Cardiovascular Disease in Women

1. Evaluate the impact of sex on morbidity and mortality from cardiovascular disease (CVD).
2. Evaluate cardiovascular risk factors to determine their relative importance in women versus men.
3. Assess the impact of gender-based biases on CVD morbidity and mortality in women.
5. Formulate an opinion regarding CVD treatment disparities between men and women.
6. Apply knowledge of pharmacokinetic differences between men and women to minimize adverse drug events.
7. Apply current literature regarding treatment effectiveness in women who have coronary artery disease, with special consideration given to aspirin therapy.
9. Design an optimal pharmaceutical care plan for a woman with CVD.

Anticoagulation Management in Pregnancy

1. Distinguish the risk of thromboembolism in pregnancy based on an individual’s medical background.
2. Distinguish the physiologic changes during pregnancy that predispose a woman to hypercoagulability and alter drug disposition.
3. Given a case scenario, evaluate the maternal and fetal risks of antithrombotic therapy during pregnancy and postpartum.
4. Develop a comprehensive antithrombotic regimen and monitoring strategy for a pregnant woman at risk of venous thromboembolism.
5. Develop a comprehensive antithrombotic regimen and monitoring strategy for a pregnant woman with a history of obstetric complications in the setting of thrombophilia.
6. Develop a comprehensive antithrombotic regimen and monitoring strategy for a pregnant woman presenting with acute deep venous thrombosis or pulmonary embolism.
7. Develop a comprehensive antithrombotic regimen and monitoring strategy for a pregnant woman with mechanical heart valve prosthesis.
8. Distinguish which female patients should undergo thrombophilia testing and evaluate the findings of such testing as it relates to pregnancy.

Evaluating Drug-Induced Cardiovascular Disease: A Pharmacoepidemiologic Perspective

1. Distinguish among available pharmacovigilance methodologies used in adverse event surveillance.
2. Evaluate the strengths of pharmacovigilance methodology to assess possible adverse events from cardiovascular drugs.
3. Estimate adverse event detection limits in pharmacoepidemiologic studies of cardiovascular drugs through application of knowledge regarding study design, sample size, and participant enrollment.
4. Demonstrate an in-depth practical understanding of the merits and shortcomings of common pharmacoepidemiologic study designs used to assess adverse events identified through pharmacovigilance.
5. Assess a recent example of drug-induced cardiovascular disease in light of the study designs used in their discovery and form an educated opinion, considering all available evidence.

Interpreting Data in Cardiovascular Disease Clinical Trials: A Biostatistical Toolbox

1. Distinguish among types of outcome variables and the appropriate statistical tools that can be used to interpret these data.
2. Evaluate the pros and cons of surrogate and composite end points in clinical trials.
3. Apply basic measures of effect size (i.e., absolute and relative risk reductions, number needed to treat).
4. Explain the concepts of power and sample size and evaluate their impact on trial design and results interpretation.
5. Assess the use of regression and survival analysis in the interpretation of clinical trials.
6. Evaluate the use of non-inferiority designs in clinical trials.
7. Evaluate the use and role of systematic reviews and meta-analyses of clinical trials.