Critical Care PRN and Society of Critical Care Medicine Focus Session—Sedation and Delirium in the ICU: Update on the Status of the 2011 SCCM Guidelines

Activity No. 0217-0000-11-079-L01-P (Application-Based Activity)

Monday, October 17

3:45 p.m.–5:45 p.m. Convention Center: Spirit of Pittsburgh Ballroom A

Moderator: Jeremy D. Flynn, Pharm.D., BCPS Assistant Professor, Department of Pharmacy Practice and Science, University of Kentucky, Lexington, Kentucky

Agenda

3:45 p.m.	Pharmacologic Options for Analgesia and Sedation in the Critically Ill Joseph F. Dasta, M.S., FCCP Professor Emeritus, The Ohio State University College of Pharmacy, Adjunct Professor, The University of Texas College of Pharmacy, Austin, Texas			
4:15 p.m.	Interruption and Mobilization John Kress, M.D. Associate Professor of Medicine, University of Chicago Department of Medicine, Section of Pulmonary and Critical Care Director, MICU, Chicago, Illinois			
4:45 p.m.	Recognizing, Preventing, and Treating Delirium in the Critically Ill John W. Devlin, Pharm.D., FCCP, BCPS Associate Professor of Pharmacy, Northeastern University, Boston, Massachusetts			
5:15 p.m.	Practical Application of the Guidelines to Daily Practice Gilles L. Fraser, Pharm.D., FCCM Professor of Medicine, Tufts University School of Medicine; Clinical Specialist, Critical Care, Maine Medical Center, Portland, Maine			

Faculty Conflict of Interest Disclosures

Joseph F. Dasta: consultant/member of advisory board for Cadence Pharmaceuticals, Hospira, Pacira Pharmaceuticals, Otsuka America Pharmaceuticals, Edge Therapeutics; speaker's bureau for Cadence Pharmaceuticals.

John W. Devlin: speaker's bureau for Hospira Pharma; received grant funding/research support from Hospira Pharma.

Gilles L. Fraser: no conflicts to disclose.

John Kress: speaker's bureau for Hospira; received grant funding/research support from Hospira.

Learning Objectives

- 1. Summarize the pharmacologic options for analgesia and sedation in ICU patient populations.
- 2. Review and implement the guideline recommendations, specifically those that represent significant changes in practice.
- 3. Discuss the current literature that supports the recommendations.
- 4. Discuss the barriers and challenges to daily sedation interruption in a heterogenous group of ICU patients (medical, surgical, neuro, etc.).
- 5. Review the literature and benefit of early mobilization in ICU patients and it's association with clinical outcomes .
- 6. Determine the potential influence of sedation pharmacotherapy on mobilization, neuromuscular weakness, and clinical outcomes.
- 7. Describe the association between sedation interruption, mobilization, and functional outcomes of ICU patients.
- 8. Describe the clinical significance of delirium in patients in the ICU.
- 9. Describe how to incorporate the use of delirium screening tools into daily practice.
- 10. Identify reversible risk factors for delirium in critically-ill patients and then develop practice strategies to minimize the exposure of patients to these risk.
- 11. Develop an evidence-based treatment plan for delirium in a critically-ill patient.
- 12. Discuss the potential difficulties with incorporating the major changes suggested in the guidelines to daily practice.
- 13. Review potentials strategies to successfully implement daily interruption of sedation and early mobilization into daily practice.
- 14. Develop a comprehensive sedation plan to minimize adverse events, avoid delirium and hasten separation from mechanical ventilation.

Self-Assessment Questions

Self-assessment questions are available online at www.accp.com/am

Pharmacologic options for analgesia and sedation in the critically ill

Joseph F. Dasta, M.Sc., FCCM, FCCP Professor Emeritus The Ohio State University Adjunct Professor University of Texas

Disclosures

- Consultant
 Cadence, Hospira, Pacira
- Member, speakers bureau
 - Cadence
 - France Foundation (funded by Hospira)

Update on the SCCM Guideline *Pain, Agitation, Delirum (PAD)*

- First official meeting January 2006
- 20 expert panel members -3 Pharmacists – pain, sedation, delirium, outcomes teams
- Database >19,000 articles
- · GRADE system used
 - Quality of the evidence
 - Strength of the recommendations
- Each team developed relevant questions

Update of the SCCM Guideline *Pain, Agitation, Delirum (PAD)*

- Each question
 - Evidence (high, moderate, low/very low)
 - Strength of recommendation
 - Strong, i.e., We recommend....
 - Weak, i.e., We suggest....
 - No recommendation (expert opinion not permitted)
- No industry funding or involvement
- Conflict of interest statement reported by all members

Update of the SCCM Guideline *Pain, Agitation, Delirum (PAD)*

- Published in full Critical Care Medicine
- Executive summary AJHP – ASHP is a sponsoring organization
- Due to rigorous process there should be
 No surprises
- Task force members embargoed until guideline appears in public forum (in press)

ICU Analgesic Pharmacopeia

- IV opioids
- IV NSAIDS
- IV acetaminophen
- Elastomeric pumps with local anesthetics delivered to the wound site
- IV ketamine
- Epidural, neuraxial administration
- Potential future drugs
 - IV diclofenac
 - Depo-bupivacaine injected at wound site
 - Sublingual suferitanil delivery device
 - Morphine 6-glucuronide

Clinical and Economics of Inappropriate Acute Pain Management

- Continued pain can result in increased complications, delirium, and longer LOS
- Oversedation prolongs ventilator time & LOS
- Difficult to implement early mobilization efforts when ICU patients experience pain
- Multimodal approach is often successful
- Analgesic ADEs are expensive
- Most analgesics have a low acquisition cost
- No cost-effectiveness studies exist

Pain in the ICU

- >50% of ICU patients experience pain
 Procedural and non-procedural pain
- Too many patients relate the terrors of experiencing pain acutely, which can lead to chronic pain
- · We just aren't doing a very good job
- · Pain should be assessed repeatedly
- Validated pain assessment tools should be used – examples include BPS, CPOT

Treating Agitation

- Trend towards titrating to a lighter degree of sedation
- · Increasing use of early mobilization
- Trend to minimizing wide-spread use of benzodiazepines
- Increased appreciation of pharmacoeconomic implications of Inadequate or excessive sedation
 - Effects on LOS and time on the ventilator
 - Increase in health care costs

Life in the real world

- Greater than 40% patients are more deeply sedated than desired
- Drug-induced coma present during 32% of patient evaluations
 - Yet only 2.6% rated as "oversedated"
- How could this be?
- Not in my ICU

Crit Care Med 2007;35:393 Anesthesiology 2007;106:687

ICU Sedation Pharmacopeia

- Benzodiazepines GABA agonists
 - Long history of use acutely and long-term
 - Differ by pharmacokinetic properties
 - Recent appreciation of deliriogenic effects
 - Respiratory and cardiovascular depression
- Propofol GABA agonist
 - Long history of use in OR and ICU
 - Respiratory and cardiovascular depression
 - Recent appreciation of PRIS

ICU Sedation Pharmacopeia

- · Fospropofol (Aqueous solution)
 - Prodrug converted to propofol in blood
 - One pilot study in ICU patients
 - Sedation target achieved
 - Triglyceride concentrations fell by 6 mg/dL with fospropofol; increase by 31 mg/dL with propofol
- Ketamine
 - Resurgence of interest
 - Use in non-dissociative dosages
 - Opioid sparing and sedative sparing

Anesth Analg 2011;113:550

Dexmedetomidine

- · Alpha-2-adrenergic agonist
 - Sedating, anxiolytic, and opioid-sparing properties
 - Permits patient awareness and responsiveness upon stimulation ("cooperative" sedation)
- Clinical perspective
 - No loading dose needed
 - Does not cause respiratory depression
 - May play a role in ventilator weaning
 - Sympatholytic (hypotension and bradycardia)
 - Don't adjust dosage any sooner than q 20-30 min
 - Increasing experience in alcohol withdrawal

Ann Pharmacother 2009;43:2064

SEDCOM: Dexmedetomidine vs Midazolam

Double-blind, randomized, multicenter trial comparing long-term (> 24 hr)

- dexmedetomidine (dex, n = 244) with midazolam (mz, n = 122) Sadditize (dex (day, 1 = 244) with midazolam (mz, n = 122)
- Sedatives (dex 0.2-1.4 µg/kg/hr or mz 0.02-0.1 mg/kg/hr) titrated to light sedation (RASS -2 to +1), administered up to 30 days
- · All patients underwent daily arousal assessments and drug titration Q 4 hours

Outcome	Midazolam (n = 122)	Dexmedetomidine (n = 244)	P-Value
Time in target sedation range, %	75.1	77.3	0.18
Duration of sedation, days	4.1	3.5	0.01
Time to extubation, days	5.6	3.7	0.01
ICU LOS, days	7.6	5.9	0.24
Delirium prevalence	93 (77%)	132 (54%)	0.001
Delirium-free davs	1.7	2.5	0.002

SEDCOM Trial: Safety Outcomes			
Outcome	Midazolam (n = 122)	Dexmedetomidine (n = 244)	P-Value
Bradycardia	23 (18.9%)	103 (42.2%)	0.001
Bradycardia needing treatment	1 (0.8%)	12 <u>(</u> 4.9%)	0.07
Tachycardia	54 (44.3%)	62 (25.4%)	0.001
Hypertension requiring intervention	36 (29.5%)	46 (18.9%)	0.02
Hyperglycemia	52 (42.6%)	138 (56.6%)	0.02
Infections	24 (19.7%)	25 (10.2%)	0.02
JAMA. 2009;301(5):489			

Effects of Early Mobilization in Mechanically-ventilated ICU patients

- · Shift in care from deep to light sedation
- Early mobilization of patients may improve functional outcomes and delirium
- 104 ICU patients ventilated <72 hours
- · Randomized trial
 - Daily sedation interruption with early exercise and mobilization (PT and OT)
 - Daily sedation interruption and standard care

Lancet 2009;373:1874.

Results			
Variable	Control	Intervention	P-value
Days ICU delirium	4 (2-7)	2 (0-6)	0.03
% time with delirium	57 (33-69)	33 (0-58)	0.02
Days of ventilation	6.1 (4-9)	3.4 (2-7)	0.02
Days of ICU stay	7.9 (6-13)	5.9 (4-13)	0.08

Lancet 2009;373:1874.

Analgosedation

- Provide analgesics First, then supplement with sedative-hypnotic, if needed
- Also known as analgesia-first (A-1) sedation
- Acknowledges that pain is a cause of agitation
- Nine trials in Europe, one trial in Thailand
- Continuous infusion of remifentanil or fentanyl vs. sedative-hypnotic based regimen and prn opioids
- 30–74% required benzodiazepine/propofol rescue
 Encouraging results of shorter ICU time with analgosedation regimen but the final word isn't in yet

Anesthesiology. 2004;101:640 Br J Anaesth. 2007;98:76 Intensive Care Med. 2009;35:291 Lancet. 2010;375(9713):475

Summary

- · Renewed focus on pain, then agitation
- Better understanding of benefits and risks of the pharmacopeia of available agents
- · Protocolized care is preferred
- · Evaluate total cost of care
- Promising new analgesics that may reduce the incidence of opioid-associated ADEs
- · No new sedatives in the horizon

Prevalence of ICU Delirium Adults: 60-80% of MICU/SICU/TICU mechanically ventilated patients develop delirium

- Children: 13.2%
- 20-50% of lower severity ICU patients develop delirium
- Hypoactive more common than hyperactive
- Most delirium goes undiagnosed in ICU if a validated delirium screening tool is not implemented

Ouimet S, et al. Intensive Care Med. 2007;33:66-73 Dubbis MJ, et al. Intensive Care Med 2001;27:1297-1304 Ety EW, et al. Intensive Care Med 2001;27:1282-1300. Ety EW, et al. AIMA. 2001;265,2703-2710. Pandharipande PP, et al. J Trauma. 2008;65:34-41. Latl, et al. Crit Care Med 2019; 37:1588 Smith HAB, et al. Crit Care Med 2011; 39:150-7.

Intensive Care Delirium Screening Checklist

- 1. Altered level of consciousness
- 2. Inattention
- 3. Disorientation
- 4. Hallucinations
- 5. Psychomotor agitation or retardation
- 6. Inappropriate speech
- 7. Sleep/wake cycle disturbances
- 8. Symptom fluctuation
- Score 1 point for each component present during shift.
 - Score of 1-3 = Subsyndromal Delirium
 Score of ≥ 4 = Delirium
 - Score of 2 4 = Deliriun

Bergeron N, et al. Intensive Care Med. 2001;27:859-864. Ouimet S, et al. Intensive Care Med. 2007; 33:1007-1013

Current Delirium Screening Practices of Critical Care Pharmacists

- Delirium status frequently or always discussed: 50%
- Delirium status screened \geq 50% of the time: 18%
- Pharmacist screened for delirium ≥ 1 patient: 32%
 64% screen for delirium in ≤ 10% of patients
- · Barriers to delirium screening per pharmacists:
 - Lack of time = 34%
 - Is a nursing role = 24%
 - Do not feel comfortable using screening tool = 13%

Devlin JW et al. Ann Pharmacotherapy 2011 (in press)

Trauma-Surgical Nurses in a STICU where delirium screening tool not yet implemented

 Bedside RN
 Phase 1
 Phase 2
 Phase 3

 Method
 No screening
 ICDSC
 ICDSC

delirium detection	tool	ICDSC	
Education	None	ICDSC validation On;y	Didactic lecture in classroom by ICU PharmD, web-based module with self ass't questions and bedside teaching in at least 2 pts by ICU RN educator
Detection of delirium vs. validated judge (kappa)	0.403	0.624	0.735
Delirium knowledge (out of 10)	6.1± 1.4`	6.5 ± 1.4	8.2 ± 1.4; p=0.001 (phase 2 vs. phase 3)

Strategies to Boost Delirium Screening

- Ensure sedation assessment is occurring regularly and reliably
 Obtain strong buy-in from both RN and MD ICU managers
- Education:
- - Didactic (e.g. web) and at bedside
 - Delivered to both day and night nurses
- Ensure that education is repeated on a continuous basis
- Should include all physicians
 Ability to recognize delivium may be served.
- Ability to recognize delirium may be compromised in routine practice (e.g. sensitivity of CAM-ICU = 47% in 10 Dutch ICUs)
- Clinicians should be very comfortable with "not being able to evaluate" all symptoms of delirium in some patients.
- Nurses have been evaluating many delirium symptoms for
- years.....they just do not realize it!
- Incorporate in any DA-SBT protocol and daily rounds checklist

Devlin JW et al. Crit Care 2008 12; R19 Devlin JW et al. Intens Care Med 2007;33:929-40 Devlin JW et al. *Crit Care Med*. 2007; 35:2721-2724. Van Eijk MM et al. AJRCCM 2011;184(3):340-4.

Early Mobilization				
	Mobilization (N = 49)	Control (N = 55)	P - Value	
ICU/hospital days with delirium (days)	2	4	0.03	
% time in ICU with delirium	33%	57%	0.02	
% time in Hospital with Delirium	28%	41%	0.01	

Schweickert WD, et al. Lancet. 2009;373:1874-1882.

Daily Awakening –Spontaneous Breathing Trial

	DA-SBT (N = 49)	SBT only (N = 55)	P - Value
Coma (days)	2	3	0.03
Delirium (days)	2	2	0.55
*Median days			
irard TD, et al. Lancet. 2008;371:126-134.			

MIND Trial Results				
Outcome	Haloperidol, n = 35	Ziprasidone, n = 30	Placebo, n = 36	P-value
Delirium/coma-free days	14.0	15.0	12.5	0.66
Delirium days	4	4	4	0.93
Resolution of delirium on study drug, n (%	6) 24 (69)	23 (77)	21 (58)	0.28
Coma days	2	2	2	0.90
% of days accurately sedated	70	64	71	0.91
Ventilator-free days	7.8	12.0	12.5	0.25
Length of stay, days ICU Hospital 21-day mortality, n (%)	11.7 13.8 4 (11)	9.6 13.5 4 (13)	7.3 15.4 6 (17)	0.70 0.68 0.81
Average extrapyramidal symptoms score	0	0	0	0.56
Girard TD, et al. Crit Care Med. 2010;38(2)	:428-437.			

Efficacy and safety of quetiapine in critically ill patients with delirium: A prospective, multicenter, randomized, double-blind, placebo-controlled pilot study* John W. Devlin, PharmD; Russel J. Roberts, PharmD; Jeffrey J. Fong, PharmD; Yoanna Skrobik, MD; Richard R. Riker, MD; Nicholas S. Hill, MD; Tracey Robbins, RN; Erik Garpestad, MD · Design: Double-blind, placebo-controlled, randomized trial Setting: 3 academic medical centers Intervention: - Quetiapine 50mg PO/NGT twice daily titrated to a maximum of 200mg twice daily) vs Placebo - PRN IV haloperidol protocolized and encouraged in each group Oversedation: hold study drug when SAS ≤ 2 (after holding sedation therapy) Primary outcome: – Time to first resolution of delirium (ie. first 12 hour period when ICDSC \leq 3) al Crit Care Med 2010:38(2):419-427

	Quetiapine (n=18)	Placebo (n=18)	P value
Time of study drug administration (hours)	102 (84-168)	186 (108-228)	0.04
Time in delirium (hours)	36 (12-87)	120 (60-195)	0.006
Time spent agitated (SAS ≥ 5) (hours)	6 (0-38)	36 (11-66)	0.02
Percent of time spent in delirium after ICU discharge	0 (0-0)	14 (0-47)	0.05
Subject placement after hospital discharge (%)			
Home / rehabilitation center	89	56	
Chronic care facility / another acute care hospital / death	11	44	0.06
 Five episodes of somnolence and one e to be possibly related to the administrati No episodes of EPS were experienced of 	pisode of hypotension on of quetiapine. during the study drug p	were observed that w	ere felt
 The number of subjects with QTc prolon baseline (39 vs. 44%, p=0.74), QTc > 50 definitions (50 vs. 72%, p=0.24) was aim 	gation as determined I 00 msec (22 vs. 28%, p	by a > 60 msec increases =1.0), or other CPMP	se from

78 (43-100) %

28 (0-43) %

89 (33-100) %

0.02

0.10

0.04

Devlin JW, et al. Crit Care 2011 (in press

47 (0-67) %

0 (0-17) %

47 (19-67) %

Inattention

allucination

Symptom fluctuation

Clinical	Outcom	es	
	Quetiapine	Placebo	
Time of study drug administration (hours)	(n=18) 102 (84-168)	(n=18) 186 (108-22	
Time in delirium (hours)	36 (12-87)	120 (60-195	
Time spent agitated (SAS ≥ 5) (hours) 6 (0-3		36 (11-66)	
Percent of time spent in delirium after ICU discharge	delirium after ICU 0 (0-0) 14 (0-47)		
Subject placement after hospital discharge (%)			
Home / rehabilitation center	89	56	
Chronic care facility / another acute care hospital / death	11	44	
 Five episodes of somnolence and one e to be possibly related to the administration 	episode of hypotension ion of quetiapine.	were observed t	
No episodes of EPS were experienced	during the study drug	period.	
The second se	antion on determined		

American Psychiatric Association Guidelines (1999) • "Antipsychotic medications are often the treatment of choice" (Grade I = recommended with substantial clinical confidence)

SCCM Guidelines (2002)

 "Haloperidol is the preferred agent for the treatment of delirium in critically ill patients." (Grade C recommendation)

UK Delirium Guidelines (2010)

"Low dose and short-term haloperidol or olanzapine therapy if patient remains distressed or agitated that is severe enough to cause arm AFTER identify and manage all possible underlying causes and provide effective communication, reorientation and reassurance" (Grade 2B)

German Guidelines (2010)

- May be role for antipsychotic therapy for treatment
- Consider treatment with alpha-2 agonist (not graded)

SCCM Guidelines (2012)

Trzepacz P et al. APA . 1999 (accessed April 4 2010 Jacobi J et al. Crit Care Med. 2002; 30:119-141. Nice Quick Reference Guide http://ww.nice.org Martin J et al. Ger Med Sci 2010 Barr, J et al. Crit Care Med 2012 (under review)

Pharmacological Considerations When Treating Delirium

- Pharmacological therapy should be considered <u>ONLY</u> after underlying causes for delirium are reversed/treated
- Pharmacological therapy should be reserved for patients with <u>severe agitation</u> that will affect patient/caregiver safety
- Wean down any antipsychotic regimen to off if patient no longer agitated
- Make sure there is a plan to discontinue any antipsychotic regiment at ICU/hospital discharge

Inouye SK. N Engl J Med. 2006; 354:1157-1165. Trzepacz PT, et al. Semin Clin Neuropsych. 2000; 5:132-148. Dubois MJ, et al. Intensive Care Med. 2001; 27:137-1304. Skrobik Y, et al. Crit Care Clinics. 2009 25:585-587.

Scheduled Antipsychotic Use in the LTACH Setting

80 consecutive mechanically ventilated patients admitted from an acute care ICU to a 240-bed academic LTACH who had neither a major psychiactric disorder or dementia at admission

Scheduled AP use ≥ 24h - % started on AP at outside ICU - % of LTAC days scheduled AP administered - Name of AP administered	39% (31/80) - 45% - 52% quetiapine (77%); olanzapine (10%)
% of scheduled AP days the following were administered: - 'As needed' AP - Anxiolytic (100% benzodiazepine) - Restraints	14% 35% 24%
% of scheduled AP days that key delirium words documented - Delirium - Inattention - Confusion - Agitation	1.0% 0.3% 6.8% 4.2%
% of scheduled AP patients ever evaluated by a psychiatrist	35%
 ECG conducted (as a % of the AP days) Pits experiencing ≥ 1 extrapyramidal symptom Pits experiencing ≥ 1 episode of a SBP≤90 mmHg Pits experiencing ≥ 1 fail Pits initiated on scheduled insulin (i.e. not receiving at AP start) 	0.7% (no values ≥ 500 msec) 3.2% 52% 3.2% 0%

Alqadheeb N....Devlin JW. Submitted to SCCM Congress 2012

Conclusions

- Delirium is common in both critically ill adults and children.
 Pharmacists can play a key role in screening for delirium with either the CAM-ICU or ICDSC.
 Education that is substantial, occurs at the bedside and is repeated on a regular basis should accompany any new delirium screening effort.
 Treat pain and screen for delirium before administering sedation.
 Optimize non-pharmacologic delirium prevention efforts that decrease coma and improve functionality (e.g. DA-SBT, early mobilization).
 Dexmedetomidine may lead to less coma and delirium than benzodiazepine therapy.
 No rigorous evidence to support prophylactic antipsychotic therapy.
 No rigorous evidence that haloperidol improves outcome in any ICU population.
 Antipsychotics should only be used (on a short term basis) for patients having delirium that is accompanied by agitation.
 Pharmacists can play a key role in decreasing the number of ICU and post-ICU patients exposed to antipsychotic therapy.

Rationale and Bedside Application of the *"proposed"* SCCM Guidelines for the Management of Pain, Agitation, Delirium

Gil Fraser, Pharm.D., FCCM Clinical Pharmacist in Critical Care Medicine Maine Medical Center

Professor Tufts University School of Medicine Boston

Conflicts of Interest

Your Job for Today

- Understand new data that redefine risks and benefits of drug management options
- Identify barriers to the bedside incorporation of the major changes of the revised PAD guidelines
- Evaluate various strategies for beside implementation of best practice
- Develop a comprehensive plan to provide patient comfort in the ICU

My Job for Today

- Indirectly discuss details of the upcoming SCCM guidelines (currently proprietary)
 - Data supporting these guidelines IS a matter of public record

Step 1....Incorporate Valid and Reliable Assessment Tools (and know their limitations!) Pain Patient self report = NRS Otherwise, BPS and CPOT In patients with motor function Hemodynamic changes are not specific Agitation and Sedation RASS, SAS, etc dation or with therapeutic paralysis Not useful for deep Intentionally deep sedation or with pharmacologic paralysis Auditory evoked potential, bispectral index, patient state index, state entropy · Only if clinical evaluation is unavailable or when EMG artifact is limite Delirium • CAM-ICU, ICDSC, etc Scoring may be dependent on status of sedation

Assessing ICU Pain and Discomfort

- Why is this so difficult for caregivers?
 - What is routine to us is hardly routine to the patient
 - Were presence of an ETT, repositioning, catheters in every orifice, machines, noise, sleep deprivation, inability to communicate, loss of autonomy, drug-induced stupor, confusion, delirium, fear, loss of health, constipation, being tethered and lied down, etc, etc
 - Underappreciation for how poorly we assess pain
 - 82% remember pain and discomfort as traumatic. Schelling CCM 2003
 Underuse of validated behavioral pain scales
 - CPOT (Critical Care Pain Observation Tool) and BPS (Behavioral Pain Score)
 Based on facial expression, body movement, and compliance with the vent
 - Underuse of analgesia including pre-emptive use with painful procedures Puntillo. Am J Crit Care 2001

Clinical practice pearl: Patient self-report remains the gold standard and if not possible—<u>and</u> motor function is intact--- behavioral pain scales should be utilized. Hemodynamic derangement is not an adequate indicator of pain, but can be used to prompt further evaluation.

Auditory evoked potential, bispectral index, patient state index, state entropy

Why Systematically Assess Delirium?

- Any data suggesting that this reduces delirium prevalence?
 No!
- Any data suggesting that this reduces its severity?
 No!

So why bother?

- Prompts timely identification of clinically relevant reversible causes ...infections, etc
- Prompts scrutiny of drug therapy

• CAM-ICU • CAM-ICU • Twice daily evaluations involving patientnurse interactions • CDSC • Oth based on DSM IV criteria, but sedation influence is less with ICDSC • Both based on DSM IV criteria, but sedation influence is less • Changes in wakefulness and attention directly attributable to sedative medication were not "scored" as positive ICDSC points. Patients

Typical Sedation Titration Goal = "Light" Sedation

- But what is light sedation?No consensus on this definition
- Overarching goal is to consistently focus on patient safety and comfort
- If sedation is required, titrate to responsiveness and awareness
- Wakefulness = ability to respond to commands: open eyes, maintain eye contact, squeeze hand, stick out tongue, wiggle toes

Providing Pharmacologically Based Interventions: Importance of Protocolization

- Helps bring "best practice" to the bedside
- Limits practice variation
- Reduces delays in management
 - Encourages regular assessment of pain, agitation, delirium
 - Facilitates pharmacologic interventions: drug choice, dosing, titration

Table 3 Reported use of sedation strategies in published surveys 16-88% 20-80% 1-78%				
Author	Assessment Tools	Protocol-Directed Sedati	on Daily Sedative /Analgesic Interruption	
Christensen & Thunedberg, 1999**	16% (all Ramsay)	33 %	NR	
Murdoch & Cohen, 2000 ¹⁶	67% (28% Ramsay)	NR	NR	
Soliman et al. 2001	43% (74% Ramsay)	NR	NR	
Samuelson et al, 2003 ¹⁸	16% (Ransay, Addenbrooke, Newcastie, 565)	27%	1%	
Rhoney & Murry, 200319	78% (43% GCS, 42% Ramsay)	33%	NR	
Guidbrand et al, 2004 ²⁰	53% (34% MAAS, 9% Ramsay)	41%	15%	
Martin et al. 2005 ²³	31% (8% Ramsay)	21%	NR	
Arroliga et al. 2005*	NR	NR	NR	
Kamel et al. 2005 ²¹	14% (all Ramsay)	20%	NR	
Tanios et al. 2005 ²²	NR	64%	40%	
Mehta et al. 2006 ³⁴	49% (67% Ramsay, 10% SAS, 9% GCS, 8% MAAS)	29%	40%	
Egerod et al, 2006 ²⁵	44% (mostly Ramsay)	23%	31%	
Martin et al, 2006 ²⁶	46% (mostly Ramsay)	52%	34%	
Martin et al. 2007 ²⁷	35% (mostly Ramsay)	38%	14%	
Ahmad et al, 2007 ²⁸	28% (48% Ramsay, 16% RASS, 15% SAS)	36%	0%	
Paven et al. 230778	88% (66% Ramsay)	80%	78%	
Reschreiter et al, 2008 ³⁰	75% (GCS 56%, SAS 25%, 8% RASS)	54% sedation \$1% analgesia	62%	
O'Connor & Bucknall, 2009 ³¹	8%	43%	Sedative 20% of days Analgesic 9% of days	
Patel et al, 2009 ¹³	88% (38% Ramsay, 26% RASS)	71%	22% practice drug interruption on 75%-100% of days	

Why Are Protocols Not Used?

Potential barriers

- Nursing acceptance, potential for medical device removal, airway compromise, and patient discomfort. Roberts. J Crit Care 2010, Tanico Crit Care Med 2005 A743
- Lack of a physician order along with difficulties in managing patient issues in real time Tanios. J Crit Care 2009
- ICU patients and protocols are too complex

Facilitating Rapid Knowledge Transfer to the Bedside

Options

- Use clinical practice guideline as a modelDevelop protocols for managing
- pain/agitation/delirium

 Develop preprinted or electronic "order sets"
- based on institution specific protocols
- Offer real time clinical decision support
- Create "bundles" for implementing essential components of practice guidelines
 Consider daily rounding pharmacist or quality checklist with these elements Marshal Crear Med 2000, Dubose J Trauma 2008

Hint: ADAPT then ADOPT previously developed tools

