Curricular Track I—Manipulation of the Immune System in Transplantation and Oncology

Activity No. 0217-0000-11-086-L01-P (Knowledge-Based Activity)

Tuesday, October 18
10:15 a.m.–11:45 a.m.
Convention Center: Spirit of Pittsburgh Ballroom A

Moderator: Kellie L. Jones, Pharm.D., BCOP
Clinical Associate Professor, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana

Agenda

10:15 a.m. Solid Organ Transplant Immunosuppression: Maintaining the Balance
Steven Gabardi, Pharm.D., FCCP, BCPS
Abdominal Organ Transplant Specialist, Program Director, PGY2 Organ Transplant Pharmacology Residency, Brigham and Women’s Hospital, Department of Transplant Surgery/Renal Division; Instructor of Medicine, Harvard Medical School, Boston, Massachusetts

11:00 a.m. Modulating the Immune System in Oncology: The Evolution of Therapy
R. Donald Harvey III, Pharm.D., FCCP, BCPS
Assistant Professor of Hematology and Oncology, Director, Phase I Unit, Winship Cancer Institute, Emory University, Atlanta, Georgia

Faculty Conflict of Interest Disclosures

Steven Gabardi: no conflicts to disclose.
R. Donald Harvey III: no conflicts to disclose.

Learning Objectives

1. Review current trends in transplant immunosuppression.
2. Discuss strategies for managing T and B cell activation.
3. Differentiate immunosuppressive regimens based on the recipient’s disease state and organ transplanted
4. Review the evolving therapies in oncology targeting the immune system.
5. Describe how immunomodulatory agents are incorporated either as single agent or in combination with chemotherapy in the treatment of cancer.

Self-Assessment Questions

Self-assessment questions are available online at www.accp.com/am
Transplant Immunosuppression

Steven Gabardi, Pharm.D., FCCP, BCPS
Abdominal Organ Transplant Specialist
Brigham and Women’s Hospital
Instructor in Medicine
Harvard Medical School

Objectives

• Review current trends in transplant immunosuppression
• Discuss strategies for managing T and B cell activation
• Differentiate immunosuppressive regimens based on the recipient's disease state and organ transplanted.

Introduction

Advances in transplant immunosuppression have contributed to:
– A decrease in acute rejection and an increase in graft survival
– Longevity for kidney allograft recipients

Proliferation of agents means:
– More options
– More complicated management

Principles of Immunosuppression - 1

Elimination of acute rejection would be ideal (if there were no side-effects)

Humar et al.1,2
- studied long-term outcome (rejection vs. no rejection) of recipients transplanted at a single center from 1984-1998
- immunosuppression – cyclosporine, prednisone, azathioprine
- excluded graft loss to technical failure, primary nonfunction, death, recurrent disease

10-Year Death-Censored Allograft Survival Rates

Living Donor

Deceased Donor

p<.001

p<.001

Patients were excluded from the analysis if they experienced death with graft function, primary non-function, technical failure, or recurrent disease.

Costs of Acute Rejection

- Actual costs
 - multiple lab tests (for diagnosis)
 - return to the transplant center
 - kidney biopsy
 - cost of treatment
- Long-term costs
 - increase rate of CAD; decreased allograft survival
 - increased risk of infection and malignancy (from anti-rejection treatment)
 - other side-effects from anti-rejection treatment

Principles of Immunosuppression - 2

Maintenance of excellent kidney function is important

Meier-Kriesche et al*

- analyzed 56,900 adult US patients who received a primary renal transplant between 1988 and 1998 and who had at least 1 year of allograft survival. The primary study endpoint was death from a cardiovascular event beyond 1 year of transplantation.
- Serum creatinine values at 1 year after transplantation were strongly associated with the risk for cardiovascular death. Above a serum creatinine value of 1.5 mg/dL, there was a significant and progressive increase in the risk for cardiovascular death.

Cardiovascular Death and Graft Function

![Graph showing cardiovascular death and graft function]

Principles of Immunosuppression - 3

- Among transplant recipients, there are continua of risk - e.g., for acute rejection episodes, drug side-effects
- There are also immunosuppressive agents with greater vs. lesser efficacy and greater vs. lesser risks (side-effects)

Goals for Achieving the Best Long-Term Outcome

- Minimize acute rejection (AR)
- Minimize chronic rejection/chronic allograft nephropathy: minimize AR, CNI nephrotoxicity
- Minimize cardiovascular risk factors
- Minimize other drug-related side-effects

Classification of Immunosuppressive Agents

1) Induction agents*
 - powerful drugs used for a short time at the time of transplant
2) Maintenance agents*
 - drugs given long-term (indefinitely) to prevent rejection
3) Anti-rejection agents*
 - drugs given to reverse a rejection episode
4) Drugs used in special situations
 - e.g., ABO incompatible transplants or transplants across a positive crossmatch

* Agents used in different settings may be the same.
Immune Suppression: Action and the Immune Cascade

Critical Questions
1) Should we give the same immunosuppression to all recipients (one size fits all)?

or, if not
2) Who should receive antibody induction?
 - All?
 - Selected high risk groups?
 - Drug minimization trials?
3) Who should receive aggressive (vs. conservative) maintenance immunosuppression?

Introduction of Immunosuppressants (US)

Goals of induction therapy
1. To decrease the rate of acute rejection
2. To permit delayed initiation, minimization or avoidance of some of the maintenance agents (i.e. CNI, corticosteroids)

Available agents
1) Monoclonal antibodies that react with a single antigen receptor on the lymphocyte
 - Basiliximab (Simulect)
 - Alemtuzumab (Campath)
 - Monoclonal antibodies withdrawn from the market: muromonab-CD3 (OKT3) and daclizumab (Zenapax)
2) Polyclonal antibodies: react with multiple antigen receptors
 - Equine polyclonal IgG antibody (ATGAM)
 - Rabbit polyclonal IgG antibody (Thymoglobulin)

I - Induction
Pharmacologic Classification of the Induction Agents

1. Non-Depleting Proteins
 - Basiliximab (Simulect)

1. Depleting Proteins
 - Equine antithymocyte globulin (ATGAM)
 - Rabbit antithymocyte globulin (Thymoglobulin)
 - Alemtuzumab (Campath)

Non-Depleting Proteins: Basiliximab

- A chimeric monoclonal antibody that competitively inhibits the activation of lymphocytes by IL-2
- This agent has low immunogenicity potential because of the incorporation of human protein sequences.
Non-Depleting Proteins: Basiliximab

- **Dosing:**
 - Loading dose: 20 mg ~2hrs prior to transplantation.
 - Maintenance dose: 20 mg dose 4 days post-op.
 - After this dosing regimen the agent stays bound to the CD25 receptor for up to 10 weeks

- **Drug-Drug Interactions (DDI):** none reported

- **Adverse Drug Reactions (ADR):** incidence of ADR in clinical trials were similar to those seen with placebo.

Depleting Proteins: Antithymocyte Globulins (Horse and Rabbit)

- These agents are purified gamma globulin obtained by immunizing horses/rabbits w/ human lymphocytes.
 - Cytotoxic antibodies directed against a broad array of surface antigens expressed on T- and B-lymphocytes:
 - CD2, CD3, CD4, CD8, CD1a, CD25, CD28, CD45, Human Leukocyte Antigen (HLA) Class I and HLA-DR subsets
 - Causes depletion of peripheral lymphocytes
 - complement-dependent lysis (primary response)
 - clearance by the RES
 - Cellular reconstitution may take up to 3 months

What is the difference between the two agents?

Antithymocyte globulin rabbit (r-ATG) not only causes cell depletion, but it also has some secondary mechanisms:
- immune modulation,
- B-cell apoptosis,
- actions on adhesion molecules,
- dendritic cell depletion

Depleting Proteins: Alemtuzumab

- Alemtuzumab is an anti-CD52 humanized, monoclonal antibody that has an FDA indication for use in B-cell chronic lymphocytic leukemia.
 - CD52 is present on virtually all B- and T-cells, as well as macrophages, NK cells and some granulocytes.
 - The alemtuzumab-CD52 complex triggers antibody-dependent lysis.
 - The depletion of lymphocytes is so marked that it takes several months, up to one-year, post-administration for a patient’s immune system to be fully reconstituted.

- **Dosing:**
 - 30 mg, given as a single dose intraoperatively
 - In some settings, a second 30 mg dose is given.

- **DDI:** none reported

- **ADR:**
 - Myelosuppression
 - Infusion-related reactions: nausea (54%), vomiting (41%), diarrhea (22%), headache (24%), dysesthesias (15%) and dizziness (12%)
 - RARE: autoimmune hemolytic anemia
Comparative Analyses of Induction Therapies

- **e-ATG vs. r-ATG**
 - **Efficacy:** Significantly lower rates of BPAR and improved allograft/patient survival with r-ATG at 1-, 5- and 10-years.
 - **Safety:** Significantly lower rates of CMV infection with r-ATG, despite higher early rates of leukopenia. Similar rates of PTLD.

- **Basiliximab vs. r-ATG (high-risk recipients)**
 - **Efficacy:** Similar composite end point of BPAR, DGF, allograft/patient survival.
 - **Significantly lower rates of BPAR associated with r-ATG**

- **Alemtuzumab vs. Basiliximab (low-risk); vs. r-ATG (high-risk)**
 - **Efficacy vs. Basiliximab:** Lower rates of BPAR at 6, 12 and 36 months with alemtuzumab. The composite endpoint of freedom from rejection, graft loss or death was significantly better at 3-years with alemtuzumab.
 - **SAFETY:** lower rates of serious infectious complications seen with basiliximab.
 - **Efficacy vs. r-ATG:** The composite endpoint of freedom from rejection, graft loss or death was similar between both agents.
 - **SAFETY:** overall, more infectious disease seen with r-ATG, but similar rates of serious infectious complications.

Biologic Agent Overview

<table>
<thead>
<tr>
<th>Agent</th>
<th>Class</th>
<th>Clinical Use</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basiliximab</td>
<td>Anti-CD25 Antibodies</td>
<td></td>
<td>$2000</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>Anti-CD52 Antibody (depleting)</td>
<td></td>
<td>$1700</td>
</tr>
<tr>
<td>e-ATG/r-ATG</td>
<td>Polyclonal Antibodies</td>
<td></td>
<td>$1600</td>
</tr>
</tbody>
</table>

Current Trends in Antibody Induction Use in Kidney Transplantation

- **e-ATG vs. r-ATG**
- **OKT3 vs. Daclizumab**
- **Basiliximab vs. Alemtuzumab**

<table>
<thead>
<tr>
<th>Year</th>
<th>e-ATG (%)</th>
<th>r-ATG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>1997</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>1998</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>1999</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>2000</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2001</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>2002</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2003</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>2004</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2005</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

Common Combinations of Immunosuppressive Regimens

Curricular Track I—Manipulation of the Immune System in Transplantation and Oncology

II – Maintenance Immunosuppression

- **Calcineurin Inhibitors (CNI)**
 - Cyclosporine (Sandimmune® / Neoral®)
 - Tacrolimus (Prograf®)
- **Inhibitors of T-cell Proliferation**
 - Azathioprine (Imuran®)
 - Mycophenolate mofetil (CellCept®)
- **Inhibitors of Enteric-Coated Mycophenolic Acid (Myfortic®)**
- **Mammalian Target of Rapamycin (mToR) Inhibitors**
 - Sirolimus (Rapamune®)
 - Everolimus (Zortress®)
- **Co-Stimulation Blockade**
 - Belatacept (Nulojix®)
- **Non-specific immunosuppressants**
 - Corticosteroids

Common Combinations of Immunosuppressive Regimens

Dual- or triple-therapy (most common)

- **Benefits:** Lower doses of each drug; maximize efficacy while minimizing toxicity of each drug
- **Risks:** Overimmunosuppression
- **Increased costs**

Monotherapy

- **Benefits:** Potential for limiting side-effects of multiple drugs
- **Risks:** Increased rejection
- **Increased doses (levels) of the single drug are needed → side-effects**
Achievement and Maintenance of Optimal Immunosuppression

Not just the choice of drugs but how they are used; blood levels are important for some.

Early posttransplant protocols may differ from late:

a) dose reduction over time
b) minimization/elimination of one drug
c) unexpected events may call for changes
d) flexibility is important

Understanding the Importance of Calcineurin Phosphatase

Understanding CsA and TAC

Calcineurin Inhibitors: CsA and TAC

• Dosing:
 – Due to significant inter- and intra-patient variability, therapeutic drug monitoring (TDM) is employed to maximize the efficacy of both CNIs.
 • CsA: overall exposure is best correlated to C2 or C3 levels
 • TAC: overall exposure is best correlated to C12 levels
 – Appropriate levels are dependent on institution-specific protocols and concomitant immunosuppressants

• DDI: both agents are substrates for CYP3A4 and P-gp

Calcineurin Inhibitors: CsA and TAC

Numerous studies have compared efficacy and side-effects, in general (though there is some variation between studies):

Efficacy
 • Patient and allograft survival has been similar for the 2 CNIs
 • Acute rejection rates have been similar or ↓ with TAC

Safety/tolerability
 • CsA has been associated with greater increases in lipid levels and blood pressure
 • TAC has been associated with greater incidence of new-onset posttransplant diabetes
 • Each has drug-specific side-effects

CNI Side-Effects

Cardiovascular – Hypertension; Hypercholesterolemia
Glucose Intolerance
Neurotoxicity – Tremor; Headache; Insomnia; Paresthesia
Nephrotoxicity – perhaps long-term dose and level-related
Hepatotoxicity
Malignancy – related to overall immunosuppression
Physical – Gingival Hypertrophy; Hirsutism (CSA); Alopecia (TAC)
Trends in CNI Use

Mycophenolic Acid (MPA): MMF and EC-MPA

- **Inhibit lymphocyte proliferation**
- **Inhibitors of purine and DNA synthesis**
 - Cells other than lymphocytes have an alternate synthesis pathway
 - Thus, selective antiproliferative effect on T and B cells

- **Guanosine monophosphate (GMP)**
 - Leads to proliferation of other cells

- **MPA**: MMF and EC-MPA
 - **Dosage**:
 - MMF: 1 gm BID
 - EC-MPA: 720 mg BID
 - **TDM** is not routinely recommended
 - **DDI**: divalent/trivalent cation-containing antacids and supplements, cyclosporine, and supplements cyclosporine
 - MMF only appears to interact with proton pump inhibitors

- **ADR**:
 - Myelosuppression
 - Gastrointestinal disorders, both upper and lower GI tract
 - Associated with significant teratogenic effects

- **AZA**

- **Dosage**: 2 - 5 mg/kg/day to start, titrated to hematological effects (maintenance dose may be between 1 and 3 mg/kg/day).

- **DDI**: allopurinol, febuxistat

- **ADR**:
 - Myelosuppression
 - RARE: pancreatitis

- **AZA is a prodrug of 6-MP.**
 - 6-MP is incorporated into DNA where it inhibits purine synthesis and prevents the formation of RNA.
 - Inhibits gene replication and subsequent activation of T-cells.

AZA

- **Azothrine**
 - **Dosage**: 1 gm BID
 - **TDM** is not routinely recommended
 - **DDI**: allopurinol, febuxistat

- **ADR**:
 - Myelosuppression
 - Associated with significant teratogenic effects

mToR Inhibitors: Sirolimus and Everolimus

- **Both agents binds to FKBP, but do not inhibit calcineurin phosphatase**
- **Sirolimus or everolimus/ FKBP complex inhibits mToR, a driver of cell proliferation**
 - This inhibition results in a reduction in IL-2 driven lymphocyte proliferation

- **Everolimus** is a derivative of Sirolimus with slightly different PK parameters.
Understanding the impact of the mToR Inhibitors

- **Molecular Consequences**: Inhibition of G1 → S Progression
- **Biological Consequences**: Down-Regulation of Proliferation
- **Cellular Targets**: T Cells, B Cells, Smooth Muscle Cells
- **Clinical Consequences**:
 - ↓ Incidence of Acute Rejection Episodes
 - ↓ Risk of Chronic Allograft Nephropathy
 - ↓ Requirement for Calcineurin Inhibitors
 - ↓ Wound Healing / Anti-Cancer Effects

mToR Inhibitors: Sirolimus and Everolimus

- **Dosing**:
 - DOCA (C12 levels) is employed to maximize the efficacy of both mToR inhibitors
 - Appropriate levels are dependent on institution-specific protocols and concomitant immunosuppressants
 - Common Doses:
 - Sirolimus: 1–2 mg QD
 - Everolimus: 0.75 mg BID
 - DDI: both agents are substrates for CYP3A4 and P-gp
 - ADR:
 - Cardiovascular (hypercholesterolemia, hypertriglyceridemia)
 - Myelosuppression
 - Dermatologic (rash, mouth ulcers)
 - Musculoskeletal (myalgias, muscle weakness)
 - Interstitial pneumonitis
 - Renal (proteinuria)
 - Hepatotoxicity
 - Decreased wound healing

Co-Stimulation Blockade: Belatacept

- Belatacept is a fusion protein that acts as a selective T-cell costimulation blocker by binding to CD80/86 receptors on APCs and blocking the required CD28 mediated interaction between APCs and T-cells needed to activate the T-cells.

2005 OPTN/SRTR Annual Report

- Optical Density (%)

Co-Stimulation Blockade: Belatacept

- **Dosing**:
 - Initial Phase: 10 mg/kg/dose on Days 1 (day of transplant, prior to implantation), and 5, then again at Week 2, 4, 6 and 9.
 - Maintenance Phase: 5 mg/kg/dose every 4 weeks (+ 3 days) beginning at Week 12
 - DDI: none reported
 - ADR:
 - BLACK BOX: increased risk for PTLD when given to EBV seronegative recipients
 - Cardiovascular (edema)
 - CNS (headache, HA, insomnia)
 - GI (diarrhea, constipation, nausea, abdominal pain)
 - GU (UTI)
 - Hematologic (myelosuppression)
 - Musculoskeletal (arthralgias)
 - Respiratory (cough, dyspnea)

Corticosteroids

- The exact MOA is still not fully understood.
 - **Some believe**:
 - High dose: > 100 mg of prednisone equivalents.
 - MDK = directly toxic to T cells
 - Low dose: < 100 mg of prednisone equivalents.
 - Nonspecific immunosuppressive agents - inhibit IL-1, IL-2, IL-4, IL-5, IFN-gamma at low doses.
 - Decreased activation of T cells
 - **What we do know**:
 - Blockade of Cytokine Gene Expression
 - ↓ T-cell and APC cytokine expression
 - Block to heat shock protein → translocates to nucleus → binds to GRE → inhibits transcription of cytokine genes → inhibition of IL-1, IL-2, IL-3, IL-6, IFN-gamma and TNF-alpha
 - Nonspecific Effects
 - Antiinflammatory effects
Corticosteroids

- **Dosing**: Doses vary widely from institution to institution.
 - Highest doses at time of transplant or as treatment of an acute rejection episode.
- **DDI**: CYP - 450 inducer (dexamethasone) and inhibitor (methylprednisolone).
- **ADR**:
 - Cardiovascular (hypertension, hyperlipidemia)
 - Endocrine (hyperglycemia)
 - CNS (mood changes, anxiety)
 - Osteoporosis
 - Weight gain
 - Edema
 - Lipodystrophy

Relative Side-Effect Profile

<table>
<thead>
<tr>
<th></th>
<th>CSA</th>
<th>TAC</th>
<th>mToR</th>
<th>Pred</th>
<th>MPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Renal dysfunction</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+++</td>
<td>--</td>
</tr>
<tr>
<td>Glucose intolerance</td>
<td>+</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GI side-effects</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Tremor</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Malignancy</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>--</td>
<td>?</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hirsutism</td>
<td>+</td>
<td>-</td>
<td>--</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>Gingival hypertrophy</td>
<td>+</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Alopecia</td>
<td>-</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Treatment of Acute Rejection

- The biggest changes in kidney transplantation since the turn of the 21st century have been in the understanding of acute rejection.
- Historically, antibodies were thought to attack the allograft immediately (hyperacute rejection) or not be particularly important. The long-term emphasis has been on cellular-mediated rejection and its consequences.
- Recent data (and development of new techniques in pathology) have shown that antibody-mediated rejection can play an important role both early and late posttransplant.

Acute Cellular-Mediated Rejection

- Acute cellular rejection is most common during the first 6 months posttransplant
 - Becomes substantially less common over time
- Most episodes are not accompanied by symptoms but present as ↑ serum creatinine level
- The transplant center should be notified immediately if acute cellular rejection is suspected
- Because treatment is associated with significant side-effects, most suspected acute rejection episodes are biopsied to confirm the diagnosis

Treat Acute Cellular Rejection

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse corticosteroids¹</td>
<td>Intravenous methylprednisolone 125 mg to 1 g or 3 to 5 mg/kg body weight daily for 3 to 5 days</td>
</tr>
<tr>
<td>Antithymocyte globulin, rabbit (Thymoglobulin)²</td>
<td>1.5 mg/kg in 500 mL of dextrose or saline infused over 4 to 8 hours for 4 to 14 days</td>
</tr>
</tbody>
</table>

¹Initiation of therapy often requires hospitalization.

Antibody-Mediated Rejection (AMR)

- A significant form of rejection not amenable to standard immunosuppressive therapy aimed at modifying T-cell function
- Acute antibody-mediated rejection tends to be seen early posttransplant
- Diagnosis is made by kidney biopsy and special stains

C4d Staining in Peritubular Capillaries

Treatment of AMR

- Antibody- and cellular-mediated rejection can occur independently or co-exist
- When antibody-mediated rejection is independent, treatment options include:1-3
 - High-dose IVIg
 - Rituximab (Rituxan®)
 - Eculizumab (Soliris®)
 - Plasmapheresis
 - Plasmapheresis and low-dose IVIg
- When antibody-mediated and cellular-mediated rejection coexist, therapy for each must be utilized

Intravenous Immune Globulin

- **Indication:** treatment of primary immunodeficiency syndrome.

<table>
<thead>
<tr>
<th>Proposed Mechanisms of Action</th>
<th>Anti-Inflammatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Microbial</td>
<td>Immunosuppressive</td>
</tr>
<tr>
<td>Autoimmune disorders</td>
<td>Anti-Inflammatory</td>
</tr>
<tr>
<td>Induces apoptosis</td>
<td>Anti-inflammation</td>
</tr>
</tbody>
</table>

- **Indication:**
 - treatment of primary immunodeficiency syndrome.

- **Adverse Events:** infusion-related reactions (i.e., hypotension, shaking, chills, wheezing, flushing, nausea, anxiety, chest tightness, back pain, hypertension)
 - Patients may require conversion to a different brand of IVIG if they have continued infusion-related reactions after decreasing the rate of administration.
- **Renal dysfunction may occur, especially when using IVIG products that contain sucrose. Iso-osmotic and Sucrose-free products are preferred.**
- **Cost:** $80 / gm
 - 10 gm = $800.00
 - 2 gm/kg (70 kg patient) = $11,200.00

Rituximab

- **Indication:**
 - treatment of
 - B-cell non-Hodgkin’s lymphoma
 - CD-20 positive chronic lymphocytic leukemia
 - Moderately to severely-active rheumatoid arthritis

- **MOA in Transplantation:**
 - Chimeric monoclonal anti-CD20 antibody targeting B-cells
 - This directly inhibits B-cell proliferation and induces cellular apoptosis through the binding of complement.
 - Complement, in turn, mediates antibody-dependent cell-mediated cytotoxicity and subsequent cell death.
- **Adverse Events:**
 - **BBW:** fatal infusion reactions, severe, particularly reactions (including SJS) and DTH (delayed tumor lysis syndrome)
 - Cardiovascular (hypotension, chest tightness, back pain, hypertension)
 - Derm (urticaria)
 - GI (diarrhea, vomiting)
 - Hematologic (leukopenia, anemia)
 - Endocrine (hyperglycemia)
 - CNS (dizziness)
 - Other (rise in LDH)
- **Cost:** $6 / mg
 - 375 mg/m² (1.73 m²) = $3,892.50
 - 1000 mg = $6,000.00

Bortezomib

- **Indication:**
 - treatment of
 - Multiple myeloma
 - Refractory mantle cell lymphoma

- **MOA in Transplantation:**
 - Proteasome inhibitor that induces cell-cycle arrest and apoptosis of plasma cells.
Bortezomib

- **Adverse Events:**
 - Cardiovascular (hypotension, peripheral edema)
 - CNS (fever, HA, insomnia, dizziness)
 - Derm (rash)
 - GI (nausea, vomiting, diarrhea, constipation)
 - Hematologic (leukopenia, anemia)
 - Muscular (weakness, back pain, myalgias)
 - Respiratory (dyspnea)

- **Cost:** $370 / mg
 - $832.13 (1.3 mg/m²)
 - $3,328.52 (4 doses)

Eculizumab

- **Indication:** treatment of paroxysmal nocturnal hemoglobinuria to reduce hemolysis

- **MOA in Transplantation:** a humanized monoclonal antibody against complement protein C5 that inhibits its cleavage to C5a and C5b and preventing the generation of the membrane attack complex (MAC)

Eculizumab

- **Adverse Events:**
 - CNS (HA, fatigue)
 - GI (nausea, vomiting, diarrhea)
 - Muscular (back pain, arthralgias)
 - Respiratory (nasopharygitis)

- **Cost:** $10 / mg
 - $9,000.00 (900 mg)

- **Rems:** drug is currently classified as an orphan drug and has a REMS protocol requiring prescribing and dispensing restrictions

Risk Evaluation and Mitigation Strategies

- **The following agents have an associated REMS:**
 - Everolimus
 - Sirolimus
 - Belatacept
 - Eculizumab

Conclusions

Proliferation of new agents (plus improvement in prevention and treatment of infection) has resulted in significantly better short-term outcomes for kidney transplant recipients.

Major focus of current clinical research is improving long-term outcomes, in particular, increasing patient and graft survival, and decreasing morbidity.
Modulating the Immune System in Oncology: The Evolution of Therapy

R. Donald Harvey, Pharm.D., FCCP, BCPS, BCOP
Assistant Professor, Hematology/Medical Oncology
Director, Phase I Clinical Trials Program

Learning Objectives

- Review the evolving therapies in oncology targeting the immune system.
- Describe how immunomodulatory agents are incorporated either as single agent or in combination with chemotherapy in the treatment of cancer.
Immunotherapy Approaches

- **Active**
 - Vaccination
 - Autologous
 - Allogeneic
 - Cytokines
 - Interferon, interleukin-2, GM-CSF, dinileukin difitox
- **Passive**
 - Monoclonal antibodies (exception – ipilimumab)
 - Immunomodulators
 - Thalidomide, lenalidomide

Monoclonal Antibodies

<table>
<thead>
<tr>
<th>MoAb</th>
<th>Indication(s)</th>
<th>Year(s) Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>NHL, CLL</td>
<td>1997, 2010</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>Breast, gastric cancers</td>
<td>1998, 2010</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>CLL</td>
<td>2001</td>
</tr>
<tr>
<td>Ibritumomab (\text{ibuxelum})</td>
<td>NHL</td>
<td>2003</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>Colorectal, head/neck cancers</td>
<td>2004, 2006</td>
</tr>
<tr>
<td>Panitumumab</td>
<td>Colorectal cancer</td>
<td>2006</td>
</tr>
<tr>
<td>Ofatumumab</td>
<td>CLL</td>
<td>2009</td>
</tr>
<tr>
<td>Denosumab</td>
<td>Bone metastases from solid tumors</td>
<td>2010</td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>Melanoma</td>
<td>2011</td>
</tr>
<tr>
<td>Brentuximab vedotin</td>
<td>CD30 + lymphomas (Hodgkin(\text{-})anaplastic large cell)</td>
<td>2011</td>
</tr>
</tbody>
</table>

Mechanism of Action

Ilipilimumab (MDX-010)

- Fully human IgG1 monoclonal antibody to human cytotoxic T lymphocyte antigen 4 (CTLA-4)
- Blocks binding of CTLA-4 to ligands CD80 and CD86 (B7 family)
- Population – unresectable or metastatic melanoma
- Approved regimen = 3 mg/kg IV over 90 minutes Q3 weeks x 4 doses
Phase III Trial of Ipilimumab Plus gp100 Vaccine Versus gp100 Vaccine Versus Ipilimumab as Second-line Therapy in Advanced Melanoma: Treatment Scheme

Primary endpoint: best ORR (original), changed to OS before unblinding/analysis
Secondary endpoints include: best ORR, duration of response, PFS, TTP

Ipilimumab (MDX-010)
- Immune-mediated adverse events across trials
 - T cell activation and proliferation leading to enterocolitis (7%), hepatitis (1%), dermatitis (2%), neuropathy (1%), endocrinopathy (hypopituitarism – 4%)
- Monitor LFTs, thyroid function, chemistries before each dose
- Generally appear during induction
- Prednisone 0.5-2 mg/kg/day

Mechanism of Action
Brentuximab vedotin (SGN-35) ADC
- monomethyl auristatin E (MMAE), potent antimicrotubule agent
- protease-cleavable linker
- anti-CD30 monoclonal antibody

ADC binds to CD30
ADC-CD30 complex traffics to lysosome
MMAE is released
MMAE disrupts microtubule network
G2/M cell cycle arrest
Apoptosis

Curricular Track I—Manipulation of the Immune System in Transplantation and Oncology 15
Multicenter, Open-Label Study of Brentuximab Vedotin in Relapsed/Refractory HL

Eligibility
- Relapsed or refractory CD30+ HL
- Age ≥12 years
- Measurable disease ≥1.5 cm
- ECOG 0–1
- Prior ASCT

* Revised Response Criteria for Malignant Lymphoma (Cheson, 2007)

Treatment (N=102)
- Brentuximab vedotin 1.8 mg/kg IV every 21 days
- Administered outpatient over 30 min
- Max 16 cycles for SD or better
- Restage* at Cycles 2, 4, 7, 10, 13, 16

Follow-up
Every 12 weeks

Demographics and Baseline Characteristics

Age* (years)	31 (15–77)
Gender (M / F)	48 / 54
ECOG status (0 / 1)	42 / 60
Refractory to frontline therapy	72 (71%)
Refractory to most recent treatment	43 (42%)
Prior chemotherapy regimen*	3.5 (1–13)
Relapse ≤1 year post ASCT	72 (71%)
Time from ASCT to first post transplant relapse*	6.7 mo (0–131)

* Median (range)

Maximum Tumor Reduction

94% (96 of 102) of patients achieved tumor reduction

Individual Patients

Complete remission

PFS by Best Response

Adverse Events in ≥20% of Patients

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>All Grades</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral sensory neuropathy</td>
<td>47%</td>
<td>9%</td>
<td>–</td>
</tr>
<tr>
<td>Fatigue</td>
<td>46%</td>
<td>2%</td>
<td>–</td>
</tr>
<tr>
<td>Nausea</td>
<td>42%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>37%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>36%</td>
<td>1%</td>
<td>–</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>29%</td>
<td>2%</td>
<td>–</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>22%</td>
<td>14%</td>
<td>6%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>22%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cough</td>
<td>21%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Other Grade 3/4 events in 25% of patients: thrombocytopenia (8%) and anemia (6%)

Peripheral Neuropathy

- 55% of patients (n=56) had at least 1 event of peripheral neuropathy
- No Grade 4 events of peripheral neuropathy

Time to Onset of Peripheral Neuropathy

- Managed with dose delays and/or reductions to 1.2 mg/kg
- Resolution or some improvement of PN = 80% (45/56)
- Complete resolution of all events of PN = 50% (28/56)
- Median time to resolution or improvement = 13.2 weeks
Sipuleucel-T

- Autologous active cellular immunotherapy product that activates the immune system against prostate cancer
- FDA approval August 2010 for asymptomatic or minimally symptomatic metastatic castrate resistant (hormone refractory) disease.
- Contains a minimum of 50 million autologous CD54+ cells activated with prostatic acid phosphatase (PAP)-GM-CSF.

Phase III IMPACT Trial

- Asymptomatic or Minimally Symptomatic Metastatic Castrate Resistant Prostate Cancer (N=512) Pre-chemotherapy
- Sipuleucel-T Q 2 weeks x 3 → Treated at Physician discretion
- Placebo Q 2 weeks x 3 → Treated at Physician discretion and/or Salvage Protocol
- Primary endpoint: Overall Survival
- Secondary endpoint: Time to Objective Disease Progression

Dendritic Cells As Anticancer Agents

- Complex binds to dendritic cell precursor
- Tumor antigen
- Tumor antigen is linked to a cytokine
- Complex is taken in by dendritic cell precursor
- Dendritic cell matures and is infused back into patient
- Dendritic cell displays tumor antigen and activates T cells
- T cells attack cancer cell

IMPACT Overall Survival

- P = 0.032 (Cox model)
- HR = 0.775 [95% CI: 0.614, 0.979]
- Median Survival Benefit = 4.1 Mos.
- Placebo (n = 171) Median Survival: 21.7 Mos.
- Sipuleucel-T (n = 341) Median Survival: 25.8 Mos.
Administration and Monitoring

- Premedication with diphenhydramine and acetaminophen 30 minutes prior
- One hour infusion with no cellular filter
- Adverse events
 - Serious
 - Acute infusion reactions
 - Frequency ≥ 15%
 - Chills, fatigue, fever, back pain, nausea, joint aches, headache
 - Typically resolve within 2 days

Conclusions

- Manipulation of the immune system for anti-cancer treatment has evolved substantially since interleukin-2 was approved in 1992
- Understanding complex immune responses and improvements in bioengineering have and will lead to better therapies
- Real and potential future issues in the field include the uptake of biosimilars, overall healthcare cost and cost-effectiveness, and gene therapy translation to the clinic