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Learning Objectives 
1. Distinguish the roles for and types of descriptive and

inferential statistics.
2. Classify data types found in the pharmacotherapy

literature as nominal, ordinal, interval, or ratio.
3. Evaluate statistical significance using either p values or

confidence intervals.
4. Judge the appropriateness of common statistical tests or

techniques for a set of data.
5. Infer the reliability of trial results and conclusions based

on an evaluation of statistical techniques.
6. Judge the clinical significance of statistical differences.
7. Interpret the results of correlation, regression, survival

analysis, and meta-analysis in pharmacotherapy trials.
8. Design a plan to communicate statistical results to health

care providers and to patients in a way that allows them
to make well-informed decisions about the use of drugs.

Introduction 
For many people, the mere thought of statistics conjures

up disagreeable memories of long, complex calculations,
tables in the back of textbooks, and a feeling of being only
vaguely attached to the subject.  However, a firm grounding
in the science of statistics is an essential tool in the practice
of pharmacotherapy.  Just as an understanding of antibiotic,
antiarrhythmic, antidepressant, or other drugs makes up a
key component of the pharmacist’s specialized knowledge
and skills, so too does the ability to interpret the
pharmacotherapy literature in an assured and accurate
manner.  As practicing clinicians realize, proficiency in the
application and interpretation of statistics contributes to
patient care in a crucial way.  Just as the successful mastery
of therapeutics arises from a combination of the basic and
clinical sciences, knowledge of statistics should include

both basic concepts and an understanding of their
appropriate use and translation into practice.

At its most basic, the process of interpreting trial results
includes two considerations:  causality and certainty.
Whether an intervention causes a particular outcome is a
question that is best assessed within the context of how a
trial is designed.  The Literature Evaluation and Overview
of Outcomes Research chapters in this book explain how
matters related to trial design impact the ability to assess
causation.  How certain researchers are (or should be) that a
particular outcome did not occur simply due to chance is the
question that much of statistics is designed to answer.  

Statistics is a science whose origins lie in the field of
probability.  Most statistical tests simply quantify the level
of certainty that exists in the answer to the question:  How
likely is it that the difference observed between groups is
simply the result of chance?  Statistical tests that provide an
answer to this question help to comprise the field of
“inferential statistics”.  As the name implies, these tests
(e.g., t test, chi-square, and analysis of variance) allow for
the drawing of conclusions, or inferences, from the
differences observed between two or more groups.  A
second area of statistics, descriptive statistics, provides
another set of useful tools to the practicing clinician.  These
statistics describe data (e.g., mean and median) and certain
types of descriptive statistics are used to calculate the values
used to report inferential statistics.  This chapter covers
aspects of both of these types of statistics and also discusses
issues related to data analysis, systematic reviews,
correlation and regression, and to applying the results of
statistical analysis to patients.

Types of Data 
Although not generally considered by readers of

statistical results, the underlying nature of collected data
influences the type of statistical tests that are used to analyze



it.  Assumptions about the distribution of the possible values
for a variable of interest provide an expected distribution for
any values that might be observed.  More than just a set that
encompasses all the possible values, the distribution
provides information about the expected frequency of these
possible values and, as such, is sometimes referred to as a
frequency distribution.  A common type of distribution, the
normal distribution, is described by a line that takes on the
appearance of a symmetric bell-shaped curve.  Values near

variables.  It is not uncommon to see such data represented
symbolically so that the number of observations in each
“state” can be counted.  Such counts often are reported as
percentages, proportions, or rates.  A common technique for
dichotomous variables is to assign one possible condition a
value of 0 and the alternative condition a value of 1.  For
example, patients who have diabetes in a study of 
lipid-lowering drugs would be assigned a value of 1, and
those without diabetes would be assigned a value of 0.
Comparing what percentage of study enrollees has diabetes
to that percentage which does not allows for statistical
analysis.  Variables that have more than two possible
conditions can be classified by using other representations
(e.g., 1, 2, 3; A, B, C).  Because they are summarized as
proportions or probabilities, nominal data do not have
normal distributions.  These data can be subject to certain
statistical tests that do not assume a normal distribution (see
the Common Statistical Tests and Their Interpretation
section).

Abbreviations in this
Chapter
CI Confidence interval
H0 Null hypothesis
OR Odds ratio
SEM Standard error of the mean
the center of the curve are more common (likely) than those
at the ends of the curve.  This type of distribution often is
ascribed to continuous types of data (see the Continuous
Variables section). Other types of data that can take on only
certain quantities or conditions have expected frequencies
of values that differ from the normal distribution.  Examples
of these include the binomial and Poisson distributions that
can be used when conditions being observed are either
present or absent (i.e., measured on a nominal scale).  The
type of distribution describing a certain variable is one of
the basic assumptions for many statistical tests.  For some
types of data (e.g., ordinal data), statistical tests do not rely
on assumptions about the expected distribution of values.

To evaluate observations using statistics, the data must
be represented using numbers or some other symbols that
allow the data to be sorted.  Such a scheme is inherent when
recording observations that are measured using numerical
scales.  For example, blood pressure, blood glucose, or pill
counts are recorded with a numeric representation that can
then be scrutinized mathematically.  On the other hand,
common variables, such as sex, smoking status, or presence
of disease, are not measured using numbers.  These types of
variables can be represented with symbols (e.g., 1 = male, 2
= female) so that they may be sorted and counted (i.e.,
changed into a percentage or proportion) and then analyzed
statistically.

Discrete Variables 
Data can be broadly divided into two groups:  discrete or

continuous.  Discrete variables are further distinguished as
being either nominal or ordinal.  Nominal data are those that
exist in one of two or more conditions or states.  Also
referred to as categorical variables, these types of data are
represented by fitting them into categories that do not have
an associated ranking or magnitude compared to the other
categories.  Examples of nominal variables include sex,
smoking status, race, marital status, and the presence of
disease.  Nominal variables, such as marital status, exist as
one of several states (e.g., single, married, divorced, or
widowed), whereas some nominal variables are present in
only one of two states (e.g., smoker or nonsmoker).
Variables of this latter type also are called dichotomous

Ordinal data measure some attribute using a finite
number of ordered categories.  These categories often are
represented numerically, but this is arbitrary.  Ordinal data
can be represented by any type of symbol (e.g., Greek
letters or colors), but numbers are used commonly because
their order or ranking typically is understood.  Likert-like
scales, frequently used in studies of patient or consumer
preferences, are a classic example of ordinal data.
Traditionally, consisting of four or five possible values,
such scales assign descriptions to each possible value in the
scale (e.g., 0 = strongly disagree, 1 = disagree somewhat, 2
= neither agree nor disagree, 3 = agree somewhat, 4 =
strongly agree).  An important attribute of ordinal scales is
that although the possible values are presented in order
(ascending or descending), the amount of change
represented by the difference between units in the scale (i.e.,
1 to 2 vs. 2 to 3) is not constant.  Using the example scale,
it can be seen that the change from a value of 2 to a value of
4 does not imply a doubling in a respondent’s agreement to
a particular statement.  Moreover, a change from 0 to 1,
when compared with a change of 4 to 5, cannot be said to
represent the same magnitude of change in the parameter
that is being assessed.  In clinical practice, many other types
of data that pharmacists must evaluate are measured using a
similar schema.  For example, in congestive heart failure,
studies of drug therapy usually classify patients into the
New York Heart Association classes I–IV.  Many
assessment tools used in psychiatric research use ordinal
data.

As with variables measured on a nominal scale, data
derived from the use of ordinal scales are not necessarily
normally distributed.  Although meaningful values for
ordinal variables also can be assigned to each category,
reporting a mean for such data has no understandable
meaning.  For example, it is impossible to determine what a
mean value of 3.5 might represent for a variable that, by
definition, can only be assessed as 1, 2, 3, 4, or 5.  As is
discussed in the Parametric Versus Nonparametric Tests
section, these distinctions, as well as other characteristics,
require that ordinal data be analyzed using a distinct set of
statistical tests referred to as nonparametric tests.
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Continuous Variables 
Continuous variables include those types of measures

that classify data as either interval or ratio.  Analysis of both
types of continuous variables and the results of such
analyses are the same.  Interval and ratio data can take on
any possible value, limited by the techniques or instruments
used to measure them.  Continuous variables also can be
thought of as “measuring” variables because of this quality.
A distinguishing feature of interval data compared with ratio
data is that items measured using an interval scale have an
arbitrary 0 point, whereas ratio scale data have a 0 point that
is absolute.  The 0 point when measuring temperature in
degrees Fahrenheit is set arbitrarily—it does not represent
the point at which there is no longer any temperature.  In
contrast, a variable such as blood glucose is measured on a
ratio scale with a 0 point that is absolute and indicates an
absence of the property being measured.  However, both
temperature and blood glucose measurements can take on
any value within a given range, including fractional values
and, thus, are continuous.  Moreover, in contrast to ordinal
data, the magnitude of difference between units is constant
(i.e., 64°F is twice as warm as 32°F).

As with discrete variables, such distinctions have
importance in statistics because the properties of different
data types determine the mathematical analyses to use
appropriately in their evaluation.  For instance, continuous
variables can be normally distributed.  This property of
normality underpins the mathematical techniques, or
statistical analysis, used to make sound inferences from trial
results.  Normality should be evaluated before proceeding
with statistical analysis.

Descriptive Statistics 
The terms used as descriptive statistics may be familiar to

many people because of many years of exposure, often
starting in grade school.  Descriptive statistics simply
explain or depict, in summary form, a set of observations
(data) and can be applied to many different types of data.
The measures of central tendency are one type of descriptive
statistic; the mean, median, and mode reveal the numerical
“center of gravity” for a set of observations.  Another type
of descriptive statistic includes measures of variability.
Range, variance, standard deviation, and standard error of
the mean (SEM) characterize this property.

Describing Central Tendency
Mean 

The mean is the value that results from summing the
values in a data set and dividing that sum by the number of
observations in the set.  Also called the average, or
arithmetic mean, this value is used extensively in a
multitude of everyday occasions (e.g., average miles/gallon,
average price of a good, or average score on an
examination).  Because of the manner by which this statistic
is calculated, it is susceptible to the influence of values in a
data set that are distant from the mean.  As a result, outlying
or unusual values in a set of observations can impact the
calculated mean disproportionately.  This phenomenon is
important to consider when interpreting many types of

studies (e.g., drug interactions).  A mean that is reported
without some description of the other values in the sample
can be misleading.  A quick check of the range of values in
the sample can give an idea if the mean has been unduly
influenced by one or more outliers.  When data in a sample
cluster around extremes of values (e.g., bimodal), the mean
and the range considered together may still be misleading on
cursory examination.

Median 
The median is that value in the data set located in the

middle of all of the other values.  It is the value in the sample
that has an equal number of data points that are of higher
value and of lower value.  The median also can be described
as demarcating the 50th percentile of data values because
50% of the data lie above and 50% lie below the median
value.  Because the determination of the median does not
consider the values of the data above and below it, it is not
susceptible to the influence of outliers.  Median values often
are used for data sets that span a wide range of values, or
that have values that are concentrated away from the center
or at one end of the values in the data set (i.e., skewed).  The
median also is used in the calculation of many
nonparametric inferential statistics.  

Mode 
The mode is that value in a data set that occurs most

often.  The mode can provide additional important
information about the distribution of the data not captured
by the mean or median.  For data that exhibit a normal
(Gaussian) distribution, the mean, median, and mode all
have the same value.

Describing Variability in Data 
Considerations of the variability inherent in both a

population and any sample of that population are essential to
the understanding of statistics.  In conducting studies of
drug therapy, the intent is to extrapolate results from a
representative sample of a population to the population
itself.  Two notable sources of variation that arise when
using such a study approach are differences that exist
between patients in the sample being studied and variations
that exist between samples of the same population.  The
former is analyzed using the standard deviation and range,
whereas the latter is reflected in the SEM.  Variability
among patients in a population is reported as the variance.

Standard Deviation 
The standard deviation is a value that describes the

distribution of values in a data set by comparing each
measured value to the mean.  For the population from which
the data are sampled, variability is expressed by a parameter
known as the variance.  The value for standard deviation
(sample variability) can be calculated by taking the square
root of the variance (population variability).  When the
variance is not known, the standard deviation also may be
determined using only the sample data by taking the square
root of the sum of the squared values of each difference
between an observation and the mean, and dividing this
value by one less than the sample size (i.e., n-1).  For a
normally or near normally distributed set of data, the sample
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mean ± 1 standard deviation will encompass 68% of the
sample values.  Similarly, mean ± 2 standard deviation will
include 95% of the values measured in the sample.  An
analogous property exists with the SEM (see the Standard
Error of the Mean section) and permits the calculation of
confidence intervals.  Values for standard deviations, as for
means, are understandable only for data that are continuous.
Even so, it is not uncommon to see summaries of ordinal
data reported as means together with attendant standard
deviations.

Range 
The range represents the difference, or spread, between

the lowest and the highest values of data in a set.  It can be
used with either population data or sample data.  For
example, when a range is presented with a median, a
researcher has some impression as to whether the
distribution of the data is skewed when the median lies
conspicuously closer to one end of the range.

Standard Error of the Mean 
The SEM often is less familiar to clinicians but conveys

the magnitude of sampling variability.  Each time a
researcher samples a population, that sample likely will
have a different mean value for the variable of interest than
the previous sample.  For example, if a researcher selected
10 samples of 200 people and measured their height, each of
the 10 samples likely would produce a different mean value
for the population that the samples represent.  In other
words, there is variability in the estimates of the population
values for the variables under study, and this variability
needs to be considered when assessing the results of
statistical calculations.  Methods of many statistical tests do
not rely on differences in means to assess differences
between groups, but instead examine whether the variability
in the estimates of any difference between groups is
consistent with that expected due to sampling variability.
However, to arrive at the SEM, it is not required that
researchers repeatedly sample a population.  There exist
mathematical ways, depending on the type of data, to
calculate the SEM from a single sample.  In the case of a
mean value from a single sample, the SEM is calculated by
dividing the sample standard deviation by the square root of
the sample size (n).  Similar to SD, ± 1 SEM encompasses
68% of all possible means for the population, and ± 2 SD
encompasses 95% of the means for the population.

An application for the SEM is its use in deriving simple
confidence intervals (CIs) around means for continuous
data.

Testing Hypotheses Using
Statistics 
Conventions of Hypothesis Testing 

At least two common points of confusion or elusiveness
with regard to understanding the role of statistics and
hypothesis testing exist.  One involves a lack of clarity about

what, exactly, is being tested.  The second is unfamiliarity
with the jargon used in describing these processes.

Hypothesis testing proceeds by using mathematical
techniques to compare data from two or more groups and to
determine the probability that the differences between the
comparison groups occurred because of sampling
variability.  In other words, for inferential statistics, a
calculated value answers the question:  How likely is it that
the differences being observed are simply because of
chance?  The terminology of hypothesis testing requires an
understanding of what the null hypothesis (H0) states and
why.

The H0
The H0 puts forward the idea that there is no difference

between the groups being compared.  Such comparisons
may be carried out on data from two different groups or on
data from a single sample (e.g., as occurs when comparing
the mean of a single sample to a known population mean).
The hypothesis that Group A = Group B is the basis for
statistical comparisons subject to inferential analysis.  The
study’s objective is usually to determine a difference
between groups.  The idea that a difference exists is the
alternative hypothesis.  The alternative hypothesis
postulates inequality between the estimates of the difference
between groups (i.e., Group A ≠ group B).  Other forms of
the H0 exist and can help in assessing whether an attribute of
interest is different than 0 (i.e., H0:  mean = 0), or if some
mean value exceeds a certain threshold of interest (i.e., H0:
mean < x).  When a statistical test is performed, the H0 is
either rejected or not rejected.   Rejecting the H0 that posits
no difference is consistent with accepting the alternative
hypothesis with the conclusion that a difference exists
between the groups being compared; that is, a difference is
not likely due to chance observations.  Of importance,
failing to reject the H0 is not sufficient to conclude that the
groups are equal.  As discussed further in the Decision
Errors section, a sound determination of equivalence
between comparison groups involves more than just the
value of a test statistic.

Statistical Significance 
Statistical significance is one of the most commonly cited

results in studies of drug therapy. It also is subject to many
misinterpretations.  Whether observed differences are
considered statistically significant can be determined by
assessing the p values or the CIs determined for observed
differences.  P values, by convention, indicate statistical
significance if they are less than a specified significance
level.  A significance level of 0.05 means that in deciding to
reject the H0 based on the data at hand, an error will result
5% of the time.  In other words, the magnitude of difference
observed between study groups would occur because of
random variation (i.e., chance) in five out of each 100 times.
A one in 20 chance of mistakenly rejecting the H0 may be
acceptable for many types of drug therapy decisions, but this
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level of uncertainty is better considered as a general rule.  It
might be argued that interventions carrying a high degree of
risk and/or those with marginal benefit should be subject to
more stringent criteria for rejecting the H0.  In some studies,
researchers justify a cutoff point for rejecting H0 that is less
than 0.05 (e.g., less than 0.01).  In contrast, it also must be
acknowledged that for some questions, a p value marginally
greater than 0.05 can be considered sufficient assurance that
rejecting the H0 should not result in harm.  However, such
an allowance usually is viewed with skepticism and should
be justified thoroughly by the researchers.

Clinical Significance 
Understanding and interpreting p values often is difficult.

A common pitfall involves the misattribution of clinical
importance to results that achieve the stated level of statistical
significance.  Small differences between groups may meet
criteria for statistical significance but not surpass a threshold
that clinicians (or patients) consider important for changes in
care.  Studies with large sample sizes often can demonstrate p
values less than 0.05 for differences in outcomes that are
small (i.e., less than 5%).  Although such differences may be
important in some circumstances, they are not necessarily so
in others.  Health care professionals have struggled over what
course of action is appropriate in circumstances where
disagreement has focused on what constitutes a clinically
meaningful difference.  The comparative efficacy of
thrombolytics in myocardial infarction and, more recently, the
use of thrombolytics in stroke, have been the subject of such
debates.  Given their expertise in clinical therapeutics,
pharmacists should actively engage in discussions to resolve
these conflicts.  Table 1-1 provides some guidance on
ascertaining clinical significance.

Some reports imply that smaller p values correspond to
more important results.  Authors, editors, and researchers
contribute to this misperception by describing various
magnitudes of p values as “significant” (e.g., p<0.05),
“highly significant” (i.e., p<0.01), or sometimes even “very
highly significant” (i.e., p<0.001).  Such values have no
relationship to the importance of findings; rather, they
simply convey the estimated degree of certainty associated
with a decision to reject the H0.  Then again, differences that
do not achieve statistical significance cannot be dismissed,
ipso facto, as unimportant or as demonstrating equivalence.
Readers of such results must consider issues such as trial
design, representativeness of the sample, previous studies,
and statistical power before making such determinations.
Considerations for interpreting p values can be found in
Table 1-2.

Decision Errors 
The Two Types of Errors 

Conclusions about statistical test results are not
inevitably correct.  Typically, decisions about trial results
are grouped into four types:  two being correct and two
being incorrect.  Having decided whether to reject the H0,
researchers need to consider these possible decision errors.
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Table 1-1. Judging the Clinical Significance of a
Statistically Significant Difference
Determine what others think is clinically significant by:

Considering the effect used in the sample size 
calculation (if reported)

Considering existing evidence-based or expert 
consensus statements

Considering any cost-effectiveness or decision 
analyses that have been performed

Absent such guidance, require that the minimum worthwhile 
effect be large when:

The intervention is costly (e.g., in terms of time, 
money, or other resources)

The intervention is high risk
The outcome is unimportant, or has intermediate 

importance but with uncertain benefit to patients
A patient is risk-averse

Accept the minimum worthwhile effect as small when:
The intervention is low-cost
The intervention is low-risk
The intervention is important and has an 

unambiguous outcome (e.g., death)
A patient is risk-taking

Adapted with permission from the American College of Physicians-
American Society of Internal Medicine. Froehlich GW.  What is the
chance that this study is clinically significant? A proposal for Q values.
Eff Clin Pract 1999;2:234–9.

Table 1-2. Frequent Misinterpretations of P Values
and Details to Take into Account
Pitfall:  Statistical significance (e.g., p less than 0.05) means 

that the results between the groups are different (not a
chance variation)

Think about—
Are differences clinically important?

Large trials can easily demonstrate statistical 
differences that have no practical consequence

A small p value does not correct for systematic error 
(bias)

Poorly designed studies can demonstrate 
statistical significance, but lead to erroneous 
inferences

Small p values simply mean that differences are less 
likely due to random variation (chance)
A p value of less than 0.001 or less than 0.0001, 

indicating much lower likelihood of random 
variation, is not more important

The demarcation that a p value less than 0.05 is 
significant is a convention, but an arbitrary one

Pitfall:  Lack of statistical significance means the results are 
unimportant

Think about—
The confidence interval may include mostly values 

that are valuable in patient care (and approach 
statistical significance); for low-risk interventions, 
this may be sufficient evidence

Is this study an outlier?
Consider other data/studies that are available

Evaluate the study design
Are there issues with the sample that make it 

different from the population? Are there 
other causes of bias?

Is there an adequate discussion of power?

Sterne JA, Davey Smith G. Sifting the evidence—what’s wrong with significance tests? BMJ 2001;322:226–31.



The two possible wrong decisions about the disposition of
the H0 are labeled type I and type II errors.

A type I error arises when a calculated p value leads to
the rejection of the H0 when in fact the H0 is true.  The value
that represents the likelihood of making a type I error is
known as the significance level and is represented by the
symbol α.  Concluding a difference between groups when
no difference exists has a probability of ocurring one out of
20 times when α is set at 0.05 or one out of 10  times when
α is 0.01.  The significance level, as well as the p value, tells
how often a type I error will be made.  Determining α takes
place during the design of a trial and is necessary for
calculating sample size.

Type II errors require consideration when analyses of
data do not allow for rejection of the H0, and the possibility
of no difference remains viable.  Type II errors involve the
inappropriate decision not to reject the H0 (i.e., concluding
that there is no difference) when a difference exists.  Type II
errors frequently are associated with declarations of
equivalence between the effects of interventions.  The threat
of type II errors is driven by variables in trial design or
analysis that impact the sensitivity to differences between
the groups.  As with type I errors, a Greek letter also is used
to represent the chance of making a type II error, in this case
the letter β.  The conventional minimum value for β is less
than or equal to 0.20.

Table 1-3 summarizes the nature of type I and type II errors.

Power 
Power is a value calculated by subtracting β from 1 (i.e.,

1-β) and represents the ability of a study to detect specified
differences between groups.  Researchers’ discussions of
power are essential to evaluating statistical results that fail
to reject the H0.  In some instances, the inability to reject the
H0 may result from inadequate power to detect existing
differences.  Power is influenced by many factors of trial
design with one of the most common being sample size.  As
sample size increases, so does the power to detect
differences.  This is one of the reasons smaller trials are
more likely than larger trials not to find a difference between
interventions.  The existence of large differences between
groups also improves the power of a trial to find differences.
α and β are inversely related, so an increasing α also can
increase power but risks a higher likelihood of a type I error.

Approaches to Analyzing
Clinical Trials 

Power also is one of the considerations that plays a role in
weighing the choices for a global approach to analyzing data
from clinical trials.  The best designed trials, when executed,
may not transpire exactly as planned.  This reality impacts the
ability of statistics to present a reliable estimation of the
differences between groups.  Because of this influence, it is
important that researchers specify beforehand the details of
what data were to be included in the final analysis of a study.
Three standard approaches have been developed by

statisticians and researchers to identify the data for analysis:
intention to treat, per protocol, and as treated.

Intention to Treat 
Intention to treat refers to methodology accounting for

data of all patients initially assigned to study treatments.
For example, in a trial designed to assess the efficacy of a
new drug, patients might be randomized to either active
drug or to placebo.  Ideally, all study patients would adhere
fully to their allocated treatment.  In reality, this does not
happen.  If a patient assigned to active treatment takes only
one or two doses then stops because of side effects,
intention-to-treat analysis includes their data in the active
treatment group.  Because the original assignment was to
active drug, it can be said that the “intention” was “to treat”
that person.  Likewise for those allocated to placebo.
Although this approach may seem misleading initially, it is
methodologically sound.

Proponents of intention to treat point out that this
approach mimics true clinical practice in as much as when
patients are given a prescription, their future adherence
cannot be known.  Therefore, estimates of drug effects in
trials should closely resemble those that clinicians should
expect.  As a consequence, intention to treat provides an
idea of what has been termed “use effectiveness”.
Depending on perspective, this element of intention-to-treat
analysis may be appealing. The trade-off is the absence of a
reliable approximation of the true magnitude of effects
when an intervention is used optimally (i.e., when adhered
to).  In addition, intention to treat does not alter the final
power of the trial with regard to the original sample size
calculations.  This stands in contrast to per-protocol
analysis.

Per Protocol 
As an alternative to intention-to-treat analysis, a per-

protocol approach provides a superior estimate of how well
an intervention performs when executed as designed (i.e.,
method effectiveness).  Those who do not adhere to their
assigned treatment are dropped from the final data analysis.
Although this approach is sometimes judged a more
forthright accounting of what has occurred during a trial,
readers should be mindful of several caveats to interpret 
per-protocol analyses correctly.  

First, for trials of drug interventions is the question of
fully assessing compliance.   If this assessment is indeed
possible, a second consideration in using per protocol is
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Table 1-3. Types of Decisions Associated with
Hypothesis Testing

Decision made H0 is true H0 is false

Fail to reject H0 No error, Type II error, 
right decision wrong decision

Reject H0 Type I error, No error,  
wrong decision right decision

Epistemological Truth 
(the real answer)

Sheiner LB, Rubin DB. Intention-to-treat analysis and the goals of clinical trials. Clin Pharmacol Ther 1995;57:6–15.
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establishing explicit criteria for patients considered
compliant with therapy.  This may seem straightforward on
the surface, but consider the patient who misses only one or
two doses.  Researchers may decide to count as compliant
only patients who have taken at least 75% of their
prescribed doses.  Other researchers may establish a
threshold well above or below this level.  Regardless of the
methodology used, justifications for such demarcations
often introduce a subjectivity to the decision of which data
are included for analysis.  An even more threatening
problem when using a per-protocol approach is the danger
of having to disregard so much data that the power to detect
important differences is jeopardized.  Because of this
danger, per-protocol analysis should always be specified
during the planning stages so that the planned sample size
accounts for such potential losses of data.  Differences
suggested by post hoc per-protocol analysis, as may occur in
some subgroup reviews, must be viewed as simply
suggesting hypotheses for future study. 

As Treated 
An as-treated analysis offers a solution to some of the

vulnerabilities of the per-protocol approach.  With the 
as-treated method, patient data are analyzed based on the
actual drug-taking behavior.  If a patient was assigned to an
active drug but never complied, his or her data would be
retained but reassigned to the placebo group.  Alternately,
patients allocated to placebo who receive active drug as part
of their care outside of the study protocol would be included
in the active drug group.  Although requiring many of the
same considerations about what constitutes adherence as per
protocol, this method does not throw out any data and,
hence, preserves a study’s power.  Unfortunately, this occurs
at the expense of jeopardizing the initial randomization.
Such a breech can eliminate the ability to conclude that the
intervention being studied caused any observed differences.
That potential outcome calls into question the original
justification for the study and introduces ethical concerns
beyond the scope of this chapter.  As-treated analysis needs
to be considered carefully in both the design and
interpretation of a study to avoid significant undesirable
consequences.  

Confidence Intervals 
Confidence intervals remind readers that reported

differences between interventions are not hard and fast
values, but rather estimates based on a sample.  As
estimates, these reported values (e.g., mean) may or may not
portray the true underlying dissimilarity of the groups being
compared.  They are, in effect, a “best guess” of any true
differences based on the information provided from the
sample that was used.  Constructed using the summary
estimate of difference or change and some approximation of
the sampling variation, CIs represent the possible values for
the true difference between interventions that are supported
by the data.  They can be constructed for most types of
variables, including averages, proportions, odds ratio (ORs),
and relative risks.  As an example, the formula mean ± 1.9

(SEM) provides the 95% CI for the mean of a continuous
variable.  

A 95% CI means that if a study were repeated many
times, then 95 of the 100 CIs constructed using this method
would contain the true mean difference.   As with a p value
less than 0.05, this meaning also prompts readers of
statistical estimates to recall the inherent uncertainty of
these figures.  The 95% CI is sometimes interpreted as being
“95% certain that the true difference between groups lies
within the reported interval.”  Although scoffed at by
statistical purists, such a definition portrays a practical, if
technically imprecise, definition of what a CI represents.  

Take for example a hypothetical study of antipyretic
drugs.  If one drug lowered temperature by an average of
4°F and another drug by an average of 2°F this difference
might be reported as a difference and CI of 2°F (95% CI =
0–4).  The CI would have been constructed by means of a
formula that, using an approach analogous to the example
for the mean of continuous variable, calculated the
uncertainty around any estimated difference in efficacy by
adding and subtracting some multiple of the SEM to and
from the mean difference.  In this case, the results of this
trial can be interpreted as a mean difference in antipyretic
drug effect of 2°F, and a CI showing that the true difference
between these drugs could be as small as 0° (i.e., no
difference) or as large as 4°.  

A CI allows conclusions about the significance of results.
A 95% CI is the customarily accepted level to determine
statistical significance, but higher levels may be chosen
(e.g., 99%).  Because the numbers encompassed by the CI
are all possible values for the real difference between
groups, a CI that includes a value consistent with no
difference cannot represent a statistically significant finding.
When reviewing results from trials where a value of 0 would
represent no difference between groups, a 95% CI that
contains 0 within its range corresponds to a p value greater
than 0.05.  Using the previous example of antipyretic drugs,
the reported difference in effectiveness of 2° (95% CI = 0–4)
would not be statistically significant.   Again, this is because
the data as reflected in the CI cannot exclude the possibility
that a disparity of 0° represents the true difference between
these drugs.  

For observational or other types of studies where
comparisons are reported as ratios (e.g., OR and relative
risk) a value of 1 would signify the lack of a difference
between comparators.  For example, in cohort trials, relative
risk is calculated by dividing the chance of developing a
disease in people with a certain exposure by the chance of
developing that same disease in people without such an
exposure.  Relative risks of less than 1 imply less risk of a
disease given a particular exposure, and relative risks
greater than 1 imply an increased risk.  The OR, reported in
case-control trials, divides the odds of having a particular
risk factor given for people with a specific disease by the
odds of having that same risk factor in patients without the
disease in question.  An OR is interpreted in the same way
as a relative risk, by considering the direction and
magnitude of any deviations from the value of 1.  For
instance, a case-control study examining a link between
Bell’s palsy and a previously (but no longer) marketed
intranasal flu vaccine in Switzerland reported an OR of 84.0 
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(95% CI = 20.1–351.9).  Such a finding can be interpreted
to mean that the chances of having Bell’s palsy symptoms
are increased 84 times in people who receive this particular
intranasal vaccine.  For both of these types of studies, a
value of 1 in the CI would mean the results are not
statistically significant.  In the end, it should seem sensible
that if values representing no difference cannot be excluded
as the real difference between groups, then such findings
could not have a p value less than the significance level (i.e.,
could not be statistically different).

In addition, CIs can help in determining the clinical
significance of results.  Because the CI reports the range of
possible true differences that are consistent with the data, a
reader of such results can take into consideration the full
spectrum of possible changes that might be expected when
using an intervention.  This property, combined with the
previously discussed properties, has led to more frequent
reporting of CIs in published studies.  Still, this practice has
not been adopted universally.

Common Statistical Tests
and Their Interpretation 

Deciding which statistical test is best suited to a
particular analysis scenario often may be best left in the
hands of statisticians.  Just the same, pharmacists must have
an understanding of the appropriate application of a core set
of statistical tests.  A functional “statistical formulary”
should minimally include a command of the specific tests
discussed in this section.  An appreciation for the underlying
assumptions of these methodologies also will serve to
ensure their correct interpretation.

Parametric Versus Nonparametric Tests 
Many familiar statistical tests (e.g., t test and analysis of

variance) belong to a group of tests termed parametric tests.
Tests belonging to this group all assume certain
characteristics about the nature of the data being analyzed.
To varying degrees, violations of these assumptions result in
inaccurate conclusions about the statistical differences
between groups.  For example, three assumptions associated
with the use of analysis of variance are:  1) the data have a
normal distribution; 2) each observation is independent of
the others; and 3) the variances within the groups being
compared are equal (homoscedasticity).  Sample data that
do not meet the conditions of these assumptions are
sometimes still analyzed using parametric tests if their
departure from these assumptions is not extreme.  In
addition, some data are subject to mathematical
transformations (such as a logarithmic transformation) that
result in meeting the assumptions (e.g., normality).
Nonparametric tests are statistical tests that can be used in
cases where the assumptions of parametric tests cannot be
guaranteed.  Statisticians can use separate methods to assess
whether a sample exhibits properties such as normality or

homoscedasticity and, thus, help to ensure the use of the
best type of test.  Prior work with comparable data also can
provide information about whether the application of a
parametric test is appropriate.  It is important to use
statistical tests whose assumptions match the parameters of
the data under examination.  When this is not done,
statistical accuracy and precision (as well as the validity of
any resulting inferences) are endangered.

Along with these considerations, the type of variables
that are being measured also helps to determine which
statistical test should be used.  Inferential tests assess
whether the data drawn from the samples differ by an extent
greater than that expected due to chance.  Each type of test
completes this evaluation mathematically by comparing the
probability of the observed results with those that would be
expected due to the underlying distribution of the data.
Different tests are needed, in part, because each type of
variable (e.g., categorical and continuous) has a different
distribution (e.g., binomial and normal) of expected values.

A third consideration for some testing scenarios
addresses the need to adjust the statistical calculations to
consider influences on the variables that are not otherwise
accounted for in the design of the trial.  Referred to as
confounders, such influences can bias the data to favor a
particular outcome.  For example, if studying the effects of
a recently marketed oral contraceptive on the incidence of
myocardial infarction, smoking status should be considered
a potential confounder because it has an independent effect
on the incidence of myocardial infarction.  Certain tests
adjust for such biases, or try to, to allow valid inferences
about causality in circumstances that might otherwise be
difficult to judge.  Such tests are not a substitute for a well-
designed investigation but aid in minimizing the risk of a
decision error that can occur due to an uncontrolled or
unrecognized bias.

Categorical Variables 
Categorical or nominal variables measured from

independent samples often are analyzed using a chi-square
test.  For nominal, ordinal, and continous variables,
independent observations occur when the results of one
measurement are not influenced by or dependent on the
value observed at some prior time.    There exist several
variations of this test for particular circumstances; but, in
general, this test compares the expected frequency of events
to that actually observed during an investigation.  Baseline
characteristics of patients in randomized trials (e.g., sex,
smoking status, and β-blocker use/nonuse) may be analyzed
using a chi-square test to demonstrate no significant
differences between comparison groups.  Viewed a different
way, this process can detect any important dissimilarity
between the groups.  Often associated with a 2-row-by-2-
column table, the chi-square test is used in the analysis of
rates, percentages, and proportions.  For categorical
variables using a smaller sample size, the Fisher exact test
accomplishes the same goal.  The Fisher exact test usually is
recommended when any one cell in a 2-by-2 table has an

Braitman LE. Confidence intervals assess both clinical significance and statistical significance. Ann Intern Med 1991;114:515–17.
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expected value of less than 5.  Because of the underlying
distribution used to calculate the expected values and the
chi-square test statistic, other corrections are sometimes
used for samples of intermediate size (e.g., Yates
correction).  Yates correction is most likely to be mentioned
by researchers when n=25–40.  As with a 2-by-2 table, a
contingency table (a table with more than two columns and
two rows) is analyzed using a chi-square test but one
designed for more than two comparisons.  The effects of
confounders, if not adequately considered during the design
of a trial, may be accounted for at least partially during the
statistical analysis.  The Mantel-Haenszel test can be used to
adjust for confounding variables when comparing two
independent groups.  This test also often is associated with
the determination of statistical significance of an OR in
certain types of investigations.

When comparing categorical data between groups of
observations that are not independent (e.g., crossover
studies and paired/matched observations), another test must
be used.  In this case, the McNemar test can be chosen to
analyze results from studies with related or dependent
measures.  For example, studies of treatments for rare
neurological disorders may match study patients based on
certain underlying characteristics to assemble patients into
treatment groups that are as comparable as possible.  If the
outcome of interest is categorical (e.g., mortality and
hospitalization), then such a trial could use McNemar to
analyze this matched data.  For comparisons involving more
than two matched groups, a chi-square test with a correction
for multiple comparisons should be selected.

Ordinal Variables 
Ordinal data are analyzed based on an evaluation of the

respective ranking of values in the data set without
measuring the magnitude of the difference between values.
Such an approach considers the non-normal distribution of
possible values of data for these noncontinuous variables.  

As with the tests for nominal variables, the tests for
ordinal variables depend on the number of groups being
compared and whether the measurements are independent.
For two groups derived from independent observations, the
Mann-Whitney U and the Wilcoxon rank sum tests
commonly are suggested.  These tests would be useful for
comparing drug interventions in two groups when the
outcome measure uses an ordinal rating scale.  Ordinal
rating scales are common in trials of psychiatric
interventions, pain management, and patient satisfaction.
For a comparison of more than two groups, the Kruskal-
Wallis test is appropriate.  Regardless of the number of
comparisons, the analysis of variance ranks test helps to
adjust for confounders.  Nonindependent samples are
compared by a test such as the Wilcoxon signed rank test
(two groups) or the Friedman test (more than two groups).

Continuous Variables 
Continuous variables are candidates for analysis using

parametric tests.  If the data do not meet the assumptions of
a parametric test, they may be analyzed using a
nonparametric test.  The classic Student t test, so named
because of the pseudonym used by the person who first
described the technique, compares the means of two groups.

Forms of this test exist to accommodate the analysis of
groups with either equal or unequal variances.  T tests that
compare the means of two independent samples typically
are known as two-sample t tests.  Consider a trial in which
patients are randomized to two antihyperlipidemic drugs.  If
the outcome of interest were the cholesterol concentrations
at the end of the trial, then a two-sample t test appropriately
would be applied to the data.  A one-sample t test is selected
for comparisons that are made from two sets of observations
taken from a single sample.  A one-sample t test also is used
to compare the mean of a sample to a known population
mean, or to a predetermined target value.  For paired
(dependent) measures of two groups, a paired Student t test
is recommended. 

Analysis of variance is used when more than two groups
are being compared.  The repeated measures variation of
analysis of variance analyzes data that are paired.  Analysis
of covariance can be used for independent samples when the
effects of confounders, or covariates need to be considered.
This technique might be used in trials of weight-loss drugs
because it is recognized that patients with more excess
weight will lose weight more quickly, on average, than
patients with less excess weight.  Baseline weight represents
a confounder that must be accounted for in the statistical
analysis.

Analysis of variance and multiple comparison
procedures represent a family of special techniques used to
avoid the dangers of performing multiple t tests to assess
differences among three or more groups.  The risk in using
multiple t tests is that a type I error becomes more likely
with each subsequent comparison.  For example, if
researchers are making three comparisons (i.e., Group A to
Group B, Group B to Group C, Group A to Group C), each
calculation brings with it a risk of making a decision error.
The probabilities of such errors must be combined for
researchers to understand the chance of reaching an unsound
conclusion.  Given that each comparison has a 5% (0.05)
chance of leading to a type I error, making these three
comparisons would have about a 15% chance of permitting
such an error.  The formula 1-(1-α)k, where α represents the
significance level and k the number of comparisons, will
give the precise cumulative probability of a type I error in
such situations.  Analysis of variance in conjunction with
multiple comparison procedures allows for multiple
comparisons without an increase in spurious significant
findings.  A trade-off is that analysis of variance, when
indicating a statistical difference between groups, does not
reveal which specific groups differ.  Further testing of
individual H0s is conducted using other appropriate
statistical tests, some of which are discussed in the
following paragraph.  

One method that can be used to account for such
probabilistic shifting is a technique known as the Bonferroni
correction.   In this approach, the p value that is considered
statistically significant results from dividing the normally
accepted significance level (0.05) by the number of
comparisons.  For example, if three t tests were performed
when analyzing data from a study with three groups, then the
minimally significant p value would be 0.017.  There are many
more types of multiple comparison procedures (e.g., Tukey,
Student-Newman-Keuls, and Sheffé tests) to handle this



common problem.  Although the preceding examples have
focused on continuous data, multiple comparisons can threaten
statistical inference for nominal and ordinal data as well.

Figure 1-1 shows how an appropriate statistical test can
be determined.  This figure allows for analogies that can aid
in recalling which statistical test is used for which type of
data to be easily discerned.  For example, looking down the
right-hand side of the figure, it can be seen that the 
chi-square test, Mann-Whitney U, and Student t test all
analyze differences between two independent groups for
nominal, ordinal, and continuous variables, respectively.

Subgroup Analysis 
Subgroup analysis, the statistical evaluation of smaller

groupings from a data set, often can be the source of much

consternation for readers of the medical literature.  First,
there is no empirical limit on how often a group of study
patients might be further divided (in ways that make clinical
sense or not).  Because of this, subgroup analyses are
subject to the previously discussed concerns related to
multiple comparisons.  Subgroup analyses are categorized
into two types:  a priori (conceived beforehand) or post hoc
(formulated after the fact) subgroups.

Subgroups of samples specified before the start of a trial
can be analyzed in the same way as any H0.  Whether the
subgroups make sense clinically is not guaranteed and must
be considered when drawing conclusions.  However, if the
divisions suggested provide useful information, then their
statistical analysis would proceed along the same lines
discussed previously in the Common Statistical Test and
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Type of Variable or
Level of Measurement

Independent or 
Dependent Number of Groups Common Statistical Test

(option if confounder)

Figure 1-1. Statistical tests for common comparisons.a
aMany other tests exist, these being some of the most frequently encountered. 
ANCOVA = analysis of covariance; ANOVA = analysis of variance; MCC = multiple comparison correction.

Continuous

Independent samples
Two

Three or more

Student t test

Student t test for
unequal variances

ANOVA

(ANCOVA)

Dependent
(paired) samples

Two

Three or more

Paired Student t test

ANOVA for repeated measures

Ordinal

Independent samples
Two

Three or more

Mann-Whitney U

Wilcoxon rank sum

(ANOVA  ranks)

Kruskal-Wallis with MCC

(ANOVA  ranks)

Dependent
(paired) samples

Two

Three or more

Wilcoxon signed rank

Friedman test

Nominal

Independent samples
Two

Three or more Contingency table

Dependent
(paired) samples

Two

Three or more

McNemar test

Χ2     with   MCC

Chi-square (Χ2)

Fisher exact test

(Mantel-Haenszel test)



11

Their Interpretation section.  Deliberations about power and
multiple comparisons take on a heightened importance
when deciding whether suggested differences should be
trusted.    Often, a trial will be powered to detect meaningful
differences only for the main outcome using a
predetermined sample size.  When further dividing that
sample into subgroups, the power to detect differences
diminishes quickly so that the decision to not reject the H0
cannot exclude the possibility that differences between
subgroups do exist.  On the other side of the coin, the
multiple comparisons that are made between subgroups
must be considered in the statistical analysis so as to avoid
a type I error.  However, when these difficulties have been
thought about and sufficiently addressed, subgroup
differences associated with preestablished subsets of
patients can provide a more refined understanding about the
effects of a drug therapy.  For example, it may be the case
that a drug provides a benefit for a sample of patients and
that it provides even more benefit for a subgroup of those
same patients.

Subgroups that are defined at the end of a trial should be
considered hypothesis-generating as they typically have
insufficient power to detect differences, are subject to biases
that are not accounted for in the initial randomization, and
present more opportunities for spurious results as a
consequence of multiple comparisons.  Significant
differences that are suggested by post hoc subgroups should
be further confirmed in subsequent controlled trials.

Composite End Points 
Primary end points are those outcomes around which

trials are designed.  The primary end point serves as the
basis for considerations of power, sample size, duration, and
other aspects of a trial.  Many investigations also will have
several secondary end points to derive the most useful
information from the study.  Primary or secondary end
points can be composite end points.  Composite end points
combine the data of more than one outcome into a single
analysis.  A composite end point of hospitalization,
worsening symptoms, or death might be used as the primary
end point in a trial of drugs for congestive heart failure.  Any
significant differences between groups on this outcome
would imply that patients who receive the study therapy are
less likely to experience worsening symptoms, a hospital
admission, or death.  A criticism of this approach is that it
may be that only one or two of the outcomes measured in the
composite end point are truly different between groups.
Differences observed in the remaining two or three
outcomes factored into the collective end point may not be
of statistical significance.  In particular, the combination of
subjective (e.g., worsening symptoms) and objective 
(e.g., death) outcomes into a single end point contributes to
unreliable conclusions.  Pharmacotherapy studies often
include such composite end points and should be evaluated
with considerations of these limitations.  There are statistical
techniques to help deal with some of this confusion.  The
tests used are unusual and typically not well-known to a
clinician reader, but include certain ranking tests for each
component of the composite end point and subsequent
specialized tests to ascertain which parts of the end point are

significantly different from the comparison group.  A more
optimal approach would be to design the trial to assess
individual outcomes, but this may not be feasible,
affordable, or of interest.

Statistical Techniques in
Systematic Reviews 
(Meta-analysis) 

Meta-analysis is a method of using mathematical
techniques to evaluate the numerical results of past studies.
A systematic review is an explicit process by which trials
dealing with a particular therapeutic question are brought
together for a collective weighing of their results.  A
discussion of the steps necessary to conduct a high-quality
systematic review is not addressed in this chapter.
However, at least three topics related to meta-analysis are
germane to this chapter:  interpreting results, sensitivity
analysis, and heterogeneity.  These are addressed in the
following sections.

Interpreting Results 
Figure 1-2 illustrates a common graphic format for

presenting the results of a meta-analysis.  Referred to as a
Forest plot, it depicts the results of all of the individual trials
included in the systematic review by plotting each trial’s
estimate of the difference between groups with a dot, and
the variability around that estimate with a line through the
dot.  This line represents the values comprising the CI for
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Figure 1-2. A forest plot of a hypothetical meta-analysis.
The results of individual trials are plotted as a difference between study
groups (dots) along with their attendant confidence intervals (lines).  The
summary estimate of treatment effect from all of the trials is shown as a
diamond where the vertical center represents the estimate of effect overall and
the width of diamond represents the confidence interval around this estimate.
The results of many such analyses are reported as an odds ratio.  If this plot
represented some drug effect on mortality then the overall result would favor
the drug because an odds ratio less than 1 implies less risk of death.

10.5 20 1.5

Odds Ratio



each estimate of difference found in the respective trials.  A
final assessment of efficacy based on the collective results is
depicted using a square or diamond shape.  The vertical
center of this shape represents the calculated effect of
treatment based on the results of all the individual trials.  A
horizontal line through the square or the width of the
diamond denotes the CI associated with this effect.  The
results can be plotted as percentage change, percentage
difference, or in any other units.  If the results being
analyzed are nominal data, it is common for results to be
conveyed as an OR.  Regardless, the center vertical line of
the plot represents the finding of no difference.  This means
that estimates of effect, whether the summary estimate or its
CI, which include this line, signify nonsignificant
differences.

Sensitivity Analysis and Heterogeneity 
One of the weaknesses of combining results of trials to

reach conclusions is that the results are susceptible to
influences other than the effects of treatment.  As such,
systematic reviews may undergo one or more statistical tests
to detect the presence or extent of such influences.
Sensitivity analysis seeks to ascertain if the final results are
particularly influenced by the inclusion of one or more
individual studies.  Examination of the different effects of
including or excluding certain studies from the 
meta-analysis is an essential exercise of any good meta-
analysis.  These analyses may include not only
consideration of the trials themselves, but also any
subgroups within the trials.  A discussion of these factors
adds to an understanding of the final results by alerting the
reader to possible groups to whom the results do not apply.  

Meta-analysis combines the results from different trials
to reach a conclusion and so it should be expected that
differences between studies, broadly termed heterogeneity,
need to be addressed in interpreting any final results.  The
processes used to test for heterogeneity assume that the
effects evaluated in each study are identical. A test statistic
named the Cochran Q often is cited as the method used to
test this H0.  A shortcoming of this test is that it only tests
for the presence of heterogeneity and does not quantify its
extent.  A value known as the I2 recently has been proposed
as a way to indicate the degree of heterogeneity in or
between studies in a meta-analysis. I2 also can be used to
compare heterogeneity between meta-analyses done on the
same topic.  This statistic expresses the amount of variation
between studies as resulting either from heterogeneity or
from chance.  The I2 takes on values ranging from 0% to
100%:  the higher the value, the greater the heterogeneity.  A
value of 0% represents the absence of heterogeneity.

Characterizing
Relationships 
Among Variables 
Regression and Correlation 

Regression techniques describe or summarize the
relationship between two or more variables.  Linear
regression examines straight-line relationships among
variables.   This examination is accomplished by using
methods that minimize the distance of all individual
observations from a best-fit line drawn through the
corresponding values of x and y (when studying only two
variables) from each observation.  Any such line can be
represented algebraically as:

y = mx + b 
where m represents the slope of the line and b represents

the intercept on the y-axis of a graph of the data.  Statistical
tests investigate whether the slope of the line representing
the observed relationship between these variables is
different from a line with a slope of 0 (i.e., a horizontal line).
Regression techniques also can consider relationships
between variables other than linear relationships (e.g.,
quadratic relationships).  Regression methods are used to
develop models that allow clinicians to predict a variable of
interest (e.g., mortality) by assessing one or more predictor
variables (e.g., age, oxygen saturation, and heart rate).

Correlation answers the question, “How much of the
variation in the value of x is associated with changes in y?”
Correlation estimates the strength of the relationship
between the two variables.  Statistical tests to assess
correlation depend on the type of underlying data.  A well-
known test of correlation, the Pearson product moment
correlation coefficient, is a parametric test that can be used
to examine the relationship between two continuous
variables.  A nonparametric test, Spearman rank correlation,
is used for ordinal data or for continuous data that are not
normally distributed.   For example, if researchers are
wishing to discern a correlation between metered-dose
inhaler technique ranked on a 4-point scale (i.e., 0 = poor to
3 = perfect) and an estimate of effectiveness (i.e., 0 = no
effect to 3 = complete relief of symptoms) the Spearman
rank correlation method could be used.  There are many
more tests that can be applied for this purpose for different
combinations of variable types. 

Reported with these tests for correlation is an r value.  In
simple linear regression, this value is squared (r2) and
represents the percentage of variation in x that is accounted
for by y.  A hypothetical set of data from a study of the dose
of a drug and its effect on heart rate could be subject to such
an analysis.   If at the end of the study a correlation analysis
results in an r of 0.82, the r2 equals 0.67 and indicates that
67% of the variation in heart rate can be associated with the
change in dose of the drug.  Correlation values can range
from -1 to 1 where 0 would be no correlation, -1 is a perfect
inverse correlation, and 1 represents a perfect positive
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correlation.  Of importance, correlation should not be
assumed to imply that one change causes the other change.

Multivariable Analysis/Regression 
Multivariable analysis takes the place of simple

correlation for questions that involve more than two
variables.  It often is used to develop predictive models of
risk, such as the Framingham model that predicts
cardiovascular risk based on the values of several other
variables (e.g., blood pressure, sex, and serum lipid values).
Multiple linear regression accomplishes this task for
continuous outcome variables.  For dichotomous outcome
variables, a technique named “logistic regression” is used.
Regardless of the statistical tests used in performing the
regression analysis, the general method involves adding or
deleting variables in a model to see if an association
between the variables in the model and the outcome variable
exists.  This process results in a model that should account
for the maximum amount of variation in the outcome
explained by the model. When a new variable is added or
subtracted from the model to predict or explain variations in
outcome, the results are compared to the previous model to
check for statistically significant changes.  This type of
modeling becomes mathematically complex and is
performed using statistical computer software.  Models that
use variables with dichotomous outcomes will have results
reported as an OR.  It is from these types of models that
some statements of the form “having disease x increases the
risk of outcome y (blank) times” can be derived.

Survival Analysis 
Survival analysis uses the technique of proportional

hazards regression (Cox) to assess the effects of two or more
variables on the time to an event.  A simpler test, the 
log-rank test, is used for the same purpose when examining
only two variables.  The log-rank test can be used to
construct Kaplan-Meier curves, which estimate the
proportion of people who would survive a certain length of
time under the same conditions as the study.  Here the term
“survival” also can represent discrete outcomes other than
death (i.e., the analysis examines time to an event, where the
event may be something other than death).    Common
outcomes of interest in pharmacotherapy trials, including
time to relapse, time to hospitalization, or time to death, are
all analyzed using survival analysis.  Survival analysis uses
censored survival times in its methods.  This term merely
recognizes the fact that not all patients in a study will reach
an end point of interest during the study period.  Censored
data are simply those data included in the analysis for which
the time to event was not observed for that patient.  Data
may be censored for patients who withdraw from the study,
are lost to follow-up, or for whom the event exceeded the
study period.   The results of survival analysis, regardless of
the specific statistical techniques used, are reported using a
format similar to that shown in Figure 1-3.  Another term
sometimes associated with these types of analyses is hazard,
or hazard function.  Hazard represents the chance that a
patient will survive through a certain time interval in the
study, not just the probability of surviving until the end of
the study period.
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Figure 1-3. Example plot of survival analysis.
An example of a plot of a survival analysis showing the differences in proportions surviving during a hypothetical drug trial.  The proportion surviving is
plotted against time, with each time increment associated with a percentage of the initial sample still alive.  The values used to construct the control and
treatment lines are tested to determine if the differences between them are significant.

1.0

0.8

0.6

0.4

0.2

0.0

Treatment

Control

Time

Katz MH. Multivariable analysis:  a primer for readers of medical research. Ann Intern Med 2003;138:644–50.



Interpreting Summary
Reports of Effect 
Absolute Versus Relative Changes 

Simply put, absolute changes are more important than
relative changes.  The baseline rate of an outcome needs to
be understood to make clinical sense of any changes in that
outcome.  Increasing the rate of a rare outcome (i.e., one in
100,000) by a factor of three (i.e., a 300% increase) has little
clinical impact.  The absolute change in risk in this scenario
is 0.003% minus 0.001%, or two additional events for each
100,000 patients treated or exposed.  The relative change, as
previously discussed, can be described as a 3-fold increase
in the number of events.  Clearly, this latter number seems
like a more notable result.  The nature of relative changes in
the reporting of pharmacotherapy trials can be just as
misleading.  Because relative changes do not give any
indication of the usual rate of an event, they provide no
useful information about whether an intervention should be
used or avoided.  The absolute changes represent more
clearly the clinical importance of such changes.  These
distinctions are of enormous importance not just in clinical
trials, but also in epidemiological (observational) trials
where changes are always reported as a relative change.

Number Needed to Treat 
The number needed to treat represents another way to

characterize changes in absolute risk.  The number needed
to treat can be calculated easily by subtracting the absolute
difference between groups and then taking the reciprocal of
this difference.  The resulting number represents the average
number of patients who would need to be treated to have (or

to prevent) one additional outcome of interest.  For example,
if a study found that 13% of patients randomized to receive
active drug had an emergency department visit and that 36%
of the placebo group had an emergency department visit,
then the number needed to treat to prevent one emergency
department visit would be calculated as:  

1/(0.36 - 0.13)   
This computation yields a number needed to treat of about

four patients.  Because it is an estimate, a CI can be calculated
for the number needed to treat.  The number needed to harm
uses this same calculation to ascertain, for example, the
number of patients who would need to receive a drug therapy
to have one adverse event (e.g., rash and edema).

Examples of how absolute and relative differences result
in much different numbers, along with number needed to
treat calculations for these differences, are shown in 
Table 1-4.  When the number needed to treat or number
needed to harm is being used to summarize differences
between groups, it should be remembered that the values
only apply to the time intervals from which the data come.
If a trial lasted 5 years, the number needed to treat would
apply only to the outcome at 5 years.  It is inappropriate to
double or halve the 5-year number needed to treat to
estimate a number needed to treat that would occur after 10
years.  The use of the number needed to treat and number
needed to harm is limited to nominal types of data as
number needed to treat values are only useful in
summarizing differences involving dichotomous outcomes.

Putting Results into Perspective 
The distinctions between absolute and relative changes

are of more than statistical importance.  It is known that
relative changes, because of their association with bigger
numbers, often are viewed as more convincing by both
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Table 1-4. Relative Changes Versus Absolute Changes Versus Numbers Needed to Treat—Primary End Points From
the Heart Outcomes and Prevention Evaluation (HOPE) Study

Primary end points after 4.5 years (all differences in outcomes, p<0.001)
Ramipril Placebo Relative Absolute NNTb

Reductiona Reduction

Patients suffering
a myocardial infarction 9.9% 12.3% 20% 2.4% 1/(0.123 - 0.099) = 42

Patients suffering a
stroke 3.4% 4.9% 31% 1.4% 1/(0.049 - 0.034) = 67

Patients with death from
a cardiovascular cause 6.1% 8.1% 25% 2.0% 1/(0.081 - 0.061) = 50

Patients suffering a
myocardial infarction, 
stroke, or death from a 
cardiovascular cause 14.0% 17.8% 21% 3.8% 1/(0.178 - 0.140) = 26

aCalculated as (percentage in placebo group - percentage in ramipril group)/percentage in placebo group. 
bNumber needed to treat data from The Heart Outcomes Prevention Study Investigators. Effects of an angiotensin-converting enzyme inhibitor, ramipril, on
cardiovascular events in high-risk patients. 
NNT = number needed to treat.
The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting enzyme inhibitor, ramipril, on cardiovascular events
in high-risk patients. N Engl J Med 2000;342:145–53.

Cook RJ, Sackett DL. The number needed to treat:  a clinically useful measure of treatment effect. BMJ 1995;310:452–4.
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clinicians and patients.  Studies demonstrate that when the
results of pharmacotherapy trials are reported as relative
changes, patients and practitioners are more likely to be
convinced of their importance.  This phenomenon helps to
explain why drug advertisements report relative changes
almost exclusively.  It also serves to remind clinicians that
when discussing the risks and benefits of drug therapy with
patients that presentations of both types of data may be
necessary to fully convey the impact of a therapy in a way
that is understandable.  Keeping such numbers from
becoming confusing may be a challenge, but one that can be
overcome by avoiding technical terms or jargon.  Using
regular number descriptions, such as x out of 100 instead of
percentages, and conveying changes in terms of absolute
risk of an event have been suggested as ways to ensure a
better understanding of the effects of pharmacotherapy.

Summary 
Clearly, pharmacists must understand the nature and

interpretation of statistical analysis to function effectively as
drug experts.  Statistics is a powerful tool to assist decision-
making about the optimal use of drug therapies.  Proper
application of statistical results to pharmacotherapy
decision-making is as essential as a knowledge and
understanding of pharmacology for the pharmacist of today.
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1. You wish to describe the types of patients who use the
anticoagulation monitoring services that your
department provides.  Specifically, the pharmacy and
therapeutics committee is interested in the age of the
population that is served.  Which one of the following
pieces of information is most useful to the committee
members?
A. Standard error of the mean (SEM).
B. T test.
C. Mean.
D. Chi-square test.

As part of a process improvement committee, you are
responsible for determining the impact of a recent
educational campaign to improve the recording of patient
allergies in the medical record.  Before the education efforts,
you record the allergy status of 100 patients on one unit
using their admission orders.  After the education, you
assess the allergy status of another 100 patients from another
unit using the same method.  Your results are as follows:

Allergy recorded Allergy not recorded
Before education 78 22
After education 90 10

2. In preparing to analyze the results of this intervention
statistically, you consider the data in the table as which
one of the following types?
A. Nominal.
B. Ordinal.
C. Interval.
D. Ratio.

3. A study is conducted to test if the use of a new drug
adherence aid has an effect on congestive heart failure
exacerbations.  Researchers want to evaluate the
proportions of patients with an exacerbation of their

congestive heart failure symptoms in a group of people
using the adherence aid compared to a group who did
not.  To assess if the changes observed are statistically
significant, which one of the following tests is best?
A. McNemar.
B. Chi-square.
C. Two-sample t test.
D. Mann-Whitney U test.

4. In a cohort study designed to determine an association
between measles, mumps, and rubella vaccination and
autism, investigators report the relative risk of autistic
disorder in the vaccinated group compared to the
unvaccinated group as 0.92 (95% confidence interval
[CI] = 0.65–1.07).  Which one of the following p values
is consistent with these reported findings?
A. A p value of less than 0.05.
B. A p value of less than 0.01.
C. A p value of greater than 0.05.
D. A p value of greater than 0.10.

5. A prospective, randomized, placebo-controlled trial of a
new antidepressant drug reports that for the primary
outcome of response rate (50% decrease in Hamilton
Rating Scale for Depression) there is no difference
between the drug and placebo (p>0.05).  The
researchers also report that they decided to do an
additional previously unplanned analysis of the data
after the conclusion of the trial; and that they were able
to demonstrate a better response rate for the new drug
versus placebo in the women in the trial (p=0.04).
Which one of the following is the most valid conclusion
from this trial?
A. The new drug works in women but not in men.
B. The trial should have listed two primary outcomes.

SELF-ASSESSMENT
QUESTIONS 



C. The response rate reported for the entire group of
participants should be analyzed as a secondary
outcome.

D. A prospective trial designed to test the drug in men
compared to women should be considered.

6. A systematic review evaluated the effect of
bisphosphonates on skeletal metastasis in patients with
cancer.  A meta-analysis that included placebo-controlled
trials of at least 6 months duration showed a combined
odds ratio (OR) for the use of radiation therapy of 0.67
(95% CI = 0.57–0.79).  For spinal cord compression,
bisphosphonates compared to placebo resulted in a
combined OR of 0.71 (95% CI = 0.47–1.08).  Which
one of the following is the best interpretation of these
results?
A. Bisphosphonates favorably impact the use of

radiation therapy and the occurrence of spinal cord
compression in patients with cancer with skeletal
metastasis.

B. Bisphosphonates affect neither the use of radiation
therapy nor the occurrence of spinal cord
compression in patients with cancer with skeletal
metastasis.

C. Bisphosphonates favorably impact the use of
radiation therapy but not the occurrence of spinal
cord compression in patients with cancer with
skeletal metastasis.

D. Bisphosphonates do not affect the use of radiation
therapy but do favorably impact the occurrence of
spinal cord compression in patients with cancer
with skeletal metastasis.

7. The Women’s Health Initiative Study  compared the use
of conjugated equine estrogens plus
medroxyprogesterone to placebo in healthy
postmenopausal women and reported a higher number
of cardiovascular events in women receiving this
hormone replacement therapy regimen.   Which one of
the following correct descriptions of the results about
cardiovascular disease reported in the trial would be
best to use in discussions with patients?
A. Cardiovascular events increased in women taking

the active drug.
B. Patients taking the drug had an increased risk of

cardiovascular events that was statistically
significant.  

C. For every 10,000 women who take the drug for 1
year, there will be seven extra cardiovascular
events.

D. The rate of cardiovascular events was increased by
29% in women taking hormone replacement
therapy.

8. A trial (n=48) reports that the average dose of an
intravenous analgesic drug needed to keep
postoperative pain below a rating of 2 on a 10-point
scale is 67 mg with a standard deviation of ± 17 mg.
You wish to calculate a CI for this mean dose.  Which

one of the following is the SEM associated with this
result?
A. 0.35.
B. 1.39.
C. 2.45.
D. 6.93.

Questions 9 and 10 pertain to the following case.
A trial compares drug X and drug Y for treating nausea and
vomiting associated with pregnancy because clinicians
believe that there may be differences in their efficacy in
preventing nausea and vomiting in pregnant women.  Drug
X has been used for many years and has a large evidence
base demonstrating efficacy and safety.  Drug Y recently has
been introduced to treat nausea and vomiting associated
with chemotherapy, but has not been well studied in patients
with nausea and vomiting due to pregnancy. Patients will be
randomized to one of these two drugs.

9. Which one of the following represents the correct
statement of the null hypothesis (H0) for this trial?
A. Efficacy of drug X equals the efficacy of drug Y.
B. Efficacy of drug X is not equal to the efficacy of

drug Y.
C. Efficacy of drug X is greater than the efficacy of

drug Y.
D. Efficacy of drug X is less than the efficacy of drug

Y.

10. The end point for this trial will be based on patients’
ranking of their nausea and vomiting 3 hours after
taking the drug to which they have been assigned.
Nausea and vomiting will be graded using the following
scale:  0 = no nausea, 1 = mild nausea, 2 = moderate
nausea, 3 = severe nausea, and 4 = vomiting.  Which
one of the following types of statistical test is best
suited to test for differences between these drugs?
A. Wilcoxon rank sum test.
B. Wilcoxon signed rank test.
C. Student t test.
D. Paired Student t test.

11. A prospective, randomized, double-blind study
(n=2200) finds that when comparing two oral drugs for
treating type 2 diabetes, the final mean percent
hemoglobin A1C value for patients in group 1 is 8.21
and for patients in group 2 is 8.27.  This difference
between the groups is stated as having a calculated p
value of less than 0.05.  Assuming similar baseline
characteristics and appropriate final statistical analysis,
which one of the following statements best
characterizes these findings?
A. The difference between the drugs is not statistically

significant, but is clinically significant.
B. The difference between drugs is both statistically

and clinically significant.
C. The difference between the drugs is statistically

significant, but not clinically significant.
D. The difference between the drugs is neither

statistically significant nor clinically significant.
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Question 12 pertains to the following figure.

12. The results of a meta-analysis investigating the effects
of a drug on stroke are shown in the figure above.
Which one of the following is the best interpretation of
these results as portrayed in this figure? 
A. The drug being studied does not have an effect on

the frequency of stroke. 
B. The drug being studied decreases the frequency of

stroke.
C. The drug being studied increases the frequency of

stroke.
D. The drug’s effect on stroke cannot be determined

from the figure.

13. A new antipsychotic drug has been compared to a
previously available drug in a prospective,
randomized, and blinded trial.  This 12-month trial
measured the frequency of inpatient psychiatric
admissions in both treatment groups.  At the end of the
trial, 6% of the patients taking the new drug had an
inpatient psychiatric admission compared to 11% of
patients taking the older drug (p=0.03).  In presenting
the results of this trial to members of the formulary
committee at the health maintenance organization
where you work, which one of the following
statements would provide the committee with the best
information to use in deciding the formulary status of
the new drug? 
A. The new drug decreased psychiatric admissions by

45%.
B. The new drug decreased psychiatric admissions by

83%.
C. You would need to treat two patients with the new

drug to avoid one admission.
D. You would need to treat 20 patients with the new

drug to avoid one admission.

14. A trial studied an antihypertensive drug to assess its
effects on blood pressure.  Researchers compared the
blood pressure of 150 patients at baseline and then
again after having taken the drug for 2 weeks.  The
results show that this antihypertensive drug lowers
systolic blood pressure by an average of 9 mm Hg
(p=0.04; two-sample t test) and diastolic blood pressure
by an average of 7 mm Hg (p=0.03; two-sample t test).
Which one of the following statements is consistent
with these reported results?
A. This drug is not effective at lowering blood

pressure.
B. This drug is effective at lowering only diastolic

blood pressure.
C. This drug is effective at lowering both diastolic and

systolic blood pressure.
D. This drug may or may not lower blood pressure; the

results are unreliable.

15.  A case-control study is performed to judge whether a
drug is associated with an increased incidence of early
miscarriage.  The final analysis shows that the OR for
miscarriage with drug exposure is 1.3 (95% CI =
0.9–1.7).  Which one of the following provides a correct
description of these results?  
A. This drug increases the risk of miscarriage by 70%.
B. This drug increases the risk of miscarriage by 30%.
C. This drug decreases the risk of miscarriage by 10%.
D. This drug is not associated with an increased risk of

miscarriage.

Questions 16 and 17 pertain to the following case.
A linear relationship between the dosage of a new
chemotherapeutic drug and pulmonary function is being
investigated.  Measurements of the forced expiratory
volume in 1 second are collected as a measure of lung
function and plotted against the corresponding dosage of
drug that each patient received.

16. Which one of the following is an appropriate statistical
approach to assess any correlation between drug dose
and forced expiratory volume in 1 second?
A. Pearson product moment coefficient.
B. Analysis of variance.
C. Spearman rank correlation.
D. Analysis of covariance.

17. The statistical test applied to the data studying the
relationship between this drug and lung function reports
an r = -0.46 (p<0.05).  Which one of the following
represents the best interpretation of these results?
A. Seven percent of the variation in forced expiratory

volume in 1 second is associated with the dose of
this drug.

B. Twenty-one percent of the variation in forced
expiratory volume in 1 second is associated with the
dose of this drug.
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C. Forty-six percent of the variation in forced
expiratory volume in 1 second is associated with the
dose of this drug.

D. Ninety-two percent of the variation in forced
expiratory volume in 1 second is associated with the
dose of this drug.

18. The manager of an obesity clinic in your health care
system approaches you about selling a recently
marketed herbal weight-loss supplement in the clinic.
She tells you that unlike other products making claims
about weight loss, this product has been described to
her as containing no ephedra (ma huang) or other
stimulants, and no dangerous herbal derivatives.  She
goes on to show you a copy of a trial proving that this
supplement works.  You review the study that claims
this product increases metabolism.  The study shows
that patients taking the supplement burned an average
of 20 calories more during a 700-calorie workout than
those who were not taking the supplement (p<0.05).
Which one of the following is an appropriate response
to the manager based on the information provided?
A. The statistical differences show that the product is

worth using.
B. The differences demonstrated do not appear to be

clinically significant.
C. The study shows the product is effective regardless

of the p value.
D. The study demonstrates neither statistical nor

clinical differences.

19. A new laxative has been compared to psyllium in adults
and children between the ages of 2 and 65 years.  The
study assesses the length of time to the first bowel
movement after taking one of the two study drugs.  At
the end of the trial, a statistical analysis of the outcomes
resulted in a p value of 0.30.  Based on this result, the
researchers report that they then decided to look for
differences in effect between men and women and
among different age groups (i.e., 2–5 years old, 6–12
years old, 13–18 years old, 19–55 years old, and older
than 55 years).  At the end of these analyses, the new
laxative was found to provide superior relief of
constipation in women older than 55 years of age
(p<0.05).  Which one of the following is the best
interpretation of these results? 
A. This drug only works better than psyllium in

women older than 55 years of age.
B. Until more trials are conducted, it should be

concluded that this drug works no better than
psyllium.

C. The researchers found no overall difference, so it
cannot work better in certain subgroups.

D. Because it works better in women older than 55
years of age, it should work in all women.

20. A systematic review reports that its meta-analysis
includes studies of the following sizes:  two studies
with sample sizes between 200 and 400 patients; four
studies with sample sizes between 401 and 1000

patients; one study with a sample size of 1100 patients;
and one study with a sample size of 5200 patients.  In
reviewing the results for use in practice, which one of
the following is the most important type of analysis to
seek out?
A. A regression analysis of variables that might

increase the risk for the outcome of interest.
B. A sensitivity analysis and tests for heterogeneity.
C. A calculation of the hazard function for the total

number of patients.
D. A Cox regression analysis.

21. A randomized, double-blind trial is conducted to test
the hypothesis that a new vasodilator improves the
symptoms of congestive heart failure.  Patients are
randomized to either the new drug or to placebo and
continue their existing congestive heart failure
pharmacotherapy.  At the conclusion of the trial, the
intention-to-treat analysis shows no statistically
significant difference between the groups.  The authors
then decide to perform an analysis based on the actual
therapies that patients received.  Data for patients who
did not finish at least 60% of their assigned drug were
evaluated as if those patients were in the placebo group.
This analysis showed that the new drug was more
effective than placebo (p<0.05) in lessening the
symptoms of congestive heart failure that were
measured.  Which one of the following is the best
course of action based on these results?
A. Recommend the new drug for all patients with

congestive heart failure.
B. Recommend the new drug for patients who adhere

to their current therapies.
C. Only recommend the new drug for early-stage

congestive heart failure.
D. Do not recommend the new drug; wait for further

studies.
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