Central Nervous System PRN Focus Session—Management of the Patient with Traumatic Brain Injury
Activity No. 0217-0000-11-102-L01-P (Knowledge-Based Activity)

Tuesday, October 18
3:30 p.m.–5:30 p.m.
Convention Center: Rooms 317 & 318

Moderator: Michele Y. Splinter, Pharm.D., BCPS
Clinical Associate Professor, University of Oklahoma College of Pharmacy, Oklahoma City, Oklahoma

Agenda

3:30 p.m. Emerging Treatment—Bench to Bedside
Sunita Dergalust, Pharm.D., BCPS
Clinical Pharmacist, Neurology/Neurosurgery, West Los Angeles VA Healthcare Center, Los Angeles, California

4:20 p.m. Treatment of the Neurobehavioral Sequelae of TBI
Stacia R. Wilhelm, Pharm.D., BCPS
Clinical Coordinator, Craig Hospital, Englewood, Colorado

5:10 p.m. Panel Discussion
Sunita Dergalust, Pharm.D., BCPS
Stacia R. Wilhelm, Pharm.D., BCPS

Faculty Conflict of Interest Disclosures

Sunita Dergalust: no conflicts to disclose.
Stacia R. Wilhelm: no conflicts to disclose.

Learning Objectives

1. Review current standards and practices on the clinical management of TBI in the acute setting.
2. Evaluate promising intervention strategies for treatment of TBI.
3. Interpret results of recent pharmacological trials.
4. Recognize cognitive deficits associated with TBI and assess pharmacotherapy to treat these deficits.
5. Recognize behavior disturbances associated with TBI and formulate an appropriate treatment plan.

Self-Assessment Questions

Self-assessment questions are available online at www.accp.com/am
Pharmacologic Treatment of Neurobehavioral Effects of Traumatic Brain Injury

Stacia Wilhelm, Pharm.D., BCPS
The presenter has no actual or potential conflict of interest in relation to this program.
Objectives

- Recognize cognitive deficits associated with TBI and assess pharmacotherapy to treat these deficits
- Recognize behavior disturbances associated with TBI and formulate an appropriate treatment plan
Craig Hospital

- Specialty rehabilitation of TBI and SCI patients
- Ranked in the Top 10 rehabilitation hospitals by *U.S. News & World Report* for over 20 years
- Federally designated as a Model Systems Center for both TBI and SCI research
- TBI National Statistical Database
TBI Model Systems

- Funded by National Institute on Disability and Rehabilitation Research (NIDRR)
- Partner with VA, DOD, and NIH
- Currently 16 TBIMS centers
- Systematically collect data for research analysis
- Stimulate more rigorous research
Guidelines for the Pharmacologic Treatment of Neurobehavioral Sequelae of Traumatic Brain Injury

<table>
<thead>
<tr>
<th>Standards</th>
<th>Guidelines</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on at least 1, well-designed class I study with adequate sample OR overwhelming class II evidence</td>
<td>Based on well-designed class II studies</td>
<td>Based on class II or class III studies with additional grounds to support a recommendation</td>
</tr>
</tbody>
</table>
Obstacles to Developing Standards of Care

- Heterogeneity of patient population
 - Individual injury
 - Neuroanatomy
 - Neurophysiology
 - Neurochemistry
 - Variability of brain function
 - Pre-morbid brain function
 - Post-traumatic sequelae
Obstacles to Developing Standard of Care

- Variable responses to medications
 - Some patients benefit
 - Some patients get worse
 - Some patients more sensitive
 - Some patients resistant or need extreme doses

- Compliance issues
 - Memory
 - Adverse effects and interactions
Obstacles to Developing Standards of Care

- Measuring cognition and behavior
 - Patient may test well, but function poorly
 - Patient may test poorly, but function well

- Variations in biochemistry balance
 - Serotonin
 - Dopamine
 - Acetylcholine
 - Norepinephrine

* Lack of evidence ≠ lack of efficacy *
Neurotransmitters

- Serotonin
 - Memory
 - Emotion
 - Sleep/wake

- Dopamine
 - Voluntary movement
 - Motivation

- Acetylcholine
 - Memory
 - Parasympathetic nervous system

- Norepinephrine
 - Wakefulness
 - Arousal
Neurotransmitters

- **Glutamate**
 - NMDA receptor
 - Cognition
 - Overstimulation → cell death

- **GABA**
 - Inhibitory neurotransmitter
Serotonin

Norepinephrine

Impulsivity

Sex Appetite Aggression

Motivation

Mood, Emotion, Cognition

Anxiety Irritability

Energy Interest

Drive

Dopamine
Treatment Plan

Injury → Correlating neurotransmitter(s) → Symptom(s)

• Start low, go slow
• One intervention at a time

Changes by phase

Acute
Subacute
Chronic

Re-evaluate
Brain Injury Sequelae

- Cognitive deficiencies
 - Attention/concentration and speed of processing
 - Memory
 - Executive functions
- Behavioral
- Emotional
- Other
 - Fatigue
 - Insomnia
 - Aphasia
 - Pseudobulbar affect (PBA)
Treatment of Cognitive Deficiencies

- Dopamine, acetylcholine, serotonin, norepinephrine
- No “standards”, just guidelines and options
- Dopamine enhancers
 - Bromocriptine (Parlodel®)
 - Guideline-level recommendation
 - Executive functioning
 - Divided attention
 - Initiation
 - Mental flexibility
Treatment of Cognitive Deficiencies

- **Dopamine enhancers**
 - Amantadine (Symmetrel®)
 - NMDA antagonist
 - General cognitive functions
 - Attention/concentration and speed of processing
 - Apathy/poor initiation
 - Motivation
 - Perseveration
Treatment of Cognitive Deficiencies

- **Dopamine enhancers**
 - Carbidopa/levodopa (Sinemet®), pramipexole (Mirapex®), selegiline (Eldepryl®)
 - Initiation
 - Alertness
 - Wakefulness
Treatment of Cognitive Deficiencies

- **Stimulants**
 - Methylphenidate (Ritalin®)
 - Dopamine and norepinephrine
 - Guideline- and option-level recommendations
 - Memory
 - Attention/concentration and speed of processing
 - Mental processing
 - Learning
 - Arousal
 - Apathy/poor initiation
 - General cognitive functions
Treatment of Cognitive Deficiencies

- **Stimulants**
 - **Dextroamphetamine (Dexedrine®)**
 - Dopamine and norepinephrine
 - Attention
 - Working memory
 - **Modafinil (Provigil®)**
 - Dopamine, histamine, alpha-1 agonist, inhibits GABA
 - Attention
 - Apathy/poor initiation
 - Memory
 - Speed of processing
Treatment of Cognitive Deficiencies

- Acetylcholinesterase inhibitors
 - Donepezil (Aricept®)
 - Guideline-level recommendation
 - Better general functioning
 - Attention/concentration and speed of processing
 - Learning
 - Memory
 - Apathy/poor initiation
Treatment of Cognitive Deficiencies

- Acetylcholinesterase inhibitors
 - Other acetylcholinesterase inhibitors
 - Galantamine (Razadyne®)
 - Rivastigmine (Exelon®)
 - Physostigmine
Treatment of Cognitive Deficiencies

- Other options
 - Memantine (Namenda®)
 - NMDA receptor antagonist
 - Cognitive function
 - Memory
 - Bupropion (Wellbutrin®)
 - Dopamine and norepinephrine reuptake inhibitor
 - Cognitive function
Treatment of Cognitive Deficiencies

- Other options
 - Atomoxetine (Strattera®)
 - Selective norepinephrine reuptake inhibitor
 - Attention (lower doses)
 - Memory
 - Arousal (higher doses)
 - Apathy/poor initiation
 - Speed of processing
A 51 y/o female involved in a MVA resulting in diffuse axonal injury is experiencing deficits in wakefulness, arousal, purpose, and initiation. An appropriate neurotransmitter target for pharmacotherapy includes:

- A. Glutamate agonist
- B. GABA agonist
- C. Dopamine agonist
- D. Dopamine antagonist
Treatment of Aggression

- Disruption to dopamine, norepinephrine, acetylcholine, serotonin
- No standards
- Guideline-level recommendations
 - Propranolol (Inderal®)
 - Pindolol
Treatment of Aggression

Options

- Antihypertensives
 - Metoprolol (Lopressor®)
 - Clonidine (Catapres®)

Options

- Mood stabilizers
 - Carbamazepine (Tegretol®)
 - Valproic acid (Depakote®)
 - Lithium (Lithobid®)
Treatment of Aggression

- Options
 - Antidepressants
 - Sertraline (Zoloft®)
 - Paroxetine (Paxil®)
 - Fluoxetine (Prozac®)
 - Citalopram (Celexa®)
 - Antidepressants
 - Trazodone (Desyrel®)
 - Amitriptyline (Elavil®)
 - Desipramine (Norpramin®)
 - Protriptyline (Vivactil®)
Treatment of Aggression

Options

- **Atypical antipsychotics**
 - Risperidone (Risperdal®)
 - Clozapine (Clozaril®)
 - Olanzapine (Zyprexa®)
 - Quetiapine (Seroquel®)
 - Ziprasidone (Geodon®)

- **Stimulants**
 - Methylphenidate (Ritalin®)
 - Dextroamphetamine (Dexedrine®)

- **Hormones**
 - Estrogens
 - Medroxyprogesterone (DepoProvera®)

- **Others**
 - Amantadine (Symmetrel®)
 - Buspirone (Buspar®)
A patient’s brain CT scan shows bilateral frontal and diffuse axonal injury. He is impulsive and agitated. The best option for pharmacologic treatment of his agitation is:

- A. Haloperidol
- B. Diazepam
- C. Diphenhydramine
- D. Propranolol
Treatment of Psychiatric Disorders

- Serotonin, norepinephrine, dopamine
- Depression/emotional deficits
 - Antidepressants (TCA and selective serotonin reuptake inhibitors)
 - Nortriptyline (Pamelor®)
 - Amitriptyline (Elavil®)
 - Desipramine (Norpramin®)
 - Citalopram (Celexa®)
 - Escitalopram (Lexapro®)
 - Paroxetine (Paxil®)
 - Sertraline (Zoloft®)
Treatment of Psychiatric Disorders

- Depression/emotional deficits
 - Venlafaxine (Effexor®), serotonin/norepinephrine
 - Atomoxetine (Strattera®), norepinephrine
 - Modafinil (Provigil®), ↓ GABA

- Bipolar disorder
 - Valproic acid (Depakote®)
 - Carbamazepine (Tegretol®)
 - Lithium

- Psychosis
 - Olanzapine (Zyprexa®)
 - Clozapine (Clozaril®)
Treatment of Psychiatric Disorders

- Anxiety
 - Tricyclic antidepressants (TCA)
 - Selective serotonin reuptake inhibitors (SSRI)
 - Benzodiazepines
 - Lorazepam (Ativan®)
 - Clonazepam (Klonopin®)
 - May interfere with cognition
An obstacle to treating a TBI patient with depression includes:

A. The patient may be more sensitive or less responsive to medication
B. The patient’s previous history does not contribute to current symptoms
C. Depression in TBI patients is not affected by neurotransmitters
D. Two medications should be started simultaneously
Medications for Fatigue

- Acetylcholinesterase inhibitors
- Methylphenidate (Ritalin®)
- Modafinil (Provigil®)
- Atomoxetine (Strattera®)
Medications for Insomnia

- Trazodone (Desyrel®)
- Imipramine (Tofranil®)
- Nortriptyline (Pamelor®)
- Mirtazapine (Remeron®)
- Ramelteon (Rozerem®)
Medications for Aphasia

- Tricyclic antidepressants
 - Nortriptyline (Pamelor®)
 - Desipramine (Norpramin®)
- Increase serotonin and norepinephrine
Pseudobulbar Affect

- Uncontrollable, inappropriate affect
- Some success
 - Antidepressants (TCA, SSRI)
 - Dopaminergic agents
Pseudobulbar Affect

- Dextromethorphan/quinidine (Nuedexta®)
 - Discovered while studying different use for ALS
 - Dextromethorphan
 - Cough suppressant
 - NMDA antagonist
 - Quinidine
 - Antiarrhythmic agent
 - Slow metabolism of dextromethorphan
Side Effects

- Are sometimes “therapeutic”
- Vary among medications in each class
- Guide medication selection
- Make some medications inappropriate for brain injury patients
Medications to Use with Caution in TBI

- Benzodiazepines
 - Exacerbate confusion ("benzodiazepine psychosis")
 - Impairs memory
 - Common for insomnia and agitation
 - Stopping the medication may be the "therapeutic event"
Medications to Use with Caution in TBI

- **First generation antipsychotics (Haldol®)**
 - Block dopamine → interferes with recovery
 - Sedation → confusion → exacerbate aggression
 - **Stopping** medication can be therapeutic

- **Phenytoin (Dilantin®)**
 - Anticonvulsant
 - Impairs cognitive function recovery initially
 - Better alternatives for seizure prophylaxis
A TBI patient recently transferred from the ICU has been receiving haloperidol for aggressive behavior. He continues to be assaultive toward caregivers, especially at night. The best intervention would be:

- A. Adding lorazepam PRN
- B. Adding amantadine PRN
- C. Increasing the haloperidol dose
- D. Stopping the haloperidol
A TBI patient with a pre-morbid history of seizure disorder is currently receiving levetiracetam and phenytoin. An intervention to facilitate cognitive recovery would be:

A. Stop levetiracetam and increase phenytoin dose
B. Stop phenytoin and add lacosamide
C. Add phenobarbital
D. Avoid making any changes to current regimen
Obstacles to good evidence

- Heterogeneity of patient population
- Variable responses to medications
- Compliance issues
- Measuring cognition and behavior
- Variations in biochemistry balance
Summary

- Limited evidence
 - Few standards
 - Few guidelines
 - Lots of options
Summary

- Treatment of cognitive deficiencies
 - Dopamine enhancers
 - Stimulants
 - Acetylcholinesterase inhibitors
 - Norepinephrine reuptake inhibitor
 - NMDA antagonist
Summary

Treatment of aggression

- Beta blockers
- Alpha adrenergic agonist
- Mood stabilizers
- Antidepressants
- Atypical antipsychotics
- Stimulants
- Dopamine enhancers
Summary

Psychiatric disorders
- Depression
- Bipolar disorder
- Psychosis
- Anxiety

Treatment
- TCA, SSRI
- Mood stabilizers
- Atypical antipsychotics
- TCA, SSRI

Try to Avoid
- First generation antipsychotics
- Benzodiazepines
Summary

- Treatment of fatigue
 - Acetylcholinesterase inhibitors
 - Methylphenidate (Ritalin®)
 - Modafinil (Provigil®)
 - Atomoxetine (Strattera®)
Summary

- Treatment of sleep disorders
 - Trazodone (Desyrel®)
 - Imipramine (Tofranil®)
 - Nortriptyline (Pamelor®)
 - Mirtazapine (Remeron®)
 - Ramelteon (Rozerem®)
Summary

- Treatment of aphasia
 - Nortriptyline (Pamelor®)
 - Desipramine (Norpramin®)

- Treatment of pseudobulbar affect
 - Dextromethorphan/quinidine (Nuedexta®)
 - Antidepressants (TCA, SSRI)
 - Dopaminergic agents
Summary

- Side effects to monitor
 - Sexual side effects
 - Headache, GI
 - Dizziness
 - Insomnia
 - Sedation
 - Weight gain
 - Extrapyramidal symptoms
Summary

Medications to try to avoid

- Benzodiazepines
- First generation antipsychotics
- Phenytoin (Dilantin®)
Thank you for your attention.
Selected References

Selected References