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Epidemiology Primer
By Gregory B. Tallman, Pharm.D., MS, BCPS, BCIDP

INTRODUCTION 
Epidemiology is “the study of the distribution and determinants 
of health-related states or events in specified populations and the 
application of this study to control of health problems” (Porta 2008). 
Widely considered one of the core sciences of public health, epide-
miology is nevertheless a relatively young field of study that has 
largely developed over the past century. In that short time, many 
concepts in epidemiology have made their way into evidence-based 
medicine as principles that form the foundation of how pharmacists 
evaluate the medical literature and assess the validity of medical 
studies.

In recent years, new developments in epidemiology have clari-
fied concepts related to bias and causal inference, but these ideas 
have not disseminated into applied evidence-based medicine as 
much as newer statistical tools to control for confounding, which 
creates the potential to misuse these statistical methods. Pharma-
cists must be knowledgeable of current concepts and methods in 
epidemiology in order to stay up to date with the current medical lit-
erature and provide the best patient care. Given how epidemiologic 
principles influence evidence-based medicine, some of the terms 
and concepts in this chapter may be recognizable to pharmacists. 
However, sometimes, the same concept can go by many names, and 
the same term can mean different things to epidemiologists. In this 
chapter, we review fundamental and emerging concepts in epide-
miology before looking more closely at the tools an epidemiologist 
keeps in the toolbox and some of the common pitfalls in applying 
these tools to data.
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1. Evaluate epidemiologic measures of frequency and measures of association.

2. Distinguish elements of epidemiologic studies intended to reduce bias or address potential confounding.

3. Analyze measures of association and outputs of analytical models used to control for confounding.

4. Assess the adequacy of study methods to address potential sources of bias and confounding.

5. Justify the use of causal inference frameworks in the interpretation of study results.

LEARNING OBJECTIVES

ABBREVIATIONS IN THIS CHAPTER
IPTW Inverse probability of treatment 

weighting
RCT Randomized controlled trial

Table of other common abbreviations.
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PSAP 2022 Book 2  •  Current Issues in Pharmacotherapy 8 Epidemiology Primer

we may use treatment and intervention interchangeably with 
exposure and disease interchangeably with outcome.

Measures of Frequency 
Before making any conclusions about a disease or outcome, 
we must first quantify the outcome of interest. Epidemiolo-
gists or clinical researchers may wish to measure how wide-
spread a risk factor or health outcome is in the population, 
which can be achieved by measuring the prevalence of a dis-
ease. Or they may wish to describe the occurrence of new 
cases of a health outcome, which can be achieved by mea-
suring the incidence of a disease.

Prevalence 
Prevalence describes the degree to which a risk factor or 
health outcome is present in a target population at a given 
point in time and therefore reflects the existing burden of 
the outcome of interest (Lash 2021; Westreich 2019a). Prev-
alence is most useful for measuring chronic diseases (e.g., 
asthma) because acute conditions (e.g., infections) are less 
likely to be captured as prevalent cases; however, point prev-
alence surveys have been conducted to estimate the burden 
of acute conditions such as health care–associated infec-
tions (Magill 2014). When calculating prevalence, a prevalent 
case is an individual with the risk factor or outcome at the 
time when prevalence is estimated. The most common way 
to express prevalence is the prevalence proportion (Box 1), 
which can range from 0 to 1 (0%–100%). Prevalence may also 
be reported as odds (prevalence odds) or simply as counts 

CONTEMPORARY CONCEPTS IN 
EPIDEMIOLOGY: THINKING LIKE AN 
EPIDEMIOLOGIST 
Common Epidemiologic Measurements 
At its most basic level, epidemiology is grounded in the act 
of counting within groups, and the fundamental epidemi-
ologic measures found in epidemiologic research, though 
unchanged in recent years, remain foundational to the con-
temporary ideas and methods emerging in the field (Lash 
2021). A pharmacist seeking to understand literature relying 
on epidemiologic methods should have a strong understand-
ing of these measures, including what they are, when differ-
ent measures are appropriate to report, and how to interpret 
them.

This chapter focuses on using common epidemiology 
measures in the context of describing health outcomes. In 
addition to quantifying many different health outcomes (e.g., 
onset of a disease or condition, death, clinical cure), clini-
cians may want to measure other health determinants such 
as exposures, interventions, or risk factors for an outcome. 
The measures described hereafter can be applied both to out-
comes and to these other health determinants. Furthermore, 

BASELINE KNOWLEDGE STATEMENTS

Readers of this chapter are presumed to be familiar 
with the following:

• General knowledge of common study designs and 
research methods and associated terminology

• General knowledge of interpretation of p values 
and confidence intervals and associated 
terminology

• General principles related to data collection, 
measurement, and probabilities and associated 
terminology

Table of common laboratory reference values

ADDITIONAL READINGS

The following free resources have additional back-
ground knowledge on this topic:

• Gaskell AL, Sleigh JW. An introduction to causal 
diagrams for anesthesiology research. Anesthesi-
ology 2020;132:951-67.

• Hernán MA, Robins JM. Causal Inference: What If. 
CRC Press, 2020.

• Alexander LK, Lopes B, Ricchetti-Masterson K,  
et al. ERIC Notebook.

• Vetter TR, Schober P, Mascha EJ. Biostatistics, 
epidemiology and study design: a practical online 
primer for clinicians.

Box 1. Common Epidemiologic Measures 
of Frequencya

=
#Prevalence proportion of prevalent cases

total population

=
−

#
#

Prevalence odds of prevalent cases
of non cases in sample

=(“risk”) #Incidence proportion of incident cases
total population

=
−

#Incidence rate of incident cases
total person time at risk

=
−

#
#

Incidence odds of incident cases
of non cases in sample

aSee the text for additional information.
Information from: Alexander LK, Lopes B, Ricchetti-Masterson 
K, et al. Common measures and statistics in epidemiological 
literature. ERIC Notebook 2014;2:1-5; Lash TL, VanderWeele 
TJ, Haneuse S, et al. Modern Epidemiology, 4th ed. Lippincott 
Williams & Wilkins, 2021; Rothman KJ. Epidemiology: An 
Introduction, 2nd ed. Oxford University Press, 2012; Westreich 
D. Epidemiology by Design: A Causal Approach to the Health 
Sciences. Oxford University Press, 2019.

http://www.accp.com/docs/sap/Lab_Values_Table_PSAP.pdf
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https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://sph.unc.edu/epid/eric/
https://journals.lww.com/anesthesia-analgesia/pages/collectiondetails.aspx?TopicalCollectionId=188
https://journals.lww.com/anesthesia-analgesia/pages/collectiondetails.aspx?TopicalCollectionId=188
https://journals.lww.com/anesthesia-analgesia/pages/collectiondetails.aspx?TopicalCollectionId=188
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out of the total time individuals were at risk, often expressed 
in person-years (see Box 1). For example, if five hypothetical 
patients were followed for 1, 1, 2, 3, and 5 years, respectively, 
they would contribute a total of 12 person-years to the inci-
dence rate. If one individual developed the outcome, the inci-
dence rate would be 1 case/12 person-years, or 0.083 cases/
person-year. Often, incidence rates are reported at a scale 
that is easy to interpret and appropriate for the context; often, 
that is per 100 or per 1000 person-years (e.g., 0.083 cases/per-
son-year × 1000 person-years = 83 cases/1000 person-years).

Unlike proportions, the incidence rate can range from 0 
to infinity (Lash 2021; Westreich 2019a). Because of this, the 
incidence rate can accommodate any number of events and 
is useful for measuring events that occur more than once per 
individual (recurrent events). In contrast, the incidence pro-
portion cannot exceed 1 (100%); thus, if the number of events 
exceeds the number of individuals, it is no longer interpre-
table in the usual sense. In addition, because time is in the 
denominator of incidence rates, it can be measured even 
when not all patients are followed for the same fixed time (a 
requirement for interpreting incidence proportions). Unequal 
follow-up time can result from loss to follow-up or when study 
populations are defined according to a temporary factor, such 
as geographic location.

Incidence may also be reported as incidence odds (see 
Box 1) or as counts of incident cases (Westreich 2019a). Inci-
dence odds are not often described, though they are used to 
calculate odds ratios, which are widely reported. The choice 
of incidence measure depends on the question being asked, 
the study design, and the study population (Lash 2021; 
Westreich 2019a). Questions about the risk of disease occur-
ring are addressed by the incidence proportion, whereas the 
incidence rate better answers questions about when events 
occur. Recurrent events are usually measured using inci-
dence rates to capture the overall recurrence rate. However, 
incidence proportions could be calculated for each occur-
rence (e.g., risk of first Clostridioides difficile infection [CDI], 
risk of first CDI recurrence, risk of second CDI recurrence); 
such an approach could be used for questions about risk per 
occurrence. In addition, incidence rates are preferred to pro-
portions when evaluating populations that change over time 
or those with extensive loss to follow-up.

Measures of Association and Measures of Effect 
The preceding measures of prevalence and incidence are 
essential ways in which epidemiologists quantify the distri-
bution of health-related states and determinants in a pop-
ulation. However, to understand whether some factor is a 
determinant of a health-related state, researchers must move 
beyond describing distributions of events through measures 
of frequency and begin exploring potential associations 
between exposure and outcome, including the presence, 
direction, and magnitude of these potential associations. 
Measures of association are generally based on comparisons 

(i.e., number of people with the disease), though these are 
more difficult to interpret and therefore less commonly used. 
Because prevalence captures existing cases out of the total 
population, it cannot provide information about the risk 
of developing a disease or the rate at which new cases will 
occur. For that, a different measure is needed.

Incidence 
In contrast to prevalence, incidence quantifies the occur-
rence of new cases that arise over a specified period (Lash 
2021; Westreich 2019a). An incident case is any individual 
who transitions from one state of the outcome to another 
(e.g., from uninfected to infected). Another crucial difference 
is that incidence should only be measured in a population of 
individuals who are at risk of developing the outcome of inter-
est; individuals who already have the outcome at the start of 
the period (i.e., existing or prevalent cases) or who otherwise 
could not experience the outcome should be excluded. For 
example, if aiming to measure the incidence of prostate can-
cer, the population at risk should exclude individuals known 
to already have prostate cancer, as well as individuals without 
a prostate (cisgender women, transgender men, individuals 
with surgically absent prostates) who could thus not develop 
prostate cancer.

Incidence can further be divided into two distinct mea-
sures: incidence proportion and incidence rate. However, 
many terms are often used interchangeably for each measure 
of incidence, which can be a source of ambiguity when dis-
cussing “incidence.” The first measure of incidence is the inci-
dence proportion, which is the number of incident cases out 
of the total number of individuals at risk (Lash 2021; Westre-
ich 2019a) (see Box 1). Incidence proportion, which may also 
be called “cumulative incidence” or “risk,” can be interpreted 
as the probability of developing the outcome of interest over 
a specified period. As a proportion, the incidence proportion 
will always fall between 0 and 1 (0%–100%). When discussing 
“risk” (e.g., risk of an event occurring), most epidemiologists 
and clinicians are referring to the incidence proportion. Inter-
preting an incidence proportion requires knowledge of the 
time over which the risk was assessed. Consider the outcome 
of death: when measured over a long-enough time scale, the 
risk of death for humans is 1 (100%). Thus, a “2% risk of death” 
might be interpreted very differently if that risk is over the 
next 10 months versus the next 10 years. Hence, incidence 
proportions should always be reported with reference to the 
time of follow-up.

The second measure of incidence, incidence rate, incorpo-
rates the element of time directly into the measure by cap-
turing not only whether the event occurred, but also when it 
occurred (Lash 2021; Westreich 2019a). Consequently, the 
incidence rate can be conceptualized as a measure of the fre-
quency at which an event is occurring within the population. 
The incidence rate is also called the incidence density. The 
incidence rate is calculated as the number of incident cases 
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of incidence proportions or incidence rates between exposed 
and unexposed groups; contingency tables can easily be 
used to calculate many measures of association (Figure 1). 
If an exposure is likely to have a true causal effect, measures 
of association are called measures of effect, though we use 
these terms interchangeably in this chapter.

Risk Difference 
The risk difference is the difference in risk between exposed 
and unexposed groups (Box 2); here, “risk” refers to the inci-
dence proportion (Lash 2021; Westreich 2019a). This mea-
sure is also called attributable risk, excess risk, and absolute 
risk reduction; all of these terms imply directionality to the 
relationship between exposure and outcome. The risk differ-
ence can range from -1 (-100%) to 1 (100%), with 0 (0%) repre-
senting the null value (the value when the risk is the same in 
both groups). Negative risk differences occur when the expo-
sure is protective (i.e., exposure decreases risk of the out-
come), and positive risk differences occur when the exposure 
is harmful. Because the risk difference measures the change 
in risk on an absolute scale and is calculated from incidence 
proportions, it should be reported and interpreted in a manner 
that makes clear the scale and time over which incidence was 
determined (e.g., “the absolute risk of myocardial infarction 
over 5 years was 5% higher in the exposed group”) (Westre-
ich 2019a). Statements without these details (e.g., “the risk of 

DiseasedA

B

Exposed

Not exposed

Exposed

Not exposed

A B

DC

Not diseased

Diseased

A B

D

PT1

PT0C

Not diseased Person-time

Figure 1. Standard (A) and modified (B) contingency 
tables for calculating measures of association.This 
modified table incorporates PT for calculation of 
incidence rates.

PT = person-time.
Information from: Alexander LK, Lopes B, Ricchetti-
Masterson K, et al. Common measures and statistics in 
epidemiological literature. ERIC Notebook 2014;2:1-5; Lash 
TL, VanderWeele TJ, Haneuse S, et al. Modern 
Epidemiology, 4th ed. Lippincott Williams & Wilkins, 2021; 
Rothman KJ. Epidemiology: An Introduction, 2nd ed. 
Oxford University Press, 2012; Westreich D. Epidemiology 
by Design: A Causal Approach to the Health Sciences. 
Oxford University Press, 2019.

Box 2. Common Measures of Association
Measures based on incidence proportion (“risk,” IP):
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Measures based on incidence odds:
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Measures based on prevalencec:
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Other measures for protective exposures:

• =( ) 1Number needed to treat NNT
Risk difference

• = −( ) 1Relative risk reduction RRR risk ratioa

Other measures for harmful exposures:

• =( ) 1Number needed to harm NNH
Risk difference

• =
−( 1)Attributable fraction risk ratio

risk ratio
a

aThese measures are often multiplied by 100 and reported as 
a percentage.
bA, B, C, D, PT1, and PT2 refer to cells from a contingency table 
(e.g., those in Figure 1).
cThe calculations from a 2 × 2 contingency table are the same 
for measures of association based on incidence and prev-
alence. Therefore, the reader must know which measure the 
study reported.
Information from: Alexander LK, Lopes B, Ricchetti-Masterson 
K, et al. Common measures and statistics in epidemiological 
literature. ERIC Notebook 2014;2:1-5; Lash TL, VanderWeele 
TJ, Haneuse S, et al. Modern Epidemiology, 4th ed. Lippincott 
Williams & Wilkins, 2021; Rothman KJ. Epidemiology: An 
Introduction, 2nd ed. Oxford University Press, 2012; Westreich 
D. Epidemiology by Design: A Causal Approach to the Health 
Sciences. Oxford University Press, 2019.
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studies with cumulative control sampling, where odds ratios 
are typically the only measure of association that can be cal-
culated and reported. The second reason is statistical. Spe-
cifically, logistic regression models report coefficients that 
are transformed to and reported as odds ratios.

Other Measures of Association 
The earlier measures of association are some of the most 
commonly used in epidemiologic research and are common in 
the medical literature. Readers may encounter the incidence 
rate difference, prevalence difference, prevalence ratio, prev-
alence odds ratios, relative risk reduction, number needed 
to treat, and number needed to harm (Lash 2021; Westreich 
2019a). The incidence rate difference and prevalence differ-
ences are analogs of the risk difference and are calculated 
using the incidence rate and prevalence proportion, respec-
tively, instead of the incidence proportion. Similarly, the prev-
alence ratio and prevalence odds ratio are analogous to the 
risk ratio and odds ratio but are calculated with prevalence 
proportion and prevalence odds in place of incidence propor-
tion and incidence odds, respectively (see Box 2).

Measures of association can be reported purely for descrip-
tive purposes, but in the medical literature, they are often 
calculated with the goal of quantifying a potentially causal 
relationship (i.e., does the exposure [usually a treatment or 
intervention] cause an individual to move from one state to 
another with respect to a given outcome?) (Westreich 2019a). 
This is most evident in the number needed to treat and num-
ber needed to harm, which describe how treatment will cause 
change by preventing (or causing) occurrences of the out-
comes. Despite the near-ubiquity of these causal questions 
in clinical research, they are rarely made explicit because 
many medical journals are reluctant to discuss causation 
in the context of study results (Saver 2019; Hernán 2018). 
This reluctance to make these causal questions explicit may 
partly be because of a lack of clarity regarding how to identify 
causal relationships between events, a fundamental question 
that has vexed philosophers and researchers for hundreds of 
years (Glass 2013). Over the past century, statisticians, epi-
demiologists, and others have developed or refined many 
causal frameworks to aid in making causal inferences, and 
although causation has historically been a term to avoid in 
medical research, the attitude toward causal inference may 
be shifting (Lash 2021; Lederer 2019). Next, we will consider 
new thinking about causal inference.

Causal Frameworks for Causal Inference 
One of the most widely recognized causal frameworks is Sir 
Austin Bradford Hill’s nine “viewpoints,” which should be con-
sidered when trying to determine whether an observed asso-
ciation is causal (Box 3), commonly called the Bradford Hill 
criteria (Hill 1965). These criteria can be a useful framework 
for considering a potential causal relationship, but the rela-
tive simplicity of the Bradford Hill criteria has resulted in a 

myocardial infarction was 5% higher in the exposed group”) 
are ambiguous and could be interpreted on an absolute or 
ratio scale.

Risk Ratio and Rate Ratio 
Associations between exposure and outcome can also be 
measured on the ratio scale. The risk ratio is the ratio of the 
incidence proportion in the exposed group to the incidence 
proportion in the unexposed group, whereas the incidence 
rate ratio (sometimes shortened to rate ratio) is the ratio of 
the incidence rate in those exposed to the incidence rate in 
those unexposed (see Box 2) (Lash 2021; Westreich 2019a). 
Many clinicians use “relative risk” when referring to the risk 
ratio. However, some epidemiologists use relative risk as an 
umbrella term for both risk and rate ratios, which can be a 
source of confusion when interpreting results (Lash 2021). 
For both risk and rate ratios, the null value when the risk is 
equal between groups is 1, and the measure can in theory 
take any value from 0 to infinity. Protective exposures will 
result in risk ratios or rate ratios less than 1, and harmful 
exposures will result in ratios greater than 1. Because these 
measures are on a ratio scale, results are typically communi-
cated in multiplicative terms to avoid confusion with the risk 
difference (e.g., “the 5-year risk of myocardial infarction was 
1.05 times higher in the exposed group”). The risk ratio, like 
the risk difference, should be interpreted in reference to the 
time of the study; this does not apply to the rate ratio.

Odds Ratio 
Like risk and rate ratios, the odds ratio measures the associa-
tion between exposed and unexposed groups, except that it is 
calculated using the incidence odds instead of the incidence 
proportion or incidence rate (Lash 2021; Westreich 2019a). 
Odds ratios are also interpreted the same way as risk and rate 
ratios, with a theoretical range of 0 to infinity, null value of 1, 
and harmful exposures resulting in odds ratios greater than 
1, whereas protective exposures have odds ratios less than 
1. However, in almost all cases that readers will encounter in 
the literature, the odds ratio will overestimate the risk of the 
outcome (Westreich 2019a) (i.e., for harmful exposures, the 
odds ratio will always be larger than the true risk ratio, and 
for protective exposures, the odds ratio will always be smaller 
[closer to 0] than the true risk ratio). If the outcome is uncom-
mon (occurs in less than 5%–10% of patients), the odds ratio 
can be assumed to approximate the risk ratio; this is some-
times called the rare disease assumption.

The odds ratio will usually overestimate the risk of the out-
come. Given this, it may be surprising that odds ratios are 
widely reported. There are two primary reasons for ongoing 
use of odds ratios (Westreich 2019a). The first reason is when 
other measures cannot be calculated. In some studies, data 
are insufficient to determine the total population at risk, either 
in number of individuals or time at risk; thus, incidence cannot 
be calculated. This situation is most common in case-control 
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transplant cause her to die? This can be answered by con-
sidering the counterfactual question “what if the patient 
did not receive the transplant?” If she would still have died 
after 1 week, the heart transplant did not cause her death. 
If she would still be alive, the heart transplant did cause 
her death. This difference between factual and counterfac-
tual outcomes is the individual causal effect. Readers have 
likely noticed that it is unknown which outcome would have 
occurred if the patient had not received the transplant, and 
until we develop the ability to time travel, we will never be able 
to go back, prevent this hypothetical patient’s transplant, and 
observe what would have occurred. Indeed, because counter-
factual outcomes are unobservable, individual causal effects 
in general cannot be estimated.

Potential outcomes and counterfactuals have thus allowed 
for a precise definition of an individual causal effect, but the 
effect cannot be measured. However, using this framework, 
average causal effects can be estimated from all the individ-
ual causal effects in a population under specific conditions 
for causal identification. These causal identification condi-
tions include exchangeability, positivity, and consistency 
(Hernán 2020; Westreich 2019a). Exchangeability is the con-
dition that the average baseline risk in the exposed group 
is equal to the average baseline risk among the unexposed. 
Essentially, in exchangeable populations, the groups receiv-
ing treatment and control could be changed and the results 
would still be the same. Positivity states that at baseline, all 
individuals could potentially receive any of the treatments 
in the study. Consistency means that the exposure causes 
the same effect in all individuals who are exposed. A consis-
tent exposure is one that is defined clearly and specifically 
enough that, within the exposed and unexposed groups, any 
variations in the treatment received (e.g., dose, frequency, 
intensity) do not have different effects on the outcome. For 
example, an intervention of “1 aspirin per day” could mean 81 
mg or 325 mg, and in a study of bleeding events, differences 
between these could result in a meaningful variation of out-
comes between different doses. In such a case, the interven-
tion “1 aspirin per day” would lack consistency. All of these 
conditions (exchangeability, positivity, consistency) presup-
pose that the exposure precedes the outcome and that all 
variables are measured accurately; thus, temporality and no 
measurement error are often included as additional causal 
identification conditions (Westreich 2019a).

When these conditions are true, the potential outcomes 
framework allows for the estimation of population (not indi-
vidual) causal effects without needing to resort to time travel. 
Consider a hypothetical randomized trial population, where 
10 people receive a transplant and 10 do not; all are followed 
for 1 week to assess mortality. A comparison of mortality 
between those who received the transplant and those who 
did not would provide a measure of association between the 
heart transplant and the outcome, and it can be calculated on 
the basis of observed (i.e., factual) outcomes only (no time 

tendency to view them as a causality “checklist,” even though 
the presence or absence of any single criterion cannot estab-
lish or rule out causality. Specific criticisms of each of the 
criteria have been described, and further efforts to refine 
the causal criteria have largely failed to generate consensus 
(Lash 2021; Holman 2001). Consequently, contemporary epi-
demiologic approaches have shifted away from causal crite-
ria to focus on how causal relationships can be defined and 
how causal effects can be estimated. We discuss two widely 
used causal frameworks used in describing causal effects – 
the potential outcomes model and causal diagrams.

Potential Outcomes Model 
The potential outcomes model, also called the counterfactual 
model, allows for causal relationships to be stated in clear 
mathematical terms and helps define the conditions that 
must be met, or assumed to be met, for causal inference to 
be justified (Lash 2021; Hernán 2020; Westreich 2019a). We 
are all well-versed in counterfactual thinking, even if we are not 
aware of it by that term. Counterfactual thinking is consid-
ering what would have occurred in alternative scenarios; in 
essence, these are “what if” questions, such as “what if I had 
ordered the steak instead of the fish?” In epidemiology, we 
may ask “what if the patient had not been exposed?” or “what 
if the patient had been treated?” Counterfactuals are alterna-
tives to what occurred in reality; they are counter-to-fact. The 
potential outcomes refer to the different possible outcomes 
that could have occurred in these counterfactual scenarios.

The potential outcomes framework allows for causal 
effects to be clearly defined. Consider a patient who receives 
a heart transplant and dies 1 week later. Did the heart 

Box 3. Bradford Hill Considerations for 
Causation
• Analogy – similar cause-effect relationships exist among 

variables
• Biologic gradient – there is a dose-response or exposure- 

response pattern between cause and effect
• Coherence – the causal effect does not conflict with cur-

rent scientific understanding
• Consistency – the association has been observed over 

time across studies with varying designs and populations
• Experimental evidence – removing or reducing the expo-

sure decreases the frequency of the outcome
• Plausibility – there is a reasonable hypothesized mecha-

nism that is consistent with a causal relationship
• Specificity – the cause has a single effect or an effect has 

a single cause
• Strength – the stronger the association, the more difficult it 

is to explain as a statistical artifact or bias
• Temporality – the cause precedes the effect

Information from: Hartung DM, Touchette D. Overview of 
clinical research design. Am J Health Syst Pharm 2009;66:398-
408; Hill AB. The environment and disease: association or 
causation? Proc R Soc Med 1965;58:295-300.



PSAP 2022 Book 2  •  Current Issues in Pharmacotherapy 13 Epidemiology Primer

align with the study methods. In this section, we provide a 
focused introduction to key elements of causal diagrams and 
how they can be used to identify sources of confounding and 
other biases. Interested readers can refer to any of the many 
published reviews for more information (Etminan 2020; Gas-
kell 2020; Lederer 2019; Shrier 2008).

In a causal diagram, variables are represented as nodes 
that are connected by arrows. Arrows represent direct causal 
effects between variables (e.g., E→Y indicates that E causes 
Y). A path is an unbroken sequence of variables connected 
by arrows, and these paths are the key to causal diagrams. 
If the arrows all point in the same direction (e.g., E→M→Y), 
it is a directed path; otherwise, it is undirected. A variable 
that comes before another variable on a directed path is an 
ancestor of the second variable, and the second variable is a 
descendent of the first (e.g., E→Y, E is an ancestor of Y, Y is a 
descendent of E). A causal path is any path between the expo-
sure and the outcome under study where the arrows all point 
the same way (i.e., a directed path between exposure and out-
come). In contrast, a non-causal path is any undirected path 
between exposure and outcome; these are the sources of 
bias when estimating causal effects.

Understanding how non-causal paths induce bias requires 
an explanation of mediator, collider, and common cause vari-
ables. A mediator is any variable that lies between exposure 
and outcome on a causal path (e.g., M in E→M→Y is a media-
tor). Mediators transmit causal effects from exposure to out-
come. For example, sleep quality (exposure) can affect the 
outcome of work performance through the mediator of alert-
ness (Figure 2A). A common cause is a variable with two 
arrows leaving it (e.g., C is a common cause of E and Y in the 
path E←C→Y [Figure 2B]). When the common cause is on a 
non-causal path, this variable is a confounder. For example, 
maternal age is a common cause of both birth order (expo-
sure) and outcome of trisomy 21. A collider is a common 
effect of two other variables; it will have two arrows converg-
ing on it within a path (e.g., Z is a collider on the path E→Z←Y 
[Figure 2C]). For example, early in the pandemic, both occu-
pation (exposure) and COVID-19 severity (outcome) may have 
influenced whether an individual was tested for COVID-19 (col-
lider). Finally, in causal diagrams, a box around a variable is 

travel needed). If the causal identification conditions hold, 
according to the potential outcomes framework, the observed 
risk among those who received a transplant can stand in for 
the risk in the unexposed if they had, counter-to-fact, been 
exposed, and the observed risk among those who did not 
receive a transplant can do the same for the exposed if they 
had not been exposed. Thus, the comparison of observed 
risks between groups is equivalent to a comparison of coun-
terfactual risks; therefore, the measure of association from 
the population is a measure of the true causal effect in the 
population, which is known as the average causal effect.

In summary, the potential outcomes framework estab-
lishes that meeting the causal identification conditions is 
sufficient to allow interpretation of measures of associa-
tion as average causal effects. However, outside random-
ized controlled trials (RCTs), it is rarely possible to prove that 
a study meets all causal identification conditions. Instead, 
causal inferences assume that the conditions have been met. 
This can be problematic, particularly for exchangeability, 
because an individual’s exposure status is often influenced 
by factors that also affect the risk of the outcome. Thus, the 
average risk in the exposed will differ from that in the unex-
posed, and exchangeability will not hold. However, if the fac-
tors that affect the risk of the outcome can be accounted for, 
conditional exchangeability can be achieved (i.e., groups are 
exchangeable conditional on these additional variables). This 
is sometimes called unconfoundedness or “no unmeasured 
confounding.” The challenge, then, is to identify what these 
additional variables are. In the past 20 years, causal diagrams 
have emerged as a useful tool for addressing that challenge.

Causal Diagrams 
Causal diagrams are directed acyclic graphs used for causal 
inference; they are a tool to visually codify the assumptions 
about the relationships between variables. Directed acy-
clic graphs are useful for identifying which variables affect 
exchangeability, as well as other potential sources of bias. 
Together with the potential outcomes framework, causal dia-
grams can guide the design, analysis, and interpretation of 
results, and readers evaluating a study can construct their 
own causal diagrams to see whether their assumptions 
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Figure 2. A, A causal path from E to Y through mediator M. B, A confounding path from E to Y through confounder 
C. C, A blocked non-causal path from E to Y. Z is a collider and, if conditioned on, would open the path, leading to bias.

Information from: Etminan M, Collins GS, Mansournia MA. Using causal diagrams to improve the design and interpretation of 
medical research. Chest 2020;158:S21-8; Gaskell AL, Sleigh JW. An introduction to causal diagrams for anesthesiology research. 
Anesthesiology 2020;132:951-67; Hernán MA, Robins JM. Causal Inference: What If. CRC Press, 2020.
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of these tools when evaluating studies. Using causal dia-
grams can identify potential sources of bias, such as open 
confounding paths or colliders that have been inappropriately 
conditioned on. To start, all the variables that a study con-
trolled for in any way should be listed. Then, arrows should 
be drawn between variables to create a causal diagram that 
aligns with the pharmacist’s subject matter knowledge. Once 
this diagram is constructed, variables can be identified as 
confounders, mediators, or colliders. If mediators or colliders 
were controlled for in the analysis, the study’s analysis likely 
induced bias in the observed association. Figure 4 shows 
how this process can clarify a study’s reported analysis.

A primary criticism of causal diagrams is that they are 
constructed on the basis of expert knowledge and theory, 
not data. This invites skepticism of causal diagrams as a 
tool because multiple causal diagrams could be proposed for 
the same causal relationship, and disagreements regarding 
which variables should be controlled for are possible. How-
ever, this can be a strength of causal diagrams. Drawing a 
diagram forces assumptions to be made explicit, allowing 
for collaborative discussion and critique. Discrepancies in 
causal diagrams are not errors, but signals of the need for fur-
ther research in an area. Alternatives to causal approaches 
de-emphasize prior knowledge and purposeful deliberation 
in favor of probability and chance. In short, causal diagrams 
are useful in the never-ending pursuit for validity in epidemio-
logic research and better understanding of the world.

often used to indicate it has been adjusted for (“conditioned 
on”). See Figure 2 for these variables and paths.

Colliders and confounders control whether non-causal 
paths induce bias. Non-causal paths can only induce bias if 
the path is open; blocked paths do not transmit bias. Con-
founding paths contain a common cause (i.e., a confounder) 
of the exposure and the outcome. Confounding paths are open 
by default and therefore cause bias. To block a confounding 
path, the confounder must be adjusted for. Of note, confound-
ing paths can include many variables, including the com-
mon cause, and adjusting for any single variable is enough to 
block the path. For example, in the path E←C→D→Y, adjust-
ing for either C or D is sufficient to block the path. In contrast 
to confounding, paths that contain a collider are by default 
blocked, and conditioning on the collider will cause “collider 
bias” or “collider stratification bias,” a type of selection bias. 
Finally, adjusting for mediators also results in blocking paths. 
However, mediators lie on the causal path between expo-
sure and outcome and generally should not be controlled 
for. Doing so will result in overadjustment, which generally 
reduces the magnitude of association between exposure and 
outcome, potentially obscuring the true causal effects (Lash 
2021; Hernán 2020). Figure 3 provides hypothetical examples 
of common causal diagram structures, and Table 1 summa-
rizes terminology and rules regarding these diagrams.

Although researchers often use causal diagrams to guide 
study design and analysis, pharmacists can also make use 

Vaginal
bleeding

Asthma
exacerbation

Oral
estrogen

Endometrial
cancer

Baseline
asthma
severity

Anti-IL5
therapy

Immunosuppression
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Antifungal
prophylaxis

Invasive fungal
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Figure 3. Hypothetical examples of causal diagrams. A, The effect of anti–interleukin 5 (anti–IL-5) therapy on 
asthma exacerbations is confounded by baseline asthma severity. The box around severity indicates it has been 
adjusted for, blocking the confounding effects. B, Oral estrogen causes endometrial cancer, but by conditioning on the 
collider of vaginal bleeding, collider bias (selection bias) occurs. C, Antifungal prophylaxis is a mediator of the effect of 
immunosuppression on invasive fungal infection. Adjusting for prophylaxis blocks the effect of immunosuppression on 
that pathway, causing overadjustment.
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Table 1. Common Terminology and Rules in Causal Diagrams

Arrow Indicator of direct causal effect between variables, the effect moves in the direction the arrow is pointing

Path An unbroken sequence of variables connected by arrows.

Directed path A path where all arrows point in the same direction

Undirected path A path where not all arrows point in the same direction

Causal path A directed path between exposure and outcome

Non-causal path An undirected path between exposure and outcome

Ancestor A variable that comes before a second variable on a directed path

Descendent A variable that comes after a previous variable on a directed path

Mediator A variable between exposure and outcome on a causal path

Collider A variable on a non-causal that is a common effect of two other variables, it will have two arrows pointing 
in to it

Confounder A variable on a non-causal path that is a common cause of two other variables, it will have two arrows 
pointing away from it

Confounding path An non-causal path that contains a confounder of the exposure and outcome, allows for non-causal 
effects unless adjusted for

Blocked path A path that contains noncollider (i.e., a mediator or confounder) that has been conditioned on, or a path 
that contains a collider that has not been conditioned on

Collider bias Bias caused by conditioning on a collider on a non-causal path, this leads to unblocking of a blocked path

Overadjustment Conditioning on a mediator

Box A box around a variable indicates the variable has been conditioned on

Information from: Etminan M, Collins GS, Mansournia MA. Using causal diagrams to improve the design and interpretation of medical 
research. Chest 2020;158:S21-8; Gaskell AL, Sleigh JW. An introduction to causal diagrams for anesthesiology research. Anesthesi-
ology 2020;132:951-67; Hernán MA, Robins JM. Causal Inference: What If. CRC Press, 2020.
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Figure 4. Causal diagrams can be a useful tool for critiquing published results of statistical models. Many investigators 
will include all measured variables in a model to be adjusted for, a situation that would appear like the causal diagram 
(A). However, with intentional consideration of the relationship between variables, an evaluator of a statistical model 
could identify that the causal diagram should look more like (B). With the knowledge of (B), it is apparent that only C1 
and C2 needed to be adjusted for. Adjusting for M was overadjustment and Z induced collider bias.

Information from: Etminan M, Collins GS, Mansournia MA. Using causal diagrams to improve the design and interpretation of 
medical research. Chest 2020;158:S21-8; Gaskell AL, Sleigh JW. An introduction to causal diagrams for anesthesiology research. 
Anesthesiology 2020;132:951-67; Hernán MA, Robins JM. Causal Inference: What If. CRC Press, 2020.
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outcome?). The goal of high-quality epidemiologic research 
is to produce valid estimates of the relationship between an 
exposure and an outcome.

Validity is often further divided into internal and external 
validity (Westreich 2019a; Hartung 2009; Porta 2008). Inter-
nal validity refers to the extent that the measured effect in 
the study sample matches the true effect in the study sample 
(Westreich 2019a). The major threats to internal validity are 
random error (chance), systemic error (bias), and confounding 

Validity in Epidemiologic Research 
Validity can be thought of as a consideration of how well a 
measure describes the phenomena it is intended to describe 
(Hulley 2013). In epidemiologic contexts, study validity is 
“the degree to which the inferences drawn from a study are 
warranted when account is taken of the study methods and 
the characteristics of the participants in the study” (Porta 
2008) (i.e., how closely do the results of a study reflect the 
underlying truth of the relationship between exposure and 

Decision Scenario
A pharmacist is reviewing a cohort study of the pilot phase 
of a new pharmacist-run hypertension management 
service, where the pharmacist may adjust medication 
regimens if needed. In this study, clinic providers could 
choose to refer patients to the new pharmacist-run ser-
vice or the existing nursing-led blood pressure monitoring 
program. To evaluate efficacy of the new service, the 
investigators used linear regression to compare the mean 

systolic blood pressure between groups after 3 months 
of follow-up. To adjust for confounding, the authors 
included patient age, blood pressure regimen during the 
3 month follow-up, blood pressure goal, and history of 
nonadherence.

To evaluate the methods, the pharmacist reviewing the 
study constructs the following causal diagram with boxes 
around the variables that have been adjusted for.

History of nonadherence

Blood pressure goal

Age

Blood pressure regimenPharmacist management Systolic blood pressure

Assuming the diagram is correct, what conclusions can the pharmacist make about the validity of the study results?

ANSWER
Causal diagrams are extremely useful for understanding 
the relationships between variables, and drawing a dia-
gram can help evaluate the appropriateness of the data 
analysis performed in a study. In this example, the expo-
sure is referral to the pharmacist-run hypertension service, 
and the outcome is mean systolic blood pressure at after 
3 months of follow-up. The regression model adjusted for 
age, blood pressure goal, blood pressure regimen during 
follow-up, and history of nonadherence. In the correspond-
ing causal diagram, age, blood pressure goal, and history 
of non-adherence are identified as plausible confounders. 
These variables could influence if a patient gets referred 
to the pharmacist service or not, and also the extent of 
blood pressure reduction observed. Controlling for con-
founders blocks confounding, allowing for estimation of 

causal effects, and therefore it was appropriate to include 
these variables in the model. In contrast, blood pressure 
regimen is identified as a mediator variable in the causal 
pathway (pharmacist management → blood pressure reg-
imen → systolic blood pressure). This is plausible, as the 
pharmacist running the service can adjust medication 
regimens, and different medication regimens might affect 
systolic blood pressure to different degrees. Controlling 
for a mediator blocks the causal pathway, causing overad-
justment, so mediators generally should not be controlled 
for. Therefore, assuming the proposed causal diagram is 
correct, the results of the study will likely be biased due 
to overadjustment from controlling for the mediator blood 
pressure regimen.

1. Etminan M, Collins GS, Mansournia MA. Using causal diagrams to improve the design and interpretation of medical research. Chest 
2020;158:S21–8.

2. Gaskell AL, Sleigh JW. An introduction to causal diagrams for anesthesiology research. Anesthesiology 2020;132:951–67.
3. Hernán MA, Robins JM. Causal Inference: What If. CRC Press, 2020.
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When misclassification occurs equally across all groups 
in the study (e.g., exposed vs. unexposed, with outcome vs. 
without outcome), non-differential misclassification occurs. 
Non-differential misclassification typically arises from deci-
sions made in operationalizing a study, such as using mea-
surement tools or categorization rules that are inaccurate or 
non-validated, or even failing to clearly define what consti-
tutes an exposure or outcome event. As a clinically relevant 
example, consider diagnosis codes. A study of the accuracy 
of the International Classification of Diseases, 10th Revision 
(ICD-10) diagnosis codes to identify UTIs found that, com-
pared with chart review, diagnosis codes accurately clas-
sified UTIs as present or absent only about 63% of the time 
(Livorsi 2018). If an observational study used ICD-10 codes to 
define the outcome for all patients, it would misclassify the 
outcome almost 40% of the time. Because the outcome would 
be defined in the same manner for all patients, this misclassi-
fication would be non-differential.

Conversely, when misclassification instead occurs 
unequally across individuals in a study, the result is differ-
ential misclassification. Differential misclassification typi-
cally occurs when exposure status influences how outcomes 
are measured, or when knowledge of the outcome affects 
how exposure status is captured. One of the most common 
types of differential misclassification is recall bias. Recall 
bias occurs when patients are asked to recall exposures after 
the outcome has already occurred and knowledge of the out-
come affects the individual’s ability to recall exposure data. 
The classic example of recall bias is in studies of congeni-
tal disorders, where it is thought that because of the adverse 
pregnancy outcome, parents of newborns with a congenital 
condition are more likely to correctly recall potential expo-
sures that could have caused the disorder (Rothman 2012). 
Parents of healthy newborns lack such a stimulus; thus, they 
are not expected to recall exposures with the same effort. The 
result is that an exposure is more likely to be accurately clas-
sified for subjects with congenital disorders, resulting in dif-
ferential misclassification of exposure status.

Although the distinction between differential and non-dif-
ferential misclassifications may seem academic, the con-
sequences of these different types of bias are of practical 
importance. When non-differential misclassification occurs 
while categorizing a binary variable (e.g., exposed [yes/no], 
experienced outcome [yes/no]), the result will always be an 
estimated measure of association that is biased toward find-
ing no difference (“biased toward the null”) because errors 
in classification of exposure and/or outcome lead to dilution 
of the true effect. This is one of the most common forms of 
information bias in the medical literature, and it is important 
to recognize that it results in an underestimate of the true 
effect. Non-differential misclassification of a binary variable 
should therefore be of particular consideration in studies that 
find no difference, especially if the outcome under investi-
gation is harmful. In contrast, differential misclassification 

(Westreich 2019a). Random error is generally reduced through 
increased sample size, and the amount of random error in a 
study result can be quantified through appropriate statisti-
cal tests (Vetter 2017; Rothman 2012; Hartung 2009). In con-
trast, managing bias and confounding requires more careful 
consideration in study design and more complex statistical 
approaches than most simple inferential tests. External valid-
ity, in contrast, is the degree to which the true effect in the 
study sample matches the true effect in the broader popula-
tion of interest (Lash 2021; Westreich 2019a). External validity 
considers the extent to which a study’s results can be gener-
alized to the population the study sample was obtained from 
(generalizability) and transported to other, different popula-
tions that were not sampled as part of the study (transport-
ability). Internal validity is often considered a prerequisite of 
external validity, which is true to a point (Delgado-Rodriguez 
2004). However, many design choices that enhance internal 
validity may compromise external validity, and some epide-
miologists have advanced “target validity” as an approach 
to balance internal and external validity, depending on the 
goal of the study (Westreich 2019b). The focus of subsequent 
sections of this chapter is on internal validity, though we will 
occasionally discuss considerations of external validity.

Bias 
Bias arises when there is a systematic error in the design or 
conduct of a study that results in nonrandom deviation of 
a study’s estimate of effect from the true effect, threaten-
ing internal validity (Vetter 2017; Hulley 2013; Gerhard 2008; 
Porta 2008). At least 70 types of bias encountered in epide-
miologic research have been described, and many attempts 
to categorize and organize them have been proposed (Delga-
do-Rodriguez 2004; Maclure 2001). Most commonly, biases 
are grouped into three categories: selection bias, informa-
tion bias, and confounding. We will discuss selection bias 
and information bias, including common types of bias in each 
category. We will also discuss time-dependent biases, which 
are of particular concern in pharmacoepidemiology and can 
result in either information bias or selection bias. Confound-
ing is discussed separately in the text that follows.

Information Bias 
Measurement is at the center of epidemiologic studies. At a 
minimum, an epidemiologic study requires measurement of 
the outcome in question; however, most studies also evaluate 
the effects of an exposure, which also need to be quantified. 
In addition, other variables, such as potential confounders 
or mediators, are typically measured. Each time a variable is 
measured, there is a potential for error in that measurement. 
Information bias occurs when there are systematic errors in 
how information is measured in a study. Misclassification is 
a measurement error that occurs with categorical variables 
and results in an individual’s placement in the incorrect cate-
gory, such as classifying a smoker as a nonsmoker.
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comes from how patients are selected into the study popula-
tion. However, study entry is only the beginning of a patient’s 
participation, and not all patients remain in the study for the 
entire follow-up. The second source of selection bias arises 
during follow-up if patients drop out of a study for reasons 
related to the exposure and outcome. Loss to follow-up might 
not seem to align with the idea of selection, but it can be 
conceptualized as selecting only patients with complete fol-
low-up. The third source of selection bias – that arising from 
restricting to or adjusting on a collider variable – can be the 
most difficult to detect because it occurs during data anal-
ysis. This last source is conceptually challenging because 
it is difficult to intuit the connection between data analysis 
and selection into the study. Nevertheless, it has clearly been 
shown that colliders are a consistent source of selection bias 
(Hernán 2004).

Depending on the relationship between the exposure, out-
come, and factors influencing selection into the study, selec-
tion bias can take on two structural forms (Hernán 2017, 
2004). The first form occurs when selection (or retention) 
into the study is a collider (i.e., the result of factors related 
to both exposure and the outcome). As a clinical example, 
consider a trial of calcium channel blockers compared with 
other antihypertensives on the risk of liver injury. If calcium 
channel blockers cause more adverse effects, more patients 
in that treatment group may drop out. Separately, patients 
with alcohol use disorder may be more likely to drop out 
as well as more likely to experience the outcome. Colliders 
induce bias because knowledge of the collider and treatment 
provides information about the outcome. If we know some-
one did not drop out and they received a calcium channel 
blocker, they are less likely to have alcohol use disorder and 
therefore liver failure. This makes calcium channel blockers 
appear protective, even if they truly have no effect; this exam-
ple can be shown in a causal diagram (Figure 5). This form 
of selection bias occurs when a study restricts or stratifies 
on a variable that is a collider. This type of selection bias can 
also occur if a researcher statistically adjusts for (“conditions 
on”) a collider, which can be a source of confusion because 

(and non-differential misclassification of a multicategory 
variable) can lead to estimates that are smaller than the true 
effect (biased toward the null) or amplification of the esti-
mated effect compared with the true association (biased 
away from the null). The direction of bias is difficult to predict 
and will depend on the structure of the relationship between 
variables.

All epidemiologic studies are at risk of information bias 
because all measurements will have some error (Lash 2021). 
Investigators should focus on designing studies that mini-
mize the magnitude of measurement error and misclassifi-
cation. The specific approaches will depend on the methods 
of data collection and the potential source of bias being 
addressed. For example, recall bias could be minimized by 
framing questions to improve all subjects’ ability to recall 
information, or by using information documented in the med-
ical record, thereby avoiding the need for any recalled infor-
mation at all. For many variables, relying on documented 
information will be more accurate than relying on reported 
measures. Validated questionnaires, interviewer training, 
blinding, and standardized questions can all improve the 
collection of subjective data or information that cannot oth-
erwise be obtained from documented records. Retrospec-
tive studies may be more susceptible to information bias 
because of lack of investigator control regarding when and 
how data were collected. In addition to mitigating measure-
ment error through study design, statistical approaches 
have been developed that try to correct measurement error 
or quantify the potential magnitude of bias (sensitivity anal-
ysis) (Lash 2021). These bias analyses are seldom reported 
because they can be technically complex and typically 
require additional information or assumptions about the 
structure and magnitude of the error.

Selection Bias 
The terminology related to selection bias is highly inconsis-
tent, and many different disciplines use the term selection 
bias in different ways, with resulting differences in interpre-
tation. In econometric and medical literature, selection bias 
typically refers to “treatment selection bias” – systematic dif-
ferences in why someone receives one treatment or another. 
Epidemiologists consider this a type of confounding. In epi-
demiology, selection bias refers to biases that occur as a 
result of how patients are selected into the study (not how 
they self-select or are selected to different treatments) (Lash 
2021). The result of selection bias is that the estimated mea-
sure of effect obtained from the study population will differ 
systematically from the true association in the source popu-
lation (Lash 2021). Selection bias is difficult to detect objec-
tively because data regarding the association in the source 
population are usually unavailable; thus, the presence of 
selection bias must be inferred (Rothman 2012).

Selection bias, in the epidemiologic sense, generally arises 
from three main sources. The first source of selection bias 

Alcohol use
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Figure 5. Selection bias in a randomized controlled 
trial. Retention in study is a collider of treatment and 
alcohol use disorder. Loss to follow-up could therefore 
cause selection bias, even in this hypothetical 
randomized controlled trial.
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Time-Dependent Biases 
Many time-related biases have been described, with immor-
tal time bias and time-window bias of particular note (Suissa 
2020). Immortal time bias can occur in cohort studies when 
there is a window of time between when a patient enters a 
cohort and when treatment is initiated (Suissa 2008). This 
period between cohort entry and treatment initiation is called 
“immortal time” because the patient must survive (or more 
generally, remain in the cohort) without experiencing the 
outcome long enough to receive the treatment. More gener-
ally, the bias occurs when treatment status is determined by 
events that occur after initial cohort entry. During the immor-
tal period, the subject has not actually received treatment yet; 
bias occurs when a patient’s immortal time is retroactively 
categorized as “treated” (misclassification) or excluded from 
analysis (selection bias). For example, consider a study of sta-
tin use to prevent myocardial infarction, where “statin use” is 
defined as three prescriptions filled within 6 months of cohort 
entry. Patients become eligible for the study at the time of 
hospital discharge after cardiac catheterization. Immortal 
time bias occurs because all patients who are “treated” had 
to survive long enough to fill three prescriptions. Patients 
who experienced a myocardial infarction after filling one or 
two statin prescriptions would be classified as a nonusers by 
this study definition because they had not yet filled three pre-
scriptions, which is ultimately misclassification (information 
bias). Alternatively, excluding such a patient from the analy-
sis would result in selection bias.

Time-window bias is a time-dependent bias that occurs 
in case-control studies. Time-window bias occurs when the 
exposure time-window differs between cases and controls. 
For cases in a case-control study, exposure must occur before 
onset of the outcome; however, with cumulative control sam-
pling, exposure among controls can occur at any point during 
the study. A control could theoretically be “exposed” on the 
last day of follow-up. Thus, relative to cases, controls have 
a longer “time window” over which to be exposed, and later 
exposures decrease the time during which the outcome can 
occur, which can lead to time-window bias (Suissa 2020, 
2011).

Both immortal time bias and time-window bias can be 
avoided with proper study design. Because the immortal time 
bias arises when cohort entry and treatment status are not 
aligned, the ideal solution is to design a study in which treat-
ment is initiated at the same time as the patient becomes eli-
gible to be included in the study, much as would be expected 
in a clinical trial. However, there are often limitations that 
make it difficult or impossible to design such a study. In these 
cases, one of the most common tools to address potential 
immortal time bias is to include treatment as a time-vary-
ing covariate in a statistical model. In time-varying models, 
patients can be categorized as untreated for the study period 
before they begin treatment and then change to the treatment 
group thereafter. This approach can usually help mitigate 

statistical analysis is often thought of as separate from study 
selection procedures. Therefore, causal diagrams are partic-
ularly effective at detecting potential selection bias. No mat-
ter where the collider bias occurs (e.g., sample selection or 
analysis), the result is a biased estimate of the relationship 
between the exposure and the outcome in the study popula-
tion and lack of generalizability to the source population.

The second form of selection bias does not involve collider 
variables. This form of selection bias occurs when selection 
into the study is associated with the outcome, but only in set-
tings where the exposure has a true effect on the outcome. 
Envision a study of a screening test for colon cancer (Roth-
man 2012). Investigators randomly assign participants to 
screening or no screening and collect data on the incidence 
rate of colon cancer. The screening test should detect more 
colon cancer and thus affect colon cancer rates. However, 
patients who volunteer for such a trial may do so because of 
a family history of colon cancer; these individuals would have 
a higher risk of the outcome. In this hypothetical study popu-
lation, therefore, the rate of colon cancer will be higher than in 
the source population, and the resulting estimated measure 
of effect for screening will therefore be a biased estimate 
of the true effect in the source population (which includes 
people without a family history of colon cancer). However, 
the estimate would be an unbiased estimate of the effect of 
screening within the study population because the selection 
bias was equally distributed between the randomized groups. 
Therefore, the consequence of selection bias without collid-
ers is related to the impact on the generalizability of the study 
results, rather than the results being biased within the con-
text of the study itself.

Because every study involves selecting patients for inclu-
sion from a source population, every study is at risk of selec-
tion bias. Consequently, minimizing selection bias starts 
with sound study design. Selection bias can almost never 
be addressed through common adjustment methods such 
as regression. In fact, as we saw, selection bias can even be 
caused by inappropriate adjustment for a collider variable. 
Causal diagrams that are based on expert knowledge related 
to the research questions are one of the best tools to pre-
vent or diagnose potential selection bias. Collider variables 
should not be used as criteria for selection into a study, nor 
should they be adjusted for in an analysis. Loss to follow-up 
may also lead to selection bias, and when possible, efforts 
should be made to obtain complete follow-up data from all 
subjects, which is easiest in prospective studies. As with 
information bias, quantitative bias analysis methods have 
been developed that can help identify the presence and 
potentially the magnitude of selection bias. However, these 
methods require additional data about the source popula-
tion that are rarely available or assumptions about selection 
probabilities that can be difficult to justify. Consequently, 
selection bias analysis is not commonly performed in obser-
vational studies.
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outcomes, it is essential that researchers and those who 
evaluate the medical literature understand the tools available 
in the epidemiologist’s toolbox for both study design and 
analysis.

Addressing Bias Through Study Design 
Sound principles of study design are the foundation for con-
ducting valid and meaningful research. Choices made during 
the design phase influence the potential for confounding and 
are instrumental in minimizing many types of bias. Although 
bias can sometimes be adjusted for during the analysis, doing 
so often requires assumptions that are untestable. Thus, 
design is an optimal way to address bias and reduce the need 
for assumptions and complex analytical tools. It is assumed 
that readers are generally familiar with the basic elements of 
common analytical study designs. In this section, we review 
these study designs with particular consideration toward 
causal inference and potential sources of bias. Specific strat-
egies for addressing bias were previously addressed.

Randomized controlled trials are considered the gold stan-
dard for establishing causal relationships. This is clear when 
considering the causal identification conditions. Randomiza-
tion and treatment assignment provide exchangeability and 
positivity because treatment assignment is independent of 
patients’ risk of the outcome, and all patients could poten-
tially receive the treatment. The prospective design ensures 
temporality, and the assignment of a clear, well-defined treat-
ment provides consistency (Hernán 2020). Consistency may 
be less certain in pragmatic trials, which usually have less 
restrictive enrollment criteria and allow more ancillary treat-
ments; the results are typically more generalizable (Sedgwick 
2014). Despite being the gold standard for causal inference, 
RCTs are not immune to bias. Measurement error, and thus 
information bias, is possible in any study, though generally, 
investigators of RCTs go to great lengths to ensure that mea-
surements collected are meaningful, accurate, and valid. 
Nevertheless, consideration of the appropriateness of cho-
sen study measures is essential to evaluating the risk of bias 
in an RCT (Sterne 2019). Objective measurements are less 
susceptible than subjective outcomes to differential mea-
surement error. Clinical trials have the advantage of blinding 
participants and researchers to treatment assignment, which 
helps minimize the risk of differential assessment of subjec-
tive outcomes. Although selection bias is uncommon, it may 
still occur if there is extensive loss to follow-up that is related 
to both the intervention and the outcome. Selection bias 
can also occur if allocation is not concealed. In such a trial, 
researchers may choose whether or not to enroll a patient 
in a study at all, depending on knowledge of what treatment 
will be assigned and prognostic factors, leading to selec-
tion bias (Mansournia 2017). Immortal time bias should not 
occur in intention-to-treat analysis of RCTs because cohort 
entry and treatment assignment both occur at the time of 
randomization.

immortal time bias. Many other approaches have also been 
suggested, but they are often less effective at reducing bias 
or are technically complicated. For time-window bias, sam-
pling controls with the same duration of exposure as cases 
can minimize the bias; this is a sampling approach known as 
incidence-density sampling.

Confounding
Confounding is a widely recognized problem in observational 
studies that many pharmacists will be familiar with. Often 
described as a “mixing of effects,” confounding occurs when 
an apparent association between an exposure and an outcome 
is caused by a third variable. Formally, confounding is bias 
from a variable that is a common cause of the exposure and 
outcome. Although the concept of confounding is fairly well 
understood, identifying the confounders is not always straight-
forward. Traditionally, a confounder has been defined as any 
variable that is (1) associated with the exposure, (2) associated 
with the outcome in the unexposed, and (3) not an effect of the 
exposure (Hernán 2020; Rothman 2012). However, contempo-
rary work has shown that this definition can describe colliders 
as well as confounders (Hernán 2020). Causal diagrams have 
helped address these challenges and clarified the definition of 
confounding and confounders. Confounding is a non-causal 
path created by a common cause of the exposure and out-
come. A confounder is therefore any common cause variable 
on the confounding path (Westreich 2019a).

Effect measure modification is a concept that is distinct 
from, but often related to, confounding. Confounding nor-
mally has the same effect on the exposure-outcome relation-
ship for all individuals. However, sometimes, the observed 
measure of effect varies across levels of another variable; 
this is effect measure modification. For example, if a study 
of calcium supplementation and fractures reports a risk ratio 
of 4.0 for women and 0.2 for men, effect measure modifica-
tion by sex is likely present. Effect measure modification is 
identifying a subpopulation that is particularly susceptible to 
the effects of the exposure. Conventional recommendations 
are to report the level-specific measures of effect rather than 
a single population estimate; however, sometimes, a popula-
tion estimate may be preferred (Westreich 2019a).

Confounding is expected in all observational studies. Sim-
ilar to selection bias and information bias, confounding can 
be addressed during the design phase using strategies such 
as restriction or matching. As noted earlier, confounding can 
also be addressed during the analysis phase through strat-
ification or many other statistical approaches. We address 
these tools in greater detail in the sections that follow.

EPIDEMIOLOGIST’S TOOLBOX I: 
VALIDITY IN STUDY DESIGN 
In the quest for high-quality research that moves the pro-
fession forward and closer to understanding the unbiased 
and potentially causal relationship between exposures and 
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Rothman 2012). Case-control studies are susceptible to many 
of the same biases as other studies and, in some instances, 
more so than other designs. Selection bias, in particular, is 
of primary concern in case-control studies. Sampling of con-
trols should be done without regard to exposure status, but 
sometimes, this is not the case. Strategies to make control 
identification easier, such as recruiting friends, family, or 
neighbors, may lead to biased sampling. Similarly, recruit-
ing only patients from the hospital or those treated by cer-
tain physicians can cause selection bias. Table 3 and Figure 6 
illustrate selection bias in a case-control study. Case-control 
studies are also vulnerable to information bias, and differen-
tial misclassification as a result of biases such as recall bias 
is of particular concern. Time-window bias may also be a con-
cern in case-control studies (Suissa 2011).

Addressing Confounding Through Design 
As described earlier, investigators of observational studies 
face many hurdles to causal inference, and assumptions must 
be made regarding all the causal identification conditions. 
One of the primary issues is lack of exchangeability because 
of bias and confounding. Previous sections have identified 

Cohort studies lack randomization; hence, exchangeabil-
ity must be assumed conditional on measured confound-
ers; this is a principle reason why claims of causality based 
on cohort studies are often viewed with skepticism. Without 
treatment assignment, positivity must also be assumed, and 
consistency may be difficult to ascertain. Care must be taken 
to define the exposure clearly and in such a way that it can 
be accurately measured. This can be particularly challenging 
with retrospective data. Cohort studies can generally estab-
lish temporality because individuals are followed forward in 
time from the exposure; however, determining the exact timing 
can sometimes be challenging, particularly in retrospective 
cohort studies. Bias is a problem that must be considered in 
every cohort study. Like RCTs, cohort studies are susceptible 
to information bias from the same potential sources of mea-
surement error, and the risk is likely increased in cohort stud-
ies, particularly retrospective cohort studies. In such studies, 
investigators have little control over how data are collected, 
and measurements of variables may be of varying quality and 
accuracy, assuming the data are present at all. Furthermore, 
blinding of participants is not possible in cohort studies, cre-
ating opportunities for differential misclassification. The 
potential for selection bias is also increased in cohort stud-
ies. Like in RCTs, selection bias may occur in cohort studies 
when loss to follow-up is related to both the exposure and the 
outcome. However, in cohort studies, efforts to track patients 
over time may be less rigorous (or absent). Selection bias can 
also occur when defining the population of a cohort study, 
for which Table 2 provides an example. Finally, lack of treat-
ment assignment places cohort studies at risk of immortal 
time bias because exposure status may be determined on the 
basis of information collected after cohort entry.

Case-control studies have many of the same challenges 
as cohort studies with respect to causal inference and bias. 
Exchangeability must be conditional on measured confound-
ers, and positivity must be assumed. Consistency is also dif-
ficult to ascertain. Temporality is particularly challenging in 
case-control studies because outcome status is determined 
first, and care must be taken when looking back to ensure 
the outcome was not present when the exposure occurred. 
The design of case-control studies also makes interpretation 
difficult. Most case-control studies use cumulative control 
sampling. With this sampling method, cases include all indi-
viduals with the disease, but controls represent only a sample 
of the population who never developed the disease by the end 
of the study. Consequently, the total population at risk of the 
outcome during the study is unknown. Therefore, incidence 
proportions (risk) cannot be calculated, and a risk ratio cal-
culated from a case-control study will be a biased estimate 
of the true risk ratio in the total population. Instead, incidence 
odds and odds ratios must be calculated. Alternative con-
trol sampling strategies have been developed that can allow 
for estimation of risk ratio or incidence rate ratio, but these 
are less common in the medical literature (Westreich 2019a; 

Table 2. Selection Bias in a Cohort Study

Study Design Retrospective Cohort Study

Population Women with recent vaginal bleeding

Exposure Already on oral estrogen

Control Not on oral estrogen therapy

Outcome Endometrial cancer

The bias: Both oral estrogen therapy and 
endometrial cancer can cause vaginal 
bleeding. A woman on estrogen 
therapy may be more likely to have 
experienced estrogen-induced 
bleeding, whereas vaginal bleeding 
in a woman not on estrogen is more 
likely to be because of endometrial 
cancer. Thus, by selecting only 
women with recent vaginal bleeding, 
the researchers would have induced a 
negative association between the two 
(vaginal bleeding in a woman not on 
estrogen means she is more likely to 
have cancer and vice versa). This bias 
is illustrated in Figure 3B

Information from: Greenland S, Neutra R. An analysis of 
detection bias and proposed corrections in the study of 
estrogens and endometrial cancer. J Chron Dis 1981;34:433-
8; Robins JM. Data, design, and background knowledge in 
etiologic inference. Epidemiology 2001;12:313-20.
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Randomization 
Randomization is the most effective design tool for address-
ing confounding, particularly because it addresses both 
measured and unmeasured confounders. The benefits of 
randomization in providing exchangeability were previously 
discussed, and in this section, we emphasize a few specific 
points to consider when evaluating RCTs. The first is that 
randomization only eliminates confounding for intention-to-
treat analyses. Intention-to-treat analyses evaluate patients 
according to the group to which they are assigned and are thus 
unconfounded. However, intention-to-treat analyses answer 
the question “what is the effect of assignment to treatment 
X?” Often, the desired question is “what is the effect of receiv-
ing treatment X?”, which is addressed by per-protocol anal-
yses. Per-protocol analyses may still be confounded, given 
that whether or not a patient actually receives treatment may 
be influenced by many variables. In this regard, per-protocol 
analyses are sometimes regarded as cohort studies nested 
inside RCTs (Westreich 2019a). In addition, it is important to 
remember that randomization only addresses confounding 
at baseline; problems that occur during the study, such as 
loss to follow-up, can still result in confounding and selec-
tion bias. Finally, because randomization works by balanc-
ing the average risk of outcome between treatment groups, 
it can sometimes “fail” for studies with small sample sizes, 
resulting in residual imbalances between groups. Evaluation 
of baseline characteristics for imbalances can signal poten-
tial problems with the randomization process (Sterne 2019).

Restriction 
However, randomization is often not possible, and most epi-
demiologic studies must rely on other design and analyti-
cal approaches to address confounding. One of the simplest 
approaches is to limit the study population to only individu-
als with or without the suspected confounder, an approach 
known as restriction. For example, researchers concerned 
that a new air freshener is associated with lung cancer may 
choose to include only individuals who have never smoked. 
Restriction eliminates confounding for the variable in ques-
tion because, put simply, “a variable cannot produce con-
founding if it is prevented from varying” (Lash 2021). For 
continuous variables such as age, studies may age restrict 
to a narrow age range (e.g., patients 45–55 years of age). In 
these cases, confounding from the continuous variable will 
be reduced but not eliminated.

Although restriction is a simple approach that is relatively 
easy to implement, it has several limitations. On a practi-
cal level, it is only possible to restrict on variables that are 
measured; thus, restriction cannot address unmeasured 
confounding. In addition, restriction reduces the study sam-
ple size; thus, the number of restrictions will be determined 
in part by the number of potential subjects. Restriction can 
be combined with other methods for addressing confound-
ing, which can overcome some of these practical barriers. 

several potential sources of bias and how studies might mit-
igate these biases; in this section, we consider strategies for 
ensuring exchangeability. Assuming that other causal identifi-
cation conditions hold, achieving conditional exchangeability 
may allow for causal inferences from observational data.

Table 3. Selection Bias in a Case-Control Study

Study Design Retrospective Case-control Study

Population Cases were individuals hospitalized 
with pancreatic cancer; controls were 
selected from patients being treated 
by the same physicians as the cases

Exposure Coffee consumption

Control No coffee consumption

Outcome Pancreatic cancer

The bias In this study, cases were patients 
hospitalized with pancreatic cancer, 
and controls were selected from 
hospitalized patients seen by the 
same physicians (many who were 
likely gastroenterologists) but 
without pancreatic cancer. Many of 
these controls had other GI diseases 
and possibly had decreased coffee 
intake (either because of physician 
recommendation or because of their 
own volition). Sampling of controls 
was thus not independent of exposure, 
and coffee consumption among 
controls was not representative of 
the total population, biasing the study 
results. This bias is illustrated in 
Figure 6

Information from: MacMahon B, Yen S, Trichopoulous D, 
et al. Coffee and cancer of the pancreas. N Engl J Med 
1981;304:630-3.

Coffee
consumption

Cared for by
same physician

Pancreatic
cancer

Gastrointestinal
disease

Figure 6. Selection bias in a case control study 
(see Table 3 for details).

Information from: MacMahon B, Yen S, Trichopoulous D,  
et al. Coffee and cancer of the pancreas. N Engl J Med 
1981;304:630-3.
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in mind and consider the potential for remaining confound-
ing and how the study addressed it. In addition, the analysis 
of matched data is full of pitfalls that pharmacists should be 
aware of; these are discussed in a later section.

EPIDEMIOLOGIST’S TOOLBOX II: 
VALIDITY IN DATA ANALYSIS 
In the absence of randomization, design choices alone are 
often insufficient to address confounding. Additional analyt-
ical approaches are often used to try to adjust for confound-
ing, with the goal of achieving conditional exchangeability 
given the measured confounders. Except for instrumental 
variables, none of the following analytical tools can address 
unmeasured confounding. As in the previous section, our dis-
cussion in the section will assume that study design has min-
imized other biases and that assumptions related to other 
causal identification conditions are reasonable.

Stratification 
One of the best-established methods of controlling for con-
founding is stratification, which has been described as the 
mainstay of epidemiologic analyses when consideration of 
factors beyond the exposure and outcome (i.e., confounders) 
is required (Lash 2021). In stratified analyses, subjects are 
grouped according to levels of the confounder, and for each 
level, a separate measure of effect is calculated. For example, 
if smoking status were considered a confounder of the rela-
tionship between statin use and myocardial infarction, the 
data would be stratified according to smoking status (e.g., 
“current,” “former,” and “never” smokers), and within each 
stratum, the risk ratio (or other measure of effect) for myocar-
dial infarction in patients treated or not treated with statins 
would be calculated.

In its most basic form, the result of a stratified analysis 
results in multiple stratum-specific measures of effect, which 
are particularly beneficial if looking to assess or report effect 
measure modification. However, in many cases, a single over-
all estimate of the association between exposure and out-
come is desired. Stratum-specific estimates can be pooled 
together to produce such an estimate. One of the most com-
mon methods for combining stratum-specific estimates is 
the Mantel-Haenszel (sometimes Cochran-Mantel-Haenszel) 
approach, which returns the average of the stratum-specific 
estimates, weighted proportionally to the number of individ-
uals in each stratum. The Mantel-Haenszel method assumes 
that the effect of the exposure is the same (or very similar) 
for all levels of the confounder (i.e., no effect measure mod-
ification). An alternative approach to combining strata that 
does not make that assumption is standardization. Standard-
ization also weights the number of events in each stratum, 
but the weights are typically generated from an external pop-
ulation reference. For example, if the hypothetical study of 
statins and myocardial infarction stratified by smoking took 

Limiting the study sample to certain groups also decreases 
generalizability because the sample becomes less represen-
tative of the target population, though some epidemiologists 
have argued that this tradeoff is acceptable if the restric-
tion allows more accurate estimates of the measure of effect 
(Lash 2021). One of the most important considerations with 
restriction is to ensure that the restricting variable is a con-
founder, and not a collider or mediator. As discussed, if the 
sample is restricted based on a collider, this will cause selec-
tion bias. This was the concern with the proposal to restrict a 
study of estrogen therapy and endometrial cancer to women 
with recent vaginal bleeding (see Table 2).

The limitations of restriction should be considered when 
evaluating a study that uses this approach. Pharmacists 
appraising such studies should assess how completely the 
restrictions addressed confounding from those variables, 
what confounders were not addressed by restriction, the 
methods used to address the remaining confounders, and 
the risks of unmeasured confounding. In addition, the risk 
of selection bias from restricting on a collider should care-
fully be considered by examining the structure of the relation-
ships between the restricting variable, the exposure, and the 
outcome.

Matching 
With matching, the goal is to create pairs or groups of subjects 
that are similar to each other except for exposure status. For 
example, in a study evaluating the risk of acute kidney injury 
from vancomycin plus piperacillin/tazobactam compared 
with vancomycin plus cefepime, each patient with septic 
shock in the piperacillin/tazobactam group was matched to 
a patient with septic shock who received cefepime (Navalkele 
2017). Unlike restriction, matching allows for inclusion of peo-
ple with and without the confounder. Matching controls for 
confounding from each matched variable, and as with restric-
tion, more than one variable can be matched on. For contin-
uous variables, matching may be either to specific values 
(e.g., 25 years old) or to a range of values (e.g., 45–55 years 
of age), and the potential for residual confounding should be 
considered.

Matching is generally recommended because it can 
increase statistical precision and is thus seen as an “efficient” 
tool. However, matching can take additional time and finan-
cial resources and may not be financially “efficient.” Match-
ing has many of the same limitations as restriction. Like 
restriction, matching can only occur for variables that have 
been measured, and residual confounding from unmeasured 
confounders is likely. Increasing the number of variables 
matched on decreases the probability of finding a match for 
any given patient, and unmatched subjects will be excluded 
from the study, reducing the total sample. When the initial 
sample pool available for matching is small, matching is typ-
ically only feasible for a few confounders. Clinicians evaluat-
ing studies that use matching should keep these limitations 
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always nonnegative integers and are often skewed. Poisson 
regression is often used for count data. Logistic regression 
is appropriate for binary outcomes, such as 30-day mortal-
ity or clinical cure. Finally, time-to-event (survival) outcomes, 
such as time to first asthma exacerbation, should be modeled 
using Cox proportional hazards regression.

Although the outcome variable may determine the type of 
regression model to use, it may not always be the result of 
interest from the regression. In some cases, such as clinical 
prediction models, predicting the outcome is the goal of the 
model. Often in epidemiology, however, the goal of a regres-
sion analysis is to explain the relationship between variables; 
that is, to quantify the effect between exposure and the out-
come, often including covariates to control for confounding. 
Often, moreover, the implicit goal in these cases is causal 
inference, and in the right conditions, regression can allow for 
estimation of causal effects. When explanation is the goal of 
a model, the regression coefficients, rather than the outcome, 
are the result of interest. The coefficient for a given covari-
ate represents the magnitude of change in the outcome that 
can be expected for a 1-unit change in the variable. For lin-
ear regression, the regression coefficients can be interpreted 
directly as the magnitude of change from the covariate; for 
logistic, Poisson, and Cox regressions, the exponentiated 
form of the coefficient corresponds with specific measures 
of effect (Table 4). In univariable models, the coefficient (or 
exponentiated coefficient) represents the unadjusted (crude) 
measure of effect; in a multivariable model, coefficients pro-
vide the measure of effect for the given variable, adjusted for 
all other covariates in the model.

Despite their ubiquity in the medical literature, regression 
models have limitations. Adding too many predictors to the 
model can lead to separation or overfitting. Separation is a 
problem in the model fitting algorithm that results in inflated 
estimates and extremely (sometimes infinitely) wide confi-
dence intervals (Mansournia 2018). Overfitting occurs when 
the regression model learns to predict the study data so well 
that it fails to generalize when validated in other data sets. 
To avoid overfitting, it is generally suggested to include no 
more than one confounder for every 10 outcome events (the 
“events-per-variable ratio”), though this useful heuristic may 
not apply to all models in all circumstances (van Smeden 
2016). Therefore, researchers must choose which variables 
to include in the model; this is an area of ongoing contro-
versy, where pitfalls are common. We discuss it further in 
later sections.

Beyond these limitations, a chosen regression model 
should be appropriate for the data being modeled (see 
Table 4), and each model makes assumptions that some-
times do not hold. There are “model diagnostics” to evalu-
ate whether assumptions have been violated. A discussion of 
these diagnostics is beyond the scope of this chapter, but ide-
ally, the paper will report how the assumptions were checked; 
pharmacists should consider the presence or absence of 

place in the United Kingdom, the estimates in each level of 
smoking would be weighted by the proportion of current, for-
mer, and never smokers in the total population of the United 
Kingdom.

Stratification is quite similar to restriction, but instead of 
excluding certain groups, stratification allows all patients to 
be retained in the study. The relatedness of these two meth-
ods means that many of the limitations of stratification will 
resemble those of restriction. Like restriction, stratification 
is relatively simple and easy to implement and can be quite 
useful for a small number of confounders. However, stratifica-
tion quickly becomes untenable when multiple variables are 
used. If investigators of the earlier study of statins and myo-
cardial infarction wished to stratify on biological sex (male or 
female) in addition to smoking status, six strata would be cre-
ated (three levels for smoking and two levels for sex). Adding 
age in five categories would result in 30 (3 × 2 × 5) different 
smoking-sex-age strata. With this many levels, many of the 
strata would likely have few or no patients. Another important 
consideration with stratification is the choice of stratifying 
variables. Recall that restricting on a collider induces selec-
tion bias; stratification on a collider has the same effect. In 
fact, this type of selection bias is sometimes called collid-
er-stratification bias.

Regression Modeling 
Regardless of whether they realize it, most pharmacists are 
familiar with the concept of regression modeling. In its sim-
plest form, regression modeling can be conceptualized as 
drawing the line of best fit through some data (think “y = mx 
+ b” from algebra), though in practice, regression modeling 
becomes much more complicated when applied to epidemi-
ologic research (Grant 2019). With increases in computing 
power over the past decades, regression has emerged as one 
of the most widely used statistical tools to control for con-
founders in observational studies. The outcome variable in 
the regression model is sometimes called the dependent vari-
able. The exposure and confounders, though independent 
variables, are often called predictors or covariates. A univari-
able regression model consists of one outcome variable and 
one predictor, whereas a multivariable model includes one 
outcome variable but more than one predictor. In a multivar-
iate model, multiple outcomes are being modeled simultane-
ously; often, when studies report multivariate modeling, they 
are referring to multivariable modeling.

Pharmacists reading epidemiologic or medical litera-
ture are likely to come across linear, logistic, Poisson, and 
Cox proportional hazards regression models. The choice of 
model depends on the nature of the outcome being modeled. 
Linear regression is used when the outcome variable is mea-
sured on a continuous scale, such as systolic blood pressure 
or A1C. Count data, such as the number of asthma exacer-
bations or the number of goals scored in a soccer match, 
often look like continuous data. However, count data are 
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strong assumptions are met (Rubin 2007). Specifically, pro-
pensity score analysis assumes that all confounders have 
been measured and included and that all patients could the-
oretically have received the treatment. These assumptions 
should sound familiar because they are the causal identifi-
cation criteria of conditional exchangeability and positivity. 
Because of the widespread use of propensity score methods, 
it is essential that pharmacists understand their applications, 
strengths, and limitations.

Controlling for confounding using propensity scores is 
a two-step process. In the first step, the propensity score 
itself is calculated. The propensity score is commonly esti-
mated using logistic regression, though other methods are 
sometimes used. The propensity score can thus reduce all 
included covariates into a single number, which is used to 
adjust for confounders in the second step of the process. 
In the second step, the propensity score–adjusted associa-
tion between exposure and outcome is estimated using one 
of four approaches: propensity score matching, propensity 
score stratification, inverse probability of treatment weight-
ing (IPTW), or covariate adjustment. Newer methods for 
applying propensity scores, such as overlap weights, have 
also been developed, but we do not generally consider them 
in this chapter.

In propensity score matching, the propensity score itself 
is used as the matching variable. Each treated patient is 
matched to one or more control patients using any of several 
matching methods. In nearest neighbor matching, the pairs 
with the closest propensity scores are matched (Austin 2011). 
With optimal matching, the goal is to minimize the average 
distance between pairs for the entire sample. Caliper match-
ing uses a prespecified range (the caliper width) and accepts 
any matches where the distance between a pair’s propensity 
scores is within that range. Simulation data indicate that cal-
iper matching is likely the best method for propensity score 
methods, using a caliper width of 0.2 (technical meaning: 0.2 
standard deviations of the logit of the propensity score). In all 
cases, unmatched patients are excluded from analysis. Once 

this information when evaluating a paper reporting regres-
sion modeling. One important assumption with Cox models 
that should be checked is the proportional hazards assump-
tion. Cox models assume proportional hazards between 
groups (hence the name), and researchers using these mod-
els should report how this assumption was evaluated. If the 
proportional hazards assumption is violated, alternative 
approaches are necessary for analysis of time-to-event data. 
Finally, regardless of the model chosen, no regression can 
account for unmeasured confounders.

Propensity Score Methods 
Propensity score methods have gained popularity in recent 
years, particularly in comparative effectiveness studies. 
Unlike previously discussed tools for addressing confound-
ing, propensity scores are appealing because they generally 
overcome the “events-per-variable” problem of multivari-
able modeling, allowing the inclusion of many more poten-
tial confounders. This is a particularly important advantage 
in studies with low event rates, small sample sizes, or several 
confounders, where there will be too few events to permit the 
inclusion of many variables in a regression model.

The propensity score, described as a balancing score, is 
used to balance pretreatment variables between exposed 
(treated) and unexposed (control) patients in an observa-
tional study (Austin 2011). Specifically, the propensity score 
is the probability that a subject receives the exposure of inter-
est, conditional on baseline covariates, and ranges from 0 
to 1. If all confounding pretreatment variables can be iden-
tified and measured, any propensity score-adjusted anal-
ysis should result in findings identical to what would have 
been observed if treatment had been randomized. In addi-
tion, because the propensity score can be calculated before 
data are otherwise analyzed, it separates design from anal-
ysis. Because of these features, propensity scores have 
been described as “the observational study equivalent of 
complete (i.e., unrestricted) randomization in a randomized 
experiment”; however, this characterization is only fair when 

Table 4. Regression Models and Their Coefficients

Regression Model Exponentiated Coefficient Interpretation

Cox Hazard ratio The hazard of the outcome increased/decreased by x times

Linear N/A The outcome increased/decreased by x units

Logistic Odds ratio The odds of the outcome increased/decreased by x times

Poisson Rate ratio The rate of the outcome increased/decreased by x times

N/A = not applicable.
Information from: Grant SW, Hickey GL, Head SJ. Statistical primer: multivariable regression considerations and pitfalls. Eur J 
Cardiothorac Surg 2019;55:179-85; Vetter TR, Schober P. Regression: the apple does not fall far from the tree. Anesth Analg 
2018;127:277-83.
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larger weights than those with low propensity scores. These 
weights are then applied in subsequent analyses to provide 
(theoretically) unconfounded estimates of treatment effect.

Covariate adjustment involves including the propensity 
score as a variable in a second statistical model, usually a 
multivariable regression model. This second multivariable 
model includes the outcome as the dependent variable and 
the treatment and propensity score as independent variables. 
The propensity score theoretically simultaneously adjusts for 
all the confounders that were included in its estimation. This 
greatly reduces the number of variables in the second sta-
tistical model (dimension reduction), thus reducing the risk 
of overfitting; however, the second model may still include 
other variables that were not included in the propensity 
score. The output of this model will be adjusted measures 
of effect (e.g., adjusted odds ratios, adjusted hazard ratios). 
Covariate adjustment will not exclude any patients from the 
analysis unless additional covariates with missing data are 
added to the model. This propensity score method is fairly 
easy to implement, and results are presented and interpreted 
in a manner similar to other methods in observational stud-
ies. However, reliance on a multivariable model means that 
this approach has all the same challenges of “normal” multi-
variable regression. Essentially, this approach can fail to ade-
quately adjust for confounding if either the propensity score 
itself or the second model is incorrect.

Each of the discussed propensity score methods has 
advantages and disadvantages, some of which have been ref-
erenced already, and are summarized in Table 5. In most sce-
narios, either matching or weighting will be preferred. With 
limited exceptions in favor of matching, these approaches 
perform equally well at reducing confounding and outper-
form stratification or covariate adjustment. Both matching 
and weighting also have the advantage of allowing for the 
calculation of both absolute and relative measures of effect 
in the matched or weighted sample. Results can be reported 

the final matched cohort is available, the data are further ana-
lyzed to obtain absolute and/or relative measures of effect 
such as risk differences and risk ratios; however, the paired 
nature of the data must be considered.

Propensity score stratification is a less common propen-
sity score method used in the literature. Propensity score 
stratification involves grouping all patients in the data set 
according to their propensity scores. The recommended 
number of strata is 5 (i.e., quintiles of the propensity score), 
though increasing the number of strata can further reduce 
confounding (Austin 2011). Within each strata, measures of 
association between exposure and outcome are estimated 
and then pooled together to generate a single overall esti-
mate. This analysis is the same as if stratifying on individual 
variables, but using the propensity score allows the inclusion 
of more confounders than would be possible if stratifying on 
each combination of variables separately.

In addition to matching or stratifying on the propensity 
score, researchers may choose to conduct a weighted anal-
ysis using the score (Austin 2011). Weighting is a common 
analytical tool and can be seen, for example, in weighted sur-
vey designs, where each response is weighted so that the 
overall results are representative of the overall population. 
Weighting by the propensity score, IPTW creates a “pseudo-
population” where the distribution of measured pretreatment 
covariates is independent of exposure, thereby minimizing 
confounding from those factors. The weighting technique 
is one of the least transparent of the propensity score meth-
ods. In essence, each subject’s weight is the inverse of the 
propensity score (i.e., the probability that they would have 
received the treatment). Patients who received treatment 
despite a low probability of doing so (i.e., a low propensity 
score) have larger weights than patients who received treat-
ment who were highly likely to be treated (high propensity 
scores). In untreated patients, the opposite is true: those 
who were untreated despite a high propensity score have 

Table 5. Advantages and Disadvantages of Propensity Score Methods

Feature Matching Stratification Weighting Adjustment

Reduces confounding Yes Somewhat Yes Somewhat

Uses all data No Yes Yes Yes

Absolute and relative measures of effect Yes No Yes No

Adjusted measures of effect Yes Yes Yes Yes

Second statistical model required No No No Yes

“Black box” analysisa No No Yes Yes

aThese methods produce interpretable results, but the underlying mathematical model may be difficult to explain and difficult for 
experts in practical domains to understand.

Information from: Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational 
studies. Multivar Behav Res 2011;46:399-424.
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possible to prove a variable meets these criteria. Hence, stud-
ies using these instrumental variable methods must make 
assumptions regarding the plausibility of the criteria. Con-
sequently, although instrumental variables may theoretically 
be able to estimate treatment effects even when unmeasured 
confounding is present, they do so by relying on unverifiable 
assumptions (Hernán 2006). One common issue is violation 
of the second criterion due to the presence of a confounder 
between the instrumental variable and the outcome, an 
“instrument-outcome confounder” (Garabedian 2014).

The most significant limitations of instrumental variable 
methods are therefore the difficulty in finding a plausible 
instrument and the strong assumptions required for the anal-
ysis to be considered unbiased. If a true instrumental variable 
is identified, it may indeed be “an epidemiologist’s dream” 
(Hernán 2006). When reviewing a study using instrumental 
variables, a pharmacist should focus on whether the valid-
ity of the assumption that the instrumental variable meets 
the necessary criteria (Ertefaie 2017). Causal diagrams can 
help the reviewer visualize the potential for violations of 
these assumptions, such as the presence of potential instru-
ment-outcome confounders (Hernán 2006). The author’s jus-
tification for choice of instrument, including how it predicts 
treatment and how it is not associated with the outcome, 
should also be examined (Maciejewski 2019).

CHOOSING THE RIGHT TOOL(S) FOR 
THE QUESTION: AVOIDING PITFALLS 
IN DESIGN AND ANALYSIS 
So far, we have covered concepts that are fundamental to 
contemporary epidemiology and reviewed common tools in 
study design and analysis that can be used to improve study 
validity. With the right conditions and certain assumptions, 
estimates from well-designed studies may allow epidemiolo-
gists to move from discussions of association to causation. 
However, generating these estimates requires the right tools 
to be deployed in the right context. Being able to recognize 
common issues and potential pitfalls associated with spe-
cific design or analysis choices can help prepare pharmacists 
to identify potential sources of error in a study.

Pitfalls in the Analysis of Matched Data 
Matching is often considered a tool for controlling confound-
ing. Although it has some limitations, matching can make 
sampling convenient, improve statistical precision, and 
sometimes help control for unmeasurable variables, such as 
controlling for genetics by matching siblings or twins (Pearce 
2016). However, matching can also result in more serious 
biases if not analyzed appropriately. The analysis of matched 
data is complex because the appropriate methods depend on 
the study design and relationship between variables. How-
ever, some general guidance can enable clinicians to identify 
critical risks in a matched analysis.

in a manner similar to those of RCTs. Covariate adjustment 
and stratification only allow for reporting of adjusted relative 
measures of effect. Between matching and weighting, the 
choice is likely a matter of data availability and investigator 
preference. Inverse probability of treatment weighting may 
be methodologically more of a “black box,” but it preserves 
the entire sample size and does not require accounting for 
matched data in subsequent analysis.

Instrumental Variables 
The last analytical method for addressing confounding and 
providing conditional exchangeability is instrumental vari-
ables. An instrumental variable causes variation in treatment 
assignment similar to what would be seen from randomiza-
tion; sometimes, these studies are called “natural randomiza-
tion” (Maciejewski 2019). The benefit of instrumental variable 
analysis is that a variable that produces the same effects as 
randomization should balance both measured and unmea-
sured confounding. The limited use of these methods in the 
medical literature may be because of the difficulty finding vari-
ables that can plausibly meet the criteria needed to define an 
instrumental variable. For a variable to be an instrumental vari-
able, it must meet three criteria: (1) it determines a patient’s 
treatment assignment, (2) there is no confounding between 
the instrumental variable and the outcome, and (3) it should 
not be associated with the outcome through any pathways 
other than its effect on treatment assignment (Hernán 2020; 
Westreich 2019a). The most common way to apply instrumen-
tal variables to the adjustment of confounding is through use 
of two-stage least-squares regression (Ertefaie 2017).

In observational studies, instrumental variables are not 
always as readily identifiable. Variables commonly used as 
instruments generally fall in the categories of geographic dis-
tance, regional variation, facility variation, physician varia-
tion, and calendar time (Maciejewski 2019; Ertefaie 2017). To 
illustrate a facility variation instrumental variable, consider a 
study comparing choice of agent used for stress ulcer pro-
phylaxis and risk of pneumonia (Bateman 2013). Some hos-
pitals preferentially use proton pump inhibitors, whereas 
others use histamine-2 receptor antagonists for stress ulcer 
prophylaxis. Thus, the hospital the patient was admitted to 
served as the instrumental variable. The authors assumed 
that the hospital of admission determined which class of 
acid-suppressive therapy was received (criterion 1); patients 
were likely unaware of the hospital’s preferred prophylactic 
agent, and thus there was no confounding between hospital 
of admission and subsequent pneumonia (criterion 2); and 
the hospital of admission was not otherwise associated with 
patients developing pneumonia (criterion 3). The validity of 
this study’s results will depend on the validity of the assump-
tions regarding the instrumental variable criteria.

If a variable does not meet the criteria discussed earlier, 
the resulting estimated measures of effect from an instru-
mental variable analysis will be biased. However, it is rarely 
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Pitfalls in the Use of Regression Models 
Variable selection in regression models is the subject of ongo-
ing debate and is by far one of the most important pitfalls 
to be aware of when evaluating a study. To avoid overfitting 
and separation, building a regression model often involves 
a process of choosing which variables should be included. 
The challenge for a researcher or reader is to first understand 
the goal of the model. If the goal is prediction, any predictor 
that improves predictive accuracy should be included. In con-
trast, if the goal is explaining the relationship between vari-
ables (causal inference), variable selection needs to be more 
intentional, given prior knowledge of the topic. Data-driven 
(i.e., statistical) procedures such as the stepwise approach 
or change-in-estimate method are widely used for variable 
selection. In the stepwise approach, variables are added to 
and/or removed from the model in an iterative process on the 
basis of a statistical threshold, often a p value threshold, until 
only “significant” variables remain. With the change-in-es-
timate approach, covariates are only included in the model 
if their inclusion changes the estimated effect of the expo-
sure by a prespecified threshold, usually 10%. Although both 
of these approaches can reduce the number of variables in 
a model, neither guarantees that only confounders will be 
included because both mediators and colliders can have “sig-
nificant” effects in the model. By including mediators or col-
liders, data-driven variable selection approaches can result 
in overadjustment and/or selection bias. In addition, both 
approaches can lead to the omission of important confound-
ers if they do not meet the statistical threshold for inclusion. 
Sometimes, these omitted variables are put back in the model 
(“forced in”) if they are considered important.

Overall, although data-driven approaches may suffice for 
prediction, they are inadequate when the goal is causal infer-
ence. Newer tools such as shrinkage, Bayesian approaches, 
and machine learning methods may improve variable selec-
tion in the future, though they may still potentially induce bias 
through inclusion of non-confounding variables. For now, 
many epidemiologists, particularly those interested in causal 
inference, advocate abandoning statistical approaches to 
variable selection in favor of choosing variables according to 
subject matter expertise. Using causal diagrams to map the 
relationships among variables can help identify the optimal 
set of variables needed to adequately control for confounding 
and estimate causal effects (see Figure 4).

Pitfalls in Propensity Score Analysis 
Propensity score methods shift the variable selection prob-
lem from modeling the outcome to modeling the treatment. 
The ability of the propensity score to adequately adjust for 
confounding depends on accurately predicting the probabil-
ity of treatment; thus, the challenge of variable selection is 
of primary importance when estimating the propensity score. 
Fortunately, propensity score estimation variable selec-
tion is perhaps less fraught compared with regression. With 

In case-control studies, matching generally does not con-
trol confounding and should only be done to improve sta-
tistical efficiency (Pearce 2016). Matching in case-control 
studies causes selection bias because the matching vari-
able is often associated with the exposure, and further sta-
tistical adjustment will be necessary to address this bias 
(Mansournia 2013). In addition, if the matching variable was a 
confounder, it still needs to be adjusted for. The exception is 
if exposure actually has no effect on disease, in which case 
no bias will arise. However, it is not as possible to prove an 
association between exposure and disease is absent; thus, 
matching variables should generally be adjusted for (Pearce 
2016). In matched cohort studies, matching does control for 
confounding by the matched variables. However, if statistical 
adjustment of other variables is performed, adjustment for 
the matched variables is also often necessary (Mansournia 
2013). Thus, in general, a reviewer should be suspicious of 
any matched study that does not also statistically adjust for 
the matched variables.

Pitfalls in the Analysis of Time-Varying Data 
It is easy to think of treatments and outcomes as fixed 
events: a patient is either treated or not, and the patient 
either has the outcome or does not. However, both treat-
ments and outcomes can be dynamic events that occur 
more than once. This creates a problem for most common 
statistical approaches, which assume that every observa-
tion is independent from others. With time-varying data, 
the same patient could provide data points multiple times, 
and these data points would be correlated. If the data are 
regarding the outcome, a repeated-measures analysis is 
needed (Fitzmaurice 2008). Several different approaches to 
repeated-measures analysis are available, including change 
scores, analysis of covariance, generalized linear mixed 
models, and generalized estimating equations. Although 
these methods vary in complexity, all can account for the 
correlated nature of the outcome.

If the repeated data pertain to exposure, time-varying 
exposure methods are needed. One of the simplest ways 
to do this is to add exposure as a time-varying covariate to 
the outcome model. This is one of the recommended strat-
egies for addressing immortal time bias and is commonly 
done with Cox proportional hazards models. With time-vary-
ing covariates, each individual can change from treated 
to untreated and back as many times as the investigators 
decide to allow in the model. More complex methods, col-
lectively called “g-methods,” can account for both time-vary-
ing exposure and confounders (Hernán 2020). The details of 
these particular methods are beyond the scope of this chap-
ter; for a pharmacist reviewing a study, recognizing that 
the outcome or exposure has a time-varying element is suf-
ficient to identify whether suboptimal methods have been 
used.
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of bias and confounding has allowed for increasingly refined 
study designs and analytical methods to generate valid esti-
mates of measures of effect. Recent developments in causal 
inference frameworks have allowed researchers to more 
clearly specify causal questions, determine conditions that 
allow for valid estimates of causal effects, and make explicit 
the assumptions required to make causal inferences from 
observational data. With intentional design and analysis 
choices to minimize bias, confounding, and measurement 
error, assumptions that the causal identification criteria of 
temporality, consistency, and exchangeability (or at least, 
conditional exchangeability) may be justified.

The contents of this chapter, which are by no means 
exhaustive, lay a foundation for pharmacists to advance 
patient care through a critical appraisal of the literature and 
evidence-based optimization of therapy. Pharmacists play a 
key role in understanding and interpreting study results and 

propensity score estimation, the goal is prediction. There-
fore, any variable that improves prediction should be evalu-
ated for inclusion in the model used to estimate the score, 
though some have suggested causal inference principles of 
variable selection should still apply (Hernán 2020). Regard-
less of the variable selection approach, three pitfalls must 
be kept in mind. First, only pretreatment variables should be 
included in propensity score estimation because only pre-
treatment variables can influence treatment selection. Sec-
ond, variables that predict treatment, but are not associated 
with the outcome (instrumental variables), counterintuitively 
generate bias in the propensity score; thus, propensity scores 
should only include confounders and variables associated 
with the outcome (Brookhart 2006). Finally, from an over-
fitting perspective, any number of variables meeting these 
conditions can be included when estimating the propensity 
score, though mathematical and computational limitations 
may impose a maximum number of variables according to 
choice of propensity score estimator and available data.

Pitfalls also exist in applying and interpreting propensity 
scores. Ultimately, the propensity score should balance treat-
ment groups; hence, “balance diagnostics” should be reported 
to confirm that balance has been achieved. The balance mea-
sure of choice is the absolute standardized difference, which 
has been shown to perform better than other methods of 
evaluating covariate balance (Ali 2014). The absolute stan-
dardized difference provides an estimate in the differences 
between mean (for continuous variables) and prevalence/inci-
dence (for categorical variables) before and after propensity 
score adjustments and can be calculated in studies that use 
propensity score matching, stratification, or weighting. Alter-
native diagnostics for covariate adjustment have also been 
described (Austin 2008). Statistical significance testing of 
adjusted covariates as the only balance diagnostic in propen-
sity score-matched designs should be discouraged because 
statistical significance will be influenced by sample size in 
addition to balance (Austin 2011). Unfortunately, reporting 
of propensity score methods, including the variables used in 
the propensity score, method of propensity score adjustment, 
and balance diagnostics, is inconsistent (Yao 2017; Ali 2015). 
For a pharmacist to fully evaluate a study using propensity 
scores, such information must be made available. Without it, 
it is impossible to assess the appropriateness of methods, 
risk of bias, and potential for residual confounding. The grow-
ing popularity of propensity scores and variability in report-
ing has led to calls for justification and standardized reporting 
of methodological details, and a reporting guideline has been 
proposed (Roth 2019; Yao 2017).

CONCLUSION 
The field of epidemiology has significantly advanced over 
the past century, and although counting exposures and out-
comes remains at its core, the methods used have become 
more sophisticated. Improved understanding of the nature 

Practice Points
As the field of epidemiology continues to advance, meth-
ods of conducting valid studies with potential causal 
implications will continue to improve. Pharmacists eval-
uating the literature should keep in mind the following 
key points regarding the current state of epidemiologic 
thinking:

• Measures of association continue to be a mainstay in 
quantifying relationships between exposure and outcome.

• All studies are susceptible to bias, including selection bias 
and information bias. Study design is the best place to ad-
dress biases. Analysis should take care to avoid adjusting 
for a collider or mediator because this can cause selection 
bias and overadjustment, respectively.

• Causal identification conditions have been described, and 
when these are met (or assumed to be met), measures of 
association become measures of causal effects.

• RCTs generally meet these causal identification conditions; 
thus, results of RCTs can generally be interpreted as causal 
effects.

• For observational studies, confounding remains one of the 
primary challenges to causal inference. Causal diagrams 
can help identify which variables should be adjusted for to 
reduce confounding and which ones should not be adjusted 
for to avoid inducing bias.

• Restriction, matching, and stratification are all relatively 
simple tools for addressing confounding. However, they 
can handle only a few confounders and may cause selec-
tion bias.

• Regression models can control for multiple confounders, 
but variable selection becomes a problem. If the goal is to 
understand the effect of exposure on outcome, variable se-
lection should be based on causal diagrams, not data-driv-
en approaches.

• Propensity score methods also control for multiple con-
founders. Propensity score estimation should only include 
baseline variables and should avoid instrumental variables. 
Standardized differences should be reported to assess 
propensity score performance.
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applying them to patient care to improve outcomes. Although 
the names and terminology used by epidemiologists some-
times differ from what may be used in evidence-based med-
icine, pharmacists will recognize many of the concepts and 
tools described in this chapter. These tools are widely used 
in the medical literature, and with an understanding of how 
these design and analysis choices can minimize bias and 
confounding, pharmacists will be well equipped to critically 
evaluate studies to discern which results are worth incorpo-
rating into practice and which are likely the result of system-
atic errors. Furthermore, by applying causal frameworks to 
research and practice, we can advance our understanding of 
which results from nonrandomized studies represent poten-
tially causal effects.
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0.60 (95% CI, 0.40–0.90). Variables adjusted for included age, 
pretreatment pneumonia severity index, D-dimer, absolute 
lymphocyte count, and any corticosteroid use.

4. Which one of the following best interprets the REMCOV 
adjusted hazard ratio result?

A. Remdesivir is associated with a nonsignificant  
40% decrease in hazard of death.

B. Remdesivir is associated with a significant  
40% decrease in hazard of death.

C. Remdesivir is associated with a nonsignificant  
60% increase in hazard of death.

D. Remdesivir is associated with a significant  
60% increase in hazard of death.

5. Given the described methods, which one of the following 
best evaluates potential sources of bias in the REMCOV 
study?

A. Possible selection bias from controlling for 
pretreatment pneumonia severity index

B. Possible immortal time bias from how treatment 
was categorized

C. Possible information bias from subjective 
assessment of end point

D. Bias unlikely on the basis of described study 
methods

6. CANA1C was a randomized, double-blind, placebo-con-
trolled trial of canagliflozin added to background therapy 
in type 2 diabetes. The authors found that euglycemic 
diabetic ketoacidosis occurred in 10 of 10,687 patients 
randomized to canagliflozin and 2 of 6909 randomized 
to placebo. The total CANA1C patient follow-up time was 
15,526 person-years in the canagliflozin group and 8583 
person-years in the placebo arm. Which one of the follow-
ing most accurately depicts the CANA1C incidence rate 
ratio for euglycemic diabetic ketoacidosis with canagli-
flozin relative to placebo?

A. 0.3
B. 0.4
C. 2.8
D. 3.2

Questions 7–9 pertain to the following case.

K.T. conducts a case-control study evaluating the risk of par-
asitic infections in patients with asthma treated with any of 
the new anti–interleukin 5 (anti–IL-5) agents (benralizumab, 
mepolizumab, or reslizumab). She uses a cumulative sam-
pling strategy: K.T. first identifies patients with asthma who 
developed a parasitic infection and then selects a corre-
sponding group of patients with asthma who did not develop 
a parasitic infection at any point during the study. K.T. then 

Questions 1–3 pertain to the following case.

T.S., a pharmacy resident, is designing a research project to 
compare the risk of surgical site infection (SSIs) after col-
orectal surgery in patients receiving ertapenem or cefoxitin 
as antimicrobial surgical prophylaxis. T.S. expects to collect 
data on 200 procedures, with SSIs expected to occur in 7% of 
cases. Patient age, preoperative albumin, preoperative Amer-
ican Society of Anesthesiologists class (a measure of risk of 
postoperative complications), Charlson Comorbidity Index, 
and procedure duration are identified as potential confound-
ers. T.S. wants to use propensity score methods in this study 
and prefers to report both absolute and relative measures of 
effect in the adjusted analysis while minimizing any loss in 
sample size.

1. Which one of the following propensity score methods 
would be most appropriate for T.S. to use in this analysis?

A. Matching with 1:1 matching
B. Stratification
C. Weighting (inverse probability of treatment 

weighting [IPTW])
D. Adjustment (covariate adjustment)

2. T.S.’s use of propensity score methods in this study is 
intended to ensure that, conditional on the adjusted con-
founders, which one of the following causal identifica-
tion criteria is most likely to be met?

A. Consistency
B. Exchangeability
C. Positivity
D. Temporality

3. When reporting the results of the propensity score analy-
sis, which one of the following will best facilitate readers’ 
ability to assess the validity of the methods and results 
of T.S.’s analysis?

A. 95% confidence intervals
B. P values
C. Regression coefficients
D. Standardized differences

Questions 4 and 5 pertain to the following case.

The REMCOV retrospective cohort study compared survival 
among critically ill patients who received remdesivir with sur-
vival among patients who did not. All patients admitted to the 
ICU with COVID-19 were included in the cohort. Patients were 
included in the remdesivir arm if they received the drug at any 
point during admission; otherwise, patients were included 
in the control group. The end point in REMCOV was time to 
death, evaluated using a multivariable Cox proportional haz-
ards model. The authors reported an unadjusted hazard ratio 
of 0.47 (95% CI, 0.30–0.74) and an adjusted hazard ratio of 

Self-Assessment Questions
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11. Which one of the following features of the ESKLEB study 
is most effective for minimizing confounding of the esti-
mated measure of association in the intention-to-treat 
analysis?

A. Allocation concealment
B. Open-label design
C. Prospective design
D. Randomization

Questions 12 and 13 pertain to the following case.

R.K. is a pharmacist conducting a retrospective cohort study 
comparing 30-day treatment failure (yes or no) in patients 
with gram-negative bacteremia receiving an oral β-lactam 
or oral fluoroquinolone as stepdown therapy. A total of 163 
patients are included in R.K.’s study, with 68 in the β-lactam 
group and 95 in the fluoroquinolone group. Treatment fails 
in eight patients, four in each group. Potential confounders 
include age, biological sex, state of residence, Pitt bactere-
mia score, and infection source.

12. In R.K.’s study, which one of the following most accu-
rately depicts the unadjusted odds ratio for treatment 
failure in the β-lactam group compared with the fluoro-
quinolone group?

A. 0.7
B. 1.4
C. 1.7
D. 58

13. Given the limited number of treatment failures, which 
one of the following methods of controlling for all the 
identified potential confounders would be most appro-
priate for R.K. to use?

A. Matching
B. Multivariable logistic regression
C. Propensity score weighting (IPTW)
D. Stratification

Questions 14 and 15 pertain to the following case.

GRAMBAC was an open-label RCT in which patients with 
gram-negative bacteremia were randomly assigned to receive 
7 days (short course) or 14 days (standard course) of anti-
biotic therapy. Randomization was concealed using sealed, 
opaque envelopes that were opened sequentially. The GRAM-
BAC outcome was treatment failure, defined as a composite 
of all-cause mortality, relapse or other complication, and hos-
pital readmission, all measured 90 days after randomization. 
Treatment failure occurred in 105 of 306 patients in the short-
course treatment arm and 140 of 298 patients in the stan-
dard-course treatment arm, for a reported risk difference of 
-8.2% (95% CI, -16.3% to -0.1%).

looks back and groups the patients according to whether they 
were prescribed an anti–IL-5 agent.

7. To control for confounding in her study, K.T. matches 
cases to controls on the basis of age, oral corticosteroid 
use, and state of residence. Which one of the following 
best evaluates how this will affect the validity of K.T.’s 
results?

A. Induce immortal time bias
B. Induce information bias
C. Induce selection bias
D. Unlikely to affect validity of results

8. K.T. obtains data from an insurance claims database and 
identifies parasitic infection using unvalidated ICD-10 
diagnosis codes. Which one of the following best evalu-
ates how this will affect the validity of K.T.’s results?

A. Induce immortal time bias
B. Induce information bias
C. Induce selection bias
D. Unlikely to affect validity of results

9. K.T.’s study reports an odds ratio for parasitic infection 
of 5.0 (95% CI, 0.45–55.58) with anti–IL-5 therapy com-
pared with no anti–IL-5 therapy. Which one of the follow-
ing most appropriately interprets this result?

A. Anti–IL-5 therapy nonsignificantly decreases the 
odds of parasitic infection by 5 times.

B. Anti–IL-5 therapy nonsignificantly increases the 
odds of parasitic infection by 5 times.

C. Anti–IL-5 therapy significantly increases the odds of 
parasitic infection by 5 times.

D. Anti–IL-5 therapy significantly increases the odds of 
parasitic infection by 5 times.

Questions 10 and 11 pertain to the following case.

ESKLEB was an open-label randomized clinical trial (RCT) in 
which patients with bacteremia caused by ceftriaxone-non-
susceptible Escherichia coli or Klebsiella spp. were assigned 
prospectively to definitive therapy with piperacillin/tazobac-
tam or meropenem. Block randomization was performed 
and stratified according to the infecting pathogen, infection 
source, and disease severity. The randomization sequence 
was provided using an online portal. The ESKLEB primary 
outcome of 30-day all-cause mortality occurred in 23 of  
187 patients in the piperacillin/tazobactam group and 7 of 
191 patients in the meropenem group.

10. Which one of the following most accurately depicts the 
risk ratio for treatment failure with piperacillin/tazobac-
tam compared with meropenem in ESKLEB?

A. 3.3
B. 3.6
C. 3.7
D. 11.1
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15. Which one of the following best interprets the reported 
measure of effect in GRAMBAC?

A. Short-course treatment is associated with a 
nonsignificant 8.2% decrease in the rate of 
treatment failure.

B. Short-course treatment is associated with a 
nonsignificant 8.2% decrease in the risk of 90-day 
treatment failure.

C. Short-course treatment is associated with a 
significant 8.2% decrease in the absolute risk of 
90-day treatment failure.

D. Short-course treatment is associated with a 
significant 8.2% decrease in the odds of treatment 
failure.

14. Which one of the following features of the GRAMBAC 
study most increases the possibility of information bias?

A. Allocation concealment
B. Open-label design
C. Prospective design
D. Randomization




