Late Breakers in Pharmacotherapy, II

Late Breakers in Pharmacotherapy, II

Activity Number: 0217-0000-15-148-L01-P, 1.50 hours of CPE credit; Activity Type: A Knowledge-Based Activity

Wednesday, October 21, 2015

8:00 a.m. to 9:30 a.m. Continental Ballroom 5

Moderator: Robert B. Parker, II, Pharm.D., FCCP Professor, University of Tennessee College of Pharmacy, Memphis, Tennessee

Agenda

8:00 a.m.	Women's Health <i>Nicole E. Cieri, Pharm.D.</i> Clinical Assistant Professor, Department of Pharmacy Practice, D'Youville College School of Pharmacy, Buffalo, New York
8:15 a.m.	Psychiatry <i>Stephanie Phan, Pharm.D., BCPP</i> Clinical Assistant Professor, Associate Department Head, Southwest Georgia Clinical Campus, University of Georgia College of Pharmacy, Albany, Georgia
8:30 a.m.	Vaccines/Immunizations <i>Scott J. Bergman, Pharm.D., BCPS</i> Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois
8:45 a.m.	Geriatrics <i>Stephanie M. Crist, Pharm.D.</i> Assistant Professor of Pharmacy Practice, Division of Ambulatory Care, St. Louis College of Pharmacy, St. Louis, Missouri
9:00 a.m.	Nephrology <i>Mary Vilay, Pharm.D.</i> Associate Professor, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
9:15 a.m.	Neurology <i>Melody Ryan, Pharm.D., MPH, FCCP, BCPS, CGP</i> Professor, University of Kentucky College of Pharmacy, Lexington, Kentucky

Conflict of Interest Disclosures

Scott J. Bergman: Speaker's bureau for Sanofi-Pasteur.

Stephanie M. Crist: no conflicts to disclose. Nicole E. Cieri: no conflicts to disclose. Robert B. Parker: no conflicts to disclose. Stephanie Phan: no conflicts to disclose. Melody Ryan: no conflicts to disclose. Mary Vilay: no conflicts to disclose.

Learning Objectives

- 1. Identify/discuss new and emerging clinical data or patient care trends affecting pharmacotherapy and/or health outcomes in pharmacogenomics.
- 2. Identify the limitations/controversies associated with these late-breaking trials.
- 3. Discuss approaches to apply and implement the new findings into practice.

Self-Assessment Questions

Self-assessment questions are available online at www.accp.com/gc15.

- Analyze and interpret the results of the most recent trials of flibanserin, the first drug approved for hypoactive sexual desire disorder (HSDD) in women this past June.
- Identify the limitations/controversies associated with these trials
- Choose an appropriate patient for use of flibanserin in practice

Background

- DSM-IV-TR: HSDD and female Sexual Arousal Disorder (FSAD) were diagnosed separately
 - DSM-5 diagnostic criteria combine HSDD and FSAD into female sexual interest/arousal disorder
- Consideration for future studies and selecting patients as candidates
 - Approval of flibanserin to treat these disorders has been studied based on now obsolete criteria

Nappi RE. Why are there no FDA-approved treatments for female sexual dysfunction? Exper Opin Pharmacother. 2015;16(12):1735-38 American Psychiatric Association. Highlights of changes from DSM-IV-TR to DSM-5. American Psychiatric Press. Washington D; 2013

Background Prior to flibanserin, no approved pharmacologic treatment for HSDD. 2004: Testosterone patch (Intrinsa) was reviewed by the FDA for HSDD but was not approved Patch was available in Europe but was recently withdrawn due to low usage Simon JA, Kingsberg SA, Shumel B, et al. Efficacy and safety of flibanserin in postmenopausal women with hypoactive sexual desire disorder: results of the SNOWDROP trial. Menopause. 2014;21(6)(633-640.

Interpretation/Analysis

- SNOWDROP had slightly smaller increase in SSEs compared to previous trials of flibanserin in premenopausal women
 1.0 vs 1.6-2.5
- Potentially high placebo effect
- List of prohibited medication greatly reduced compared to previous trials
- Limited to patient in heterosexual relationship and naturally induced menopause

Simon JA, Kingsberg SA, Shumel B, et al. Efficacy and safety of fibanserin in postmenopausal women with hypoactive sexual desire disorder: results of the SNOWDROP trial. Menopause. 2014;21(6)833-840.

- Significant improvement in SSE compared to placebo
 2.5 vs. 1.5 (p<0.001)
- Significant improvement in FSFI
- 1.0 vs. 0.7 (p<0.001)
- Significant decrease in FSDS-R
 -9.4 vs -6.1 (p<0.001)
- Most frequent adverse events:
 - Dizziness, somnolence, nausea
 - 6 serious AE but none deemed related to treatment
 - No evidence of suicidal ideation
 - R, et al. Efficacy of flibanserin in women with hypoactive sexual desire disorder: results from the BEGONM trial. J Sex Med. 2013;10:1807-1815

Additional References

- DeRogatis LR, Komer L, Katz M, et al. Treatment of hypoactive sexual desire disorder in postmenopausal women: efficacy of flibanserin in the VIOLET study. J Sex Med. 2012;9:1074-1085.
- Thorp J, Simon J, Dattani D, et al. Treatment of hypoactive sexual desire disorder in postmenopausal women: efficacy of flibanserin in the DAISY study. J Sex Med. 2012;9:793-804.
- Troconiz IF, Boland K, Staab A. Population pharmacokinetic/pharmacodynamic model for the sedative effects of flibanserin in healthy volunteers. *Pharm Res.* 2012;29:1518-1529

CC Learning Objectives Background Antipsychotic risks and benefits appear to be Identify concerns with reportedly increasing different in young people compared to adults antipsychotic use in young people Higher risk of metabolic adverse effects Unclear impact of hyperprolactinemia on growth Describe antipsychotic use among younger Greater incidence of extrapyramidal symptoms and older children, adolescents, and young Unknown effects on central nervous system development, brain maturation adults in the United States Efficacy of antipsychotics is best evaluated in schizophrenia, autism spectrum disorders, and bipolar disorder Schneider et al. J Psychopharm 2014;28:615-23.

Antipsychotics in Youth								
Antipsychotic	Age group, y	FDA-Approved Indication(s)						
Aripiprazole	13-17 10-17 6-18 6-17	Schizophrenia Bipolar I, manic/mixed Tourette's disorder Irritability/aggression with autistic disorder						
Asenapine	10-17	Bipolar I, manic/mixed episode						
Olanzapine	13-17 13-17 10-17	Schizophrenia Bipolar I, manic/mixed episode Bipolar I, depressed episode (with fluoxetine)						
Quetiapine	13-17 10-17	Schizophrenia Bipolar I, manic/mixed episode						
Paliperidone	12-17	Schizophrenia						
Risperidone	13-17 10-17 5-17	Schizophrenia Bipolar I Irritability/aggression with autistic disorder						
Ziprasidone	10-17	Bipolar I, manic/mixed episode						

Rest	ults					merican pilege of sarmacy
	rcentage ipsycho					ry
	Year	Populati	on with Pre	scription by	/ Age, %	
		1-6 y	7-12 y	13-18 y	19-24 y	
	2006	0.14	0.85	1.10	0.69	
	2008	0.16	0.87	1.18	0.75	
	2010	0.11	0.80	1.19	0.84	

Results	3					American Jollege of Pharmacy		
 Percentage of antipsychotic users with any antipsychotic by prescription source 								
Age		Populati	on with P	rescription	by Year, %			
category, y	2006	2008	2010	2006	2008	2010		

						-
category, y	2006	2008	2010	2006	2008	2010
	Psychiatrist Child/adolescent psychiatri				chiatrist	
1-6	61.0	51.2	57.9	32.1	31.0	29.3
7-12	74.7	71.9	71.9	41.9	39.8	39.2
13-18	79.7	81.0	77.9	40.2	39.0	39.2
19-24	71.1	73.4	70.4	13.2	13.7	14.2

Results	CICC American College of Clinical Pharmacy
 Other classes of psychotropic am people with antipsychotics in 200 	

Medication	1-6 y (n=50,725)	7-12 y (n=247,111)	13-18 y (n=332,051)	19-24 y (n=228,329)
Stimulants	58.7	68.7	44.5	17.1
Antidepressants	20.3	34.0	50.8	59.1
Mood stabilizers	16.5	24.6	34.9	41.4
Benzodiazepines	6.4	6.0	11.7	33.5
Antipsychotics only	27.8	15.0	16.2	18.1

Results	College of Cinical Pharmacy
 Use of any psychothera young people with antip prescriptions, by age: 	
1-6 years (n=925):	13.5%
7-12 years (n=5,939):	20.4%
13-18 years (n=8,198):	24.8%

- □ 19-24 years (n=5,353): 18.8%
- Diagnoses in 2009 among young people with antipsychotic prescriptions, following slide

Results – By Diagnoses								
Diagnosis (2009)	Population with Diagnosis by Age, %							
	1-6 y	7-12 у	13-18 y	19-24 y				
ADHD	52.5	60.1	34.9	11.3				
Autism or mental retardation	23.1	13.8	8.4	5.7				
Disruptive behavioral disorders	20.6	15.7	13.0	2.2				
Bipolar disorder	8.1	12.7	20.5	26.6				
Anxiety	6.9	10.4	13.0	22.9				
Depression	1.8	2.6	24.4	34.5				
Adjustment-related disorders	0.8	0.3	2.7	2.2				
Substance use	0.3	0.2	0.2	0.8				
Schizophrenia	23.5	21.0	1.4	7.5				
Other mental disorder	13.5	20.4	22.6	18.1				

Limitations

- Prescription database captures purchased medications
- Data not available on antipsychotic safety and/or efficacy
- Population denominator was a possibly imprecise estimate
- Service claims data were not available for all patients
- Diagnostic data were not validated by an expert
- Current practices may be different

Conclusions

 Antipsychotic use in younger and older children decreased, but increased in young adults between 2008 and 2010

acc

- Peak antipsychotic use is in adolescents; higher for males
- Antipsychotic prescriptions are more likely to come from a psychiatrist than a child and adolescent psychiatrist
- Stimulants are most often co-prescribed in younger and older children; more likely to have ADHD diagnosis
- Psychotherapy use may be underutilized

1. Identify/discuss new and emerging clinical data or patient care trends affecting pharmacotherapy and/or health outcomes in vaccines/immunizations.

2. Identify the limitations/controversies associated with these late-breaking trials.

3. Discuss approaches to apply and implement the new findings into practice.

Pneumococcal conjugate polysaccharide vaccine

PCV - Prevnar 13

- Produces memory B-cells
- Subsequent exposure boosts response
- □ FDA-approved: 50 years and up, 2011
- □ CDC-recommended:
 - All infants & children, 2010
 - Immunocompromised adults, 2012
 - Everyone 65 years and up, 2014

CAPITA pop	American College of Clinical Pharmacy	
Age range (years)	Subjects (n)	% of study participants
65-69	32,933	39.0
70-74	25,145	29.8
75-79	15,758	18.7
80-84	7,715	9.1
<u>></u> 85	2,941	3.5
van Werkhoven CH, et al.		

Limitations

13

- Post-hoc analysis combining CAP and IPD
- Small number of patients enrolled <u>>85</u> years
- Population had not received previous PPSV
- PCV only recently recommended for children in The Netherlands
- 13% of CAP caused by vaccine serotypes

scbergm@siue.edu

- Identify patient care trends affecting pharmacotherapy and health outcomes in geriatrics
- Identify risks associated with opioid use in patients with dementia
- Discuss approaches to applying these new data into evidence-based practice

Background

- Opioid use among older adults continues to rise
- Neuropathologic findings in young drug abusers similar to those seen in Alzheimer's disease (AD)
- Unanswered question: do opioids have longterm effects on cognition?

Volkow ND. America's Addiction to Opioids: Heroin and Prescription Drug Abuse. Available at: http://www.drugabuse.gov/about-nida/legislative-activities/testimony-to-congress/2015/americas-addiction-to-opioids-he

To determine whether prescription opioid use is associated with higher dementia risk or greater cognitive decline

Methods

- Population-based, prospective cohort study within Group Health (Seattle area)
- Data from Adult Changes in Thought (ACT) Study
 Opioid use identified from computerized
- pharmacy claims data
- Patient visits every two years
- Opioid exposure converted to morphine equivalent doses → total standard doses (TSD)
 1 TSD = morphine 30 mg

Study Participation

- 4,724 participants in original ACT study
 - After exclusions:
 - 3,434 in the dementia analyses
 - 3,993 in CASI analyses

Results, continued

- Mean follow-up: 7.3 years
- 797 (23%) developed dementia
 637 with "possible" or "probable" dementia
- Slightly higher risk of all-cause dementia
- Heaviest opioid use (≥ 91 TSDs), aHR 1.29 (1.02-1.62)
- Heaviest NSAID use (≥ 541 TSDs), aHR 1.31 (1.07-1.62)
 Cumulative heaviest NSAID use categorized as 1200 mg of ibuprofen daily for 1.5 years
- Recent opioid use was not associated with increased rate of cognitive decline

- May under- or over-report NSAID use
- Higher opioid and/or NSAID use may represent poorer overall health compared to little or no opioid/NSAID use
- Conflicting results for risk of dementia with NSAID use
- Measures of pain lacking
- Relatively weak association, not causation

Application to Practice

- Caution use of opioids (and NSAIDs) in individuals who are:
 - Older
 - Female
 - Obese
 - Report fair or poor rate of health
 - Depression
 - □ Little exercise
- Opioid use (and/or NSAID use) does not equal long-term cognitive harm
- More studies necessary to further conclude risk

Study Objective

- Determine current practice pattern of prescribing RAS inhibitors in patients with impaired renal function at time of AMI
 - Specifically interested in association of CKD, AKI and LV function on treatment patterns

Data Collected &

Definitions

- RAS inhibitor Rx at discharge recorded
- CKD-EPI equation used to calculate eGFR
- ESRD = chronic dialysis
- AKI = 0.3 mg/dL or 50% ↑ SCr during hospitalization vs admission value

1 000			acteri	Stics	gorical)	Americ College Clinical Pharma	of
	ESRD (N=81)	eGFR <30 (N=146)	eGFR 30-59 (N=818)	eGFR 60-89 (N=1958)	eGFR ≥90 (n=1220)	Total (N=4223)	p-value
Age (y)	62	65	66	59	53	59	<0.001
Sex							< 0.00
Male	54%	56%	56%	70%	72%	67%	
Female	46%	44%	44%	30%	28%	33%	
Race							< 0.00
White	47%	62%	71%	71%	61%	67%	
Black	51%	32%	24%	22%	31%	26%	
Other	2%	6%	5%	7%	8%	7%	
Ethnicity							< 0.00
Hispanic	6%	7%	4%	6%	9%	6%	
Non-Hisp	94%	93%	96%	94%	91%	94%	

	Baseline Characteristics									
	ESRD (N=81)	eGFR <30 (N=146)	eGFR 30-59 (N=818)	eGFR 60-89 (N=1958)	eGFR ≥90 (n=1220)	Total (N=4223)	p-value			
HTN	88%	91%	80%	64%	58%	67%	<0.001			
DM	70%	64%	41%	26%	26%	31%	<0.001			
Hx MI /PCI/CABG	52%	56%	57%	48%	45%	49%	<0.001			
CHF	24%	30%	15%	7%	4%	9%	<0.001			
<u>MI dx</u>							<0.001			
STEMI	17%	16%	38%	46%	47%	43%				
NSTEMI	83%	84%	62%	54%	53%	57%				
<u>AKI</u>							<0.001			
No AKI	0%	64%	79%	91%	89%	85%				
AKI	0%	36%	21%	9%	11%	13%				
Dialysis	100%	0%	0%	0%	0%	2%				

	ESRD (N=81)	eGFR <30 (N=146)	eGFR 30-59 (N=818)	eGFR 60-89 (N=1958)	eGFR ≥90 (N=1220)	p-value*
All	60.5%	50.0%	72.6%	76.9%	78.4%	<0.001
EF <40%	57.9%	52.4%	79.8%	83.0%	89.3%	<0.001
EF ≥40%	61.3%	49.0%	70.8%	75.6%	76.1%	<0.001
No AKI		54.8%	75.3%	77.9%	78.4%	<0.001
AKI		41.5%	62.4%	66.9%	77.9%	<0.001
				66.9% tegories, ex		

Take Home Message

American College of Clinical Pharmacy

- $\blacksquare \downarrow \mathsf{RAS}$ inhibitor use with $\downarrow \mathsf{eGFR}$
- RAS inhibitor prescribing may be influenced more by presence of CKD than ↓ EF
- AKI and CKD were barriers to RAS inhibitor prescribing post AMI
- Possibly patients who would benefit from RAS inhibitors are not receiving them
- More work is needed

- Identify/discuss new and emerging clinical data or patient care trends affecting pharmacotherapy and/or health outcomes in the area of neurology.
- Identify the limitations/controversies associated with this late-breaking trial.
- Discuss approaches to apply and implement the new findings into practice.

3-D Printing ⇒

- First 3-D (additive manufacturing) performed in 1981 with plastics
- Computer-aided design is used to create a computerized model of a real object, it is converted into code, the printer head distributes layers of material (powder, liquid, metal, etc) until the item is printed
- Since that time, used for a wide variety of items from food to weapons

3-D Medical Printing Titanium jaw replacement March 2012

- Facial reconstruction with titanium replacements and 3-D modeling March 2014
- Printing skin directly into wounds July 2014
- Experiments with living cells on a cellulose matrix to produce cartilage and liver tissue August 2013
- FDA approves bone tether plate February 2015

http://www.bbc.com/news/technology-16907104 http://www.bbc.com/news/technology-16907104 http://www.telegraph.co.uk/news/health/10691753/Man-makes-surgical-history-after-having abuilt-using-3D-printed-parts.html http://adprintingnidustry.com/2014/0721/us-armys-3d-printed-skin-near-ready-clinical-trials tp://hediplomat.com/2013/08/chinese-scientists-are-3d-printing-ears-and-liver-subil-tup//wwt.fdg.gov/medicaldevice-fore-ducation-fore-3d-printing-ears-and-liver-subil-tup//wwt.fdg.gov/medicaldevice-fore-ducation-fore-3d-printing-ears-and-liver-subil-tup//wwt.fdg.gov/medicaldevice-fore-ducation-fore-3d-printing-ears-and-liver-subil-tup//wwt.fdg.gov/medicaldevice-fore-ducation-fore-3d-printing-ears-and-liver-subil-tup//wwt.fdg.gov/medicaldevice-fore-ducation-fore-3d-printing-ears-and-liver-subil-tup/advice-fore-fore-3d-printing-ears-and-liver-subil-fore-tup/advice-fore-3d-printing-ears-and-liver-subil-fore-ducation-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-ears-and-liver-subil-fore-3d-printing-

thediplomat.com/2013/08/chinese-scientists-are-3d-printing-ears-and-liver www.fda.gov/medicaldevices/productsandmedicalprocedures/deviceappro slearances/ucm429417.htm

3-D Printed Medicine

- First reported samples printed in 2000
- Able to make high-concentration tablets; up to 68% of tablet weight may be drug
- Controlled-release properties can be attained through mixtures or coatings
- No molding or compression needed
- Different tablet shapes are possible (sphere, pyramid, cube)

Katstra WE. J Controlled Release 2000;66:1-9. Yu DG. J Pharm Sci 2007;96:2446-56. Yu DG. J Pharm Pharmacol 2009;61:323-9. Govanes A. Int J Pharm 2015;

