NEW TECHNOLOGIES FOR MANAGING DIABETES MELLITUS

1. Evaluate and compare different types of insulin delivery devices and justify the appropriateness of each for specific patient scenarios.
2. Assess glucose monitoring systems based on patient specific needs.
3. Analyze continuous glucose monitoring systems and their usefulness in promoting optimal glycemic control.
4. Apply knowledge of software technology to the overall treatment plan of a patient with diabetes mellitus (DM).
5. Assess the risks and benefits of invasive technology interventions such as artificial pancreas or human islet cell transplantation.
6. Given a specific patient case, create a telemedicine plan to prevent, treat, and manage DM.
7. Analyze the usefulness of home monitoring devices for foot care assessment and monofilament testing.
8. Evaluate mobile phone applications for improving blood glucose control.
9. Assess the pharmacist’s role in using telehealth disease management programs in the community.

NEW GUIDELINES, RECOMMENDATIONS, WARNINGS, AND DRUGS FOR DIABETES MELLITUS

1. Apply knowledge of methodologies used in drug risk assessment to critically evaluate the results of a pharmacovigilance study.
2. Evaluate the biomedical literature to assess the strength of the evidence indicating a specific adverse event is causally related to the use of a particular drug.
3. Evaluate the impact of recent legislation and U.S. Food and Drug Administration postmarketing drug safety policies regarding risk evaluation, mitigation, and communication on patient care and pharmacy practice.
4. Justify the rationale for employing risk evaluation and mitigation strategies to reduce drug safety risk.

PHARMACOVIGILANCE AND FDA DRUG SAFETY POLICY

1. Apply the basic concepts and terminology related to pharmacogenetics/pharmacogenomics to clinical applications of warfarin pharmacogenetics.
2. Given a patient case, assess genotype and racial information to predict warfarin response.
3. Distinguish genetic polymorphisms influencing warfarin pharmacokinetics from those affecting warfarin pharmacodynamics.
4. Given a patient case, predict the effects of a combination of genetic polymorphisms for cytochrome P450 2C9 and vitamin K epoxide reductase complex 1 genes on warfarin dose requirements.
5. Given a patient case, justify pharmacogenetic testing for a patient.
6. Apply a warfarin pharmacogenetic dosing algorithm to estimate a stable warfarin dose for a given patient.
7. Evaluate a warfarin pharmacogenetic test according to analytical validity, clinical validity, clinical utility, and ethical, legal, and social implications criteria.
8. Devise a plan for warfarin dosing and management based on warfarin pharmacogenetic test results in a given patient.

SKIN DISORDERS

1. Differentiate the treatment options on the basis of the type of allergic skin reaction.
2. Develop a pharmacotherapy plan for an allergic skin reaction.
3. Discriminate between different types of lesions present in acne vulgaris.
4. Discriminate between different subtypes of rosacea.
5. Develop a pharmacotherapy plan to treat acne vulgaris and rosacea.