least one obesity-related
- comorbidity, such as diabetes. Liposuction
- No significant improvements in metabolic or cardiac risk factors Not recommended for weight loss

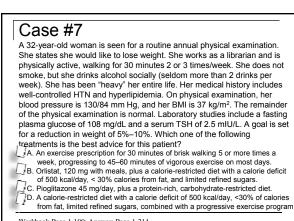
Page 1-19

Patient Advocacy

- U.S. Preventive Services Task Force
- Recommends clinicians screen all adult patients for obesity offer intensive counseling and Recommends behavioral interventions to promote sustained weight loss for obese adults
- Pharmacists' roles
- Encourage healthy habits—Eat breakfast, limit high-sugar foods and drinks, reduce sedentary activities, monitor food intake, increase physical activity
- Run obesity screening programs. Work with prescribers in weight-loss clinics.
- Counsel patients regarding drugs that can contribute to weight gain. Provide patients with diet and exercise counseling.

- Help patients set realistic weight-loss goals. Explain the advantages/disadvantages of lifestyle changes versus medications versus surgery. п
- Work with patients on a long-term basis to help them achieve these

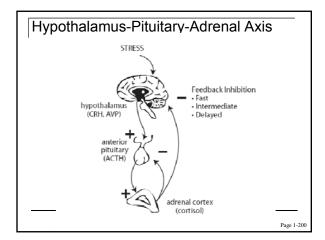
Page 1-19

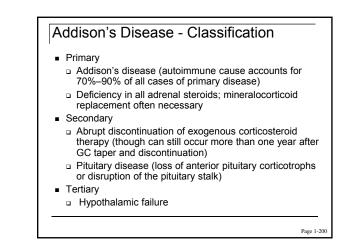

Case #7

A 32-year-old woman is seen for a routine annual physical examination. She states she would like to lose weight. She works as a librarian and is physically active, walking for 30 minutes 2 or 3 times/week. She does not smoke, but she drinks alcohol socially (seldom more than 2 drinks per week). She has been "heavy" her entire life. Her medical history includes well-controlled HTN and hyperlipidemia. On physical examination, her blood pressure is 130/84 mm Hg, and her BMI is 37 kg/m². The remainder of the physical examination is normal. Laboratory studies include a fasting plasma glucose of 108 mg/dL and a serum TSH of 2.5 mIU/L. A goal is set for a reduction in weight of 5%-10%. Which one of the following treatments is the best advice for this patient?

A. An exercise prescription for 30 minutes of brisk walking 5 or more times a Week, progressing to 45–60 minutes of vigorous exercise on most days. of 500 kcal/day, < 30% calories from fat, and limited refined sugars

C. Pioglitzone 45 mg/day, plus a protein-rich, carbohydrate-restricted diet. from fat, limited refined sugars, combined with a progressive exercise prograr

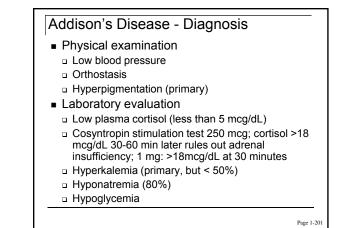

Workbook Page 1-199; Answer: Page 1-214.

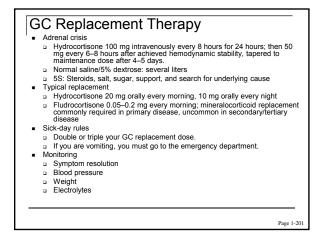


Workbook Page 1-199; Answer: Page 1-214.

Adrenal Disease - Clinical Pearls

- When the patient LOOKS GREAT (tanned) but FEELS AWFUL, think Addison's disease.
- Most people who look like they have Cushing's syndrome do not have it.
- Physiological daily cortisol production rates vary between 5 and 10 mg/m2, which is equivalent to the oral administration of 15 to 25 mg hydrocortisone, i.e. cortisol.
- A physiologic dose of GCs is about 5-7.5 mg of prednisone (or its equivalent) per day.
- The 5 S's of adrenal crisis management are salt, sugar, steroids, support, and search (for the underlying cause).





Addison's Disease - Clinical Presentation

- Weakness
- Fatigue
- Anorexia
- Nausea
- Salt craving (primary adrenal insufficiency)
- Dizziness
- Hypotension
- Hypovolemia
- Dehydration
- Weight loss
- Decreased axillary/pubic hair (1⁰ disease, especially in women; loss of adrenal androgen secretion)
- Hyperpigmentation (1^o disease, elevated ACTH)

Table 2.		
Corticosteroid	Equivalent Dose (mg)	Mineralocorticoid Activity
Cortisone	25	2+
Hydrocortisone	20	2+
Prednisone	5	1+
Methylprednisolone	4	0
Dexamethasone	0.75	0
		Page

GC Replacement Therapy

- Monitoring In General
 - Signs of underreplacement (weight loss, fatigue, nausea, myalgia, lack of energy)
 - Signs of overreplacement (weight gain, central obesity, stretch marks osteopenia/osteoporosis, impaired glucose tolerance, HTN)
 - Take a detailed account of stress-related GC dose self-adjustments since last visit; potential adverse events including emergency treatment and/or hospitalizations
 - Wear a MedicAlert bracelet
 - Check knowledge of sick-day rules and reinforce emergency guidelines involving partner/family members
 - Consider prescription of a hydrocortisone emergency self-injection kit, particularly if delayed access to acute medical care is likely (rural areas, travel)
 - Monitor use of cytochrome P450 (CYP) 3A4 inhibitors and inducers; may require glucocorticoid dose adjustment

Page 1-20

Case #8 Mary Jane is a 44-year-old patient with panhypopituitarism. She feels rundown, is lightheaded, and is running a low-grade fever. She is somewhat nauseous but she has not vomited. Which one of the following should she be counseled to do? A. Go directly to the emergency department. B. Double her GC replacement dose. C. Double her T4 replacement dose. D. Drink more water.

Case #8

- Mary Jane is a 44-year-old patient with panhypopituitarism. She feels rundown, is lightheaded, and is running a low-grade fever. She is somewhat nauseous but she has not vomited. Which one of the following should she be counseled to do?
- A. Go directly to the emergency department.
- []B. Double her GC replacement dose.
- C. Double her T4 replacement dose.
- D. Drink more water.

Workbook Page 1-202; Answer: Page 1-214.

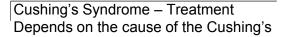
Cushing's Syndrome - Classification Pituitary (Cushing's disease, 65%–75% of cases) Adrenal (15%–20%) Ectopic (10%–15%) Iatrogenic (most common cause) Also classified as: Adrenocorticotropic hormone (ACTH)-dependent (e.g., pituitary tumor [Cushing disease], ectopic

- (e.g., pituitary tumor [Cushing disease], ectopic ACTH-secreting syndrome)
 ACTH-independent (e.g., adrenal adenoma or
- ACTH-independent (e.g., adrenal adenoma or carcinoma, drug induced)

Cushing's Syndrome - Diagnosis

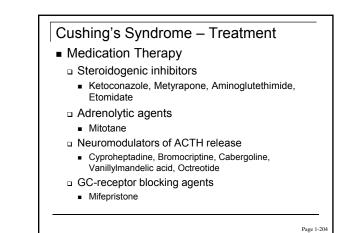
24-hour urine free cortisol level; 24-hour urine for free cortisol and

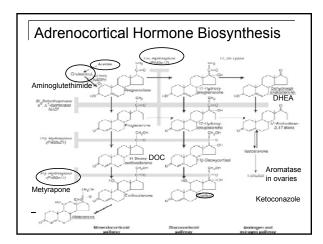
Document GC excess.

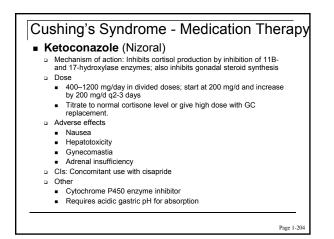

Page 1-203

Cushing's Syndrome - Clinical Presentation Central obesity with moon face, buffalo hump ***

- Ecchymoses
- Facial plethora ***
- Hypertension ***
- Myopathy with or without proximal muscle weakness ***
- Striae (wide, more than 1 cm)
- Hirsutism (women) ***
- Neuropsychiatric symptoms (depression to mania)
- Back pain (osteoporotic fracture)
- Oligo/amenorrhea
- Acne
- Fungal infections
- Hypokalemia
- Other—Hyperglycemia, hyperlipidemia, HTN, osteoporosis, atherosclerosis

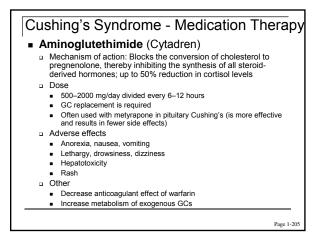

Page 1-203

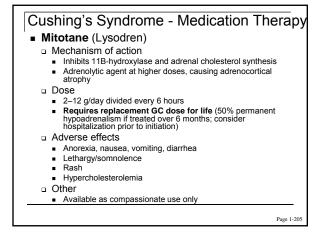

creatinine; free cortisol greater than 3 (or 4) times the ULN (upper limit of normal, 20-90 mcg per 24 hr) is diagnostic
1-mg overnight dexamethasone suppression test (ONDST)
1 mg of dexamethasone given orally between 11 pm and midnight and check cortisol level between 8 am and 9 am the next morning
Normals will suppress to less than 5 mcg/dL.
Very few false negatives but HIGH RATE OF FALSE-POSITIVE results (low specificity). Those who do not suppress require further follow-up for diagnosis. A normal result of the 1-mg ONDST rules out Cushing's syndrome, but an abnormal result (failure to suppress cortisol) does not necessarily confirm the diagnosis.
Late night salivary cortisol level (Ins are assay dependent) or MN plasma cortisol (>7.5 mcg/dL)
Other tests (e.g., plasma ACTH) and imaging studies (e.g., pituitary MRI, adrenal CT) are then used to identify the specific source of hypercortisolism (pituitary, adrenal, ectopic).

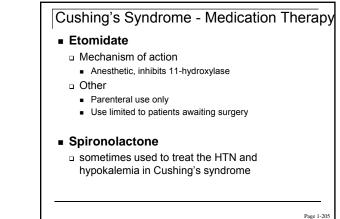


- Surgical TOC if the tumor can be localized and there are no CIs.
 <u>Transsphenoidal adenomectomy</u>: TOC for pituitary tumors (Cushing's disease)
- <u>Adrenalectomy</u>: TOC for adrenal tumor; steroid replacement required postop for 6-12 months (contralateral adrenal atrophy)
 <u>Thoracotomy</u>: TOC for ectopic ACTH-producing lung tumor
- <u>Thoracctomy</u>: TOC for ectopic ACTH-producing lung tumor Irradiation of the pituitary: 6-12 month lag time, high incidence of panhypopituitarism; typically reserved for surgical failures
- panhypopituitarism; typically reserved for surgical failures Drug induced: Taper and discontinue GC as soon as possible.
- Drug induced: Taper a
 Medication: used in
- patients with un-localized or un-resectable tumors
- patients with unificalized of unifiesectable tuning patients who are not surgical candidates
- patients who did not respond to or relapsed after surgery
- May also be used in preparation of surgery

Page 1-204







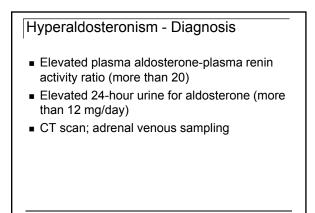
Cushing's Syndrome - Medication Therapy • Metyrapone (Metopirone)

- Mechanism of action: 11B-hydroxylase inhibitor (final step in action of actions)
- cortisol synthesis); can also prevent aldosterone production ^a Dose
 - 1–4 g/day divided every 6 hours (start with 250 mg BID)
 - MUST GIVE GC replacement
- Adverse effects
 - Nausea, vomiting, anorexia
 - Dizziness, headache, sedation
 - Hirsutism and acne (caused by excess androgen production)
 - Hypokalemia and HTN (caused by excess 11-
 - deoxycorticosterone proximal to the blockade)
- Other
 - DOC for pregnant woman; compassionate use only

Cushing's Syndrome - Medication Therapy

- Mifepristone (Korlym)
- Used to treat hyperglycemia associated with Cushing's disease
 - M/A: Blocks the binding of cortisol to its receptor; orphan drug, 5000 pts per year
 - SE's: Nausea, fatigue, headache, joint pain, vomiting, edema of hands/feet, dizziness, poor appetite; possible adrenal insufficiency, hypokalemia, vaginal bleeding

Hyperaldosteronism - Classification


- Bilateral adrenal hyperplasia (70% of cases)
- Aldosterone-producing adenoma (Conn's syndrome, 30%)
- Adrenal carcinoma (rare)
- Licorice ingestion
- Pseudohyperaldosteronism—Liddle's syndrome (very rare); treat with amiloride

Page 1-206

Hyperaldosteronism - Clinical Presentation

- Consider in patients with difficult-to-control HTN and hypokalemia
- Most commonly diagnosed in 30- to 50-year-olds
- Weakness
- Muscle cramping
- Paresthesias
- Headache
- Fluid retention
- Polyuria (nocturnal), polydipsia
- Hypertension
- Laboratory findings: hypokalemia, hyperglycemia, metabolic alkalosis (elevated serum bicarb)

Page 1-206

Hyperaldosteronism - Treatment

- Surgical—TOC for adenomas (laparoscopic resection of the
- adenoma) Medical—TOC for bilateral hyperplasia
- Spironolactone (Aldactone)
 - Mechanism of action: Specific aldosterone antagonist

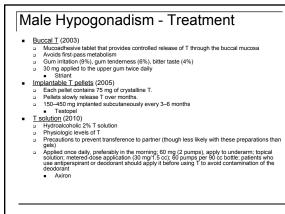
 - Dose: 25–50 mg 2 times/day to start (minimize GI adverse effects), maximal dose 400 mg/day; typical maintenance dose of 200 mg/day Adverse effects
 - Gynecomastia (9%)
 - Nausea
 - Impotence (inhibits testosterone synthesis) Menstrual irregularities
 - Hyperkalemia
- Eplerenone (Inspra)
- Mechanism of action: Specific aldosterone antagonist (with low affinity for androgen and progesterone receptors)
 Dose: 50 mg/day; may increase to 2 times/day
- Adverse effects
- Gynecomastia (1%)
 Hyperkalemia

Male Hypogonadism - Clinical Presentation

- Decreased sexual desire
- Erectile dysfunction
- Loss of energy/fatigue
- Depression
- Loss of muscle mass with increased percentage of body fat
- Osteoporosis

Male Hypogonadism - Diagnosis

- Diagnosis should only be sought in men with signs and symptoms and low T levels (less than 300 ng/dL).
- Morning total T levels for initial testing and confirmation
- Free T (less than 5 ng/dL) used if total T is low normal . and altered SHBG levels are suspected
- Diagnosis should not be made during acute illness.
- General screening not recommended but consider in certain situations (infertility, low trauma fracture in young man)


Male Hypogonadism - Treatment Oral androgens (1930s) 17-α alkylation: Examples

- Methyltestosterone
- Fluoxymesterone: Hepatotoxic. Because of this adverse effect, oral T replacement products should not be used. 17β esterification (not available in the United States)
- <u>T esters</u> (1950s) T enanthate (Delatestryl)
- T cvpionate (depot T)
- Administered as a deep intramuscular injection; 200–400 mg every 2–4 weeks; results in high peaks (fluid retention, polycythemia) and low trough (recurrence of symptoms) levels of T (T crash). Measure mid-interval levels
- Represents approximately 20% of T replacement therapy (TRT)
- Transdermal scrotal patches (1980s)
 - Good absorption and physiologic T levels but requires shaving of scrotal skin; apply daily. Testoderm - 4 and 6 mg patches

Page 1-20

Page 1-20

Page 1-20

Page 1-209

Page 1-207

Page 1-208

© American College of Clinical Pharmacy

- Male Hypogonadism Treatment
- <u>Transdermal non-scrotal patches</u> (1990s)
 - Physiologic levels of T but skin irritation (about one-third) and limited flexibility in dosing; measure T levels 3-12 hours after patch placed

 - Apply one patrol (2.5–7.5 mg/sup) nightly. Androderm—Apply to abdomen, lower back, thigh, or upper arm; 2.5 and 5 mg patches (being replaced by smaller 2 and 4 mg patches) Testoderm TTS—Apply to arm, back, or upper buttocks; 2.5 and 5 mg patches
- T gels (2000s)
 - Gets
 (2/UUUS)

 Allow to dry on skin before dressing; apply at least 2-6 hours before showering or swimming; most popular T replacement products (70% of TRT) Hydraclacholic 1% or 2% T gel

 Physiologic levels of T

 Precautions to prevent transference to partner and exposure to children

 5-10 mg applied once daily, preferably in the morning

 AndroCol-Apply to upper arms, shoulders or abdomen; 2.5 and 5 gm gel packets and metered-dose pump (1.25 gm per actuation, 60 pumps; twin pump package)

 AndroCol-Apply to upper arms and/or shoulders; 5 gm T gel tubes, packages of 30

 Testim—Apply to pre-arms and/or shoulders; 5 gm T gel tubes, packages of 30

Testosterone- Adverse Effects

- Edema
- Acne
- Gynecomastia (aromatization of T to estradiol)
- Polycythemia
- Dyslipidemia
- Worsened sleep apnea
- Increased BP
- Hair loss/balding (increased production of dihydrotestosterone from T)
- Infertility (high doses decrease spermatogenesis)
- Site reactions

Testosterone- ContraindicationsHistory of breast or prostate cancer

- Enlarged prostate or palpable nodule, or prostate-specific antigen greater than 3 ng/mL
- Severe untreated benign prostatic hyperplasia
- Erythrocytosis (hematocrit > 50%)
- Untreated obstructive sleep apnea
- Severe, uncontrolled heart failure
- Pregnancy/Breast feeding

Page 1-210

Male Hypogonadism - T Response/Monitoring

- Response
 - I month: improved libido, spontaneous erections, and sexual
- activity
- a months: increased muscle mass and decreased fat
 a months: improved BMD
- Monitoring
- Baseline: symptoms, BP, prostate exam and labs
- Follow-up:
 - Symptoms: energy, libido, spontaneous erections, sexual activity, mood, BPH symptoms
 - Labs: total T, free T, DHT, SHBG and Estradiol levels, hematocrit, PSA at 1 and 3 months then annually; LFT's and cholesterol profile annually; DXA after 1-2 years
 - Physical Examination: BP, rectal exam, observe for acne, gynecomastia, hair loss, edema

Page 1-21