A Petition to the
Board of Pharmacy Specialties
Requesting Recognition of
Pediatric Pharmacy Practice
as a Specialty

Prepared by:
Marcia L. Buck
Lea S. Eiland
Matthew R. Helms
Peter N. Johnson
Patti G. Manolakis
Mitchel C. Rothholz
Chasity M. Shelton
Jann B. Skelton
C. Edwin Webb
David R. Witmer

Sponsored by:
American College of Clinical Pharmacy (ACCP)
American Pharmacists Association (APhA)
American Society of Health-System Pharmacists (ASHP)
Pediatric Pharmacy Advocacy Group (PPAG)

November 2012
Table of Contents

Task Group on Pediatric Pharmacy Practice Member Roster ... 3
Definition of Pediatric Pharmacy Practice ... 4
Executive Summary .. 5
Criterion A: Need ... 14
Criterion B: Demand ... 28
Criterion C: Number and Time .. 38
Criterion D: Specialized Knowledge .. 44
Criterion E: Specialized Functions .. 56
Criterion F: Education and/or Training .. 65
Criterion G: Transmission of Knowledge .. 75

Appendices

Appendix B-1: Letters of Support .. 88
Appendix C-1: Pediatric Pharmacist Survey ... 106
Appendix D-1: Report of the Role Delineation Study of Pediatric Pharmacy .. 111
Appendix D-2: NAPLEX Blueprint .. 209
Appendix F-1: ASHP Educational Outcomes, Goals, and Objectives for Postgraduate Year Two (PGY2) Pharmacy Residencies in Pediatrics ... 213
Appendix F-2: ACCP Guidelines for Clinical Research Fellowship Training Programs .. 241
Appendix G-1: Pediatric Pharmacy Bibliography .. 244
Appendix G-2: Selected Pediatric Pharmacy Literature .. 264
Appendix G-3: ACPE PLAN Programming – Live Forum; Knowledge Activity ... 319
Appendix G-4: ACPE PLAN Programming – Live Forum; Application Activity .. 352
Appendix G-5: ACPE PLAN Programming – Home Study; Knowledge Activity ... 359
Appendix G-6: ACPE PLAN programming – Home Study; Application Activity ... 373
Appendix G-7: Sample Educational Program Materials .. 375
Signatures of Support ... 387
Task Group on Pediatric Pharmacy Practice
Member Roster

Marcia L. Buck, PharmD, FCCP, FPPAG
Clinical Pharmacy Coordinator
UVA Children's Hospital
Associate Professor, Pediatrics
School of Medicine
Clinical Associate Professor
School of Nursing
University of Virginia
Department of Pharmacy Services
Box 800674
Charlottesville, VA 22908
(434) 760-4844
mlb3u@virginia.edu

Lea S. Eiland, PharmD, BCPS, FASHP
Associate Clinical Professor
Associate Department Head
Department of Pharmacy Practice
Auburn University, Harrison School of Pharmacy
Clinical Associate Professor of Pediatrics
University of Alabama at Birmingham School of Medicine
Huntsville Regional Medical Campus
UAB/Division of Pediatrics
301 Governors Drive SW
Huntsville, AL 35801
(256) 551-4445
eilanls@auburn.edu

Matthew R. Helms, MA, CAE
Executive Director
Pediatric Pharmacy Advocacy Group
7953 Stage Hills Boulevard, Suite 101
Memphis, TN 38133
(901) 380-3617
matthew.helms@ppag.org

Peter N. Johnson, PharmD, BCPS
Associate Professor of Pharmacy Practice
PGY1 Pharmacy Residency Director
University of Oklahoma College of Pharmacy
Clinical Pharmacy Specialist – Pediatric Critical Care
Children’s Hospital at OU Medical Center
1110 North Stonewall, CPB 206
Oklahoma City, OK 73117
(405) 271-2730
Peter-Johnson@ouhsc.edu

Patti G. Manolakis, PharmD
President, PMM Consulting, LLC
16726 Hammock Creek Place
Charlotte, NC 28278
(704) 588-3981
pmanolakis@pmmcsolutions.com

Mitchel C. Rothholz, RPh, MBA
Chief Strategy Officer
American Pharmacists Association
2215 Constitution Avenue NW
Washington, DC 20037
(202) 429-7549
mrothholz@aphanet.org

Chasity M. Shelton, PharmD, BCPS, BCNSP
Assistant Professor
Department of Clinical Pharmacy
The University of Tennessee Health Science Center
881 Madison Avenue
Memphis, TN 38163
(901) 448-2074
cshelton@uthsc.edu

Jann B. Skelton, RPh, MBA
President, Silver Pennies Consulting
17 Spruce Road
North Caldwell, NJ 07006
(973) 228-3285
jskelton@silverpennies.com

C. Edwin Webb, PharmD, MPH
Associate Executive Director
Director, Government and Professional Affairs
American College of Clinical Pharmacy
1455 Pennsylvania Avenue NW, Suite 400
Washington, DC 20004
(202) 621-1820
ewebb@accp.com

David R. Witmer, PharmD
Senior Vice President
Chief Operating Officer
American Society of Health-System Pharmacists
7272 Wisconsin Avenue, Suite 2192
Bethesda, MD 20814
(301) 664-8659
dwitmer@ashp.org

Disclosure: Patti Manolakis and Jann Skelton are under contract with the petitioning organizations to coordinate the development and submission of this petition. They received payment for their work on this initiative.
Definition of Pediatric Pharmacy Practice

Pediatric pharmacy practice specializes in the delivery of patient care services by pharmacists that ensures the safe and effective use of medications for all children from neonates through adolescents. The practice includes direct patient care for children, often provided through interprofessional health care teams, as well as advocacy and education for children and their families, wellness and health promotion, and activities that advance knowledge and skills in pediatric pharmacy.
American College of Clinical Pharmacy (ACCP)
American Pharmacists Association (APhA)
American Society of Health-System Pharmacists (ASHP)
Pediatric Pharmacy Advocacy Group (PPAG)

A Petition to the Board of Pharmacy Specialties (BPS)
Requesting Recognition of
Pediatric Pharmacy Practice as a Specialty

Executive Summary

Definition of Pediatric Pharmacy Practice

Pediatric pharmacy practice specializes in the delivery of patient care services by pharmacists that ensures the safe and effective use of medications for all children from neonates through adolescents. The practice includes direct patient care for children, often provided through interprofessional health care teams, as well as advocacy and education for children and their families, wellness and health promotion, and activities that advance knowledge and skills in pediatric pharmacy.

—ACCP/APhA/ASHP/PPAG Task Group

Background

By acquiring specialized knowledge and skills and creating a unique practice beyond the scope of pharmacy practice defined by licensure examination, an increasing number of pharmacists have distinguished themselves through the care of pediatric patients according to the above Definition of Pediatric Pharmacy Practice. In recognition of these efforts, the American College of Clinical Pharmacy (ACCP), the American Pharmacists Association (APhA), the American Society of Health-System Pharmacists (ASHP), and the Pediatric Pharmacy Advocacy Group (PPAG) have partnered to develop a petition to the Board of Pharmacy Specialties (BPS) to recognize pediatric pharmacy practice as a specialty.

Petition Overview

Children comprise approximately one quarter of the U.S. population, and 13 percent of these children take medication on a regular basis. Due to the varying ages, weights, and developmental stages of children, they also require highly individualized care. Consequently, pediatric patients have substantial unmet needs in the areas of medication error prevention,
medication adherence, therapy management, individualized dosing and dosage forms, preventive care, and management of acute and chronic diseases.

Management of drug therapy for pediatric patients is complex and unique. Children of all ages are treated with medications that have been developed for adults and for which sparse data exist on how best to dose and monitor therapy to ensure optimal outcomes for the pediatric patient. These medications are often used off-label without suitable formulations or appropriate strengths because pediatric products are not commonly commercially available. Pediatric medications are frequently extemporaneously prepared formulations with liquids and injections diluted and tablets split to meet the specific needs of individual patients. These factors increase the likelihood of medication errors and may lead to variations in drug effects.

Drug therapy is further complicated in children because of their lower body weight and age-specific changes in pharmacokinetics and pharmacodynamics. These factors provide unique opportunities for pediatric pharmacists to improve the quality of care for pediatric patients. Many pharmacists who practice in neonatal and pediatric care settings have distinguished themselves by gaining in-depth knowledge, advanced training, and expertise to provide optimal care to pediatric patients across a wide spectrum of diseases. These pediatric pharmacists provide a specialized practice in sites that span both inpatient and outpatient environments.

Employers, health professionals, and society need a mechanism for identifying, recognizing, and providing access to pharmacists with the expertise to provide the specialized care required by pediatric patients.

BPS Petition Process

The BPS Petitioner’s Guide for Recognition of a Pharmacy Practice Specialty outlines seven criteria, each with a list of supporting guidelines, to be addressed in a petition for specialty recognition. The petitioning organizations conducted a comprehensive literature review and examined, in detail, the 2012 BPS Report of the Role Delineation Study of Pediatric Pharmacy to support the development of this petition. We also conducted a web-based survey of pediatric pharmacists and their employers, the Pediatric Pharmacist Survey, to provide additional, timelier data for the petition. The evidence presented in the petition for each of the BPS criteria is briefly summarized below.

Criterion A: Need

This criterion identifies the public health and patient care needs that are currently unmet by pharmacists in generalized practice, pharmacists practicing in other specialty areas, or other
health professionals. The petition establishes how pharmacists in specialized pediatric practice can effectively meet these needs.

Pediatrics is a discipline that deals with biological, social, and environmental influences on the developing child and the impact of disease and dysfunction on development. Children differ from adults anatomically, physiologically, immunologically, psychologically, developmentally, and metabolically. Pediatric pharmacy practice is highly specialized and differentiated from the care of adult patients. Children vary in weight, body surface area, and organ system maturity, affecting their ability to metabolize and excrete medications. In addition, there are few standardized dosing regimens for children, with most medication dosing requiring body weight calculations. The possible causes of drug errors are multifactorial.

Approximately 70 percent of all pediatric hospital bed days are for chronic illnesses. Eighty percent of pediatric health care costs are expended for 20 percent of children. In 2006, approximately 13.9 percent of U.S. children were reported to have special health care needs and 21.8 percent of households with children had at least one child with a special health care need. Although the needs are substantial and diverse in pediatrics, it has been reported by the Children’s Hospital Association that shortages of pediatric care means that many young patients must wait weeks and sometimes months to get an appointment. In a nationwide survey of rural hospitals, 36.2 percent responded that they were experiencing a shortage of pediatric providers within all disciplines in their area.

Pharmacists have a responsibility to the American public to ensure that medications are used appropriately and desired medication outcomes are achieved. These pharmacists serve as practice leaders within their institutions, organizations, and the profession. They often serve as preceptors for advanced pharmacy practice experiences (APPEs), introductory pharmacy practice experiences (IPPEs), and postgraduate year one (PGY-1) and postgraduate year two (PGY-2) residency experiences. The health challenges facing today’s pediatric patients are not being adequately addressed by pharmacists in general practice or other specialty practices. BPS certification of pediatric pharmacy specialists will lay the groundwork for committed and interested pharmacists to focus their professional development, training, and educational efforts on preparing themselves to fully meet this public health need.

Criterion B: Demand
The criterion establishes that there exists a significant and clear health demand to provide the necessary public reason for certification. This is demonstrated through employer survey data, assessment of employment opportunities for pediatric pharmacy specialists, and letters and
statements by individuals in specific areas within the health care system. Demand is viewed as a willingness and ability to purchase a commodity or service.

The value of clinical pediatric pharmacists with specialized knowledge and skills is increasingly recognized within the profession and among health care professional colleagues. The demand for specialized pediatric pharmacists is demonstrated through sustained growth in employer demand and the increase in specialty training programs for pediatric pharmacists. In addition, 10 individuals and organizations contributed letters of support that specifically attest to the demand for pharmacists with training and knowledge to provide services in pediatric practice.

According to the American Hospital Association Guide, there are approximately 250 childrens’ hospitals (less than 5 percent of all hospitals). The Pediatric Pharmacist Survey was fielded by the petitioning organizations to individuals with direct responsibility for hiring pediatric pharmacists. The survey yielded 87 responses. Hiring managers from 69 organizations indicated that they had recruited for 288 pediatric pharmacist positions over the past 3 years and had filled more than 96.6 percent of these positions. These same employers estimate that they will fill an additional 226 positions over the next 3 years and currently report 34 vacant positions within their organizations. Employers also estimated that they would see significant growth in the number of pediatric pharmacist positions within their organizations over the next 5 years.

Almost 70 percent of employers responding to the Pediatric Pharmacist Survey indicated that it was “highly likely,” “likely,” or “somewhat likely” that they would require a new specialty credential in pediatric pharmacy if approved by BPS. The survey also showed that only 11.5 percent of pediatric pharmacist positions currently require BPS certification or other earned credential. These results imply that a credential more targeted to the specific needs of pediatric pharmacists would be in demand in the marketplace.

Criterion C: Number and Time

This criterion quantifies that there are a reasonable number of individuals who devote most of the time of their practice to pediatric pharmacy practice.

The Pediatric Pharmacist Survey was fielded to 2,153 pharmacists in pediatric practice. Individuals were identified through membership records within ACCP, APhA, ASHP, and PPAG. Of the 667 responding pharmacists, 94 percent indicated that they are practicing at a specialty level. Based on these survey results, and estimates by experts in pharmacy practice, we draw the conclusion that 4,000 to 5,000 pharmacists are currently engaged in specialized pediatric practice. Clearly, this survey number is underestimated because not all pharmacists in pediatric specialty practice are members of the four partnering professional organizations. However, we
believe that pharmacists who are engaged as members of professional associations are more likely than others to pursue specialty recognition.

The growth in specialized pediatric practice is reflected in the increased number of PGY2 residency programs in pediatrics. Ten years ago, there were 17 ASHP-accredited specialty residency programs in pediatrics. Today, these programs number 39—an increase of 129 percent. Specialty residencies in pediatrics graduate approximately 44 pharmacists specializing in pediatrics each year.

The Pediatric Pharmacist Survey asked pharmacists to quantify the percentage of time in an average week that they spent engaged in direct patient care activities. Results showed that more than 79 percent of survey respondents spent at least 50 percent of their time engaged in direct patient care activities at the specialty level. The survey also indicated that almost 88 percent of responding pharmacists would be “highly likely,” “likely,” or “somewhat likely” to pursue specialty recognition in pediatric pharmacy practice certification within 5 years if such recognition were made available.

Criterion D: Specialized Knowledge
Criterion E: Specialized Functions
These criteria outline the specialized knowledge of one or more of the pharmaceutical sciences and the biological, physical, behavioral, and administrative sciences which underlie them required by pediatric pharmacy specialists and define the specialized functioning of the pediatric pharmacy specialist, which is distinct from other BPS-recognized pharmacy specialties.

Pediatric pharmacists possess a unique body of knowledge and skills enabling them to perform specialized functions that fulfill unmet patient care needs. Services provided by pediatric pharmacists, and the specialized knowledge that supports these functions, are qualitatively different from those provided by pharmacists in general practice. BPS analyzed these functions in a 2012 role delineation study, which describes and empirically validates the domains, tasks, and knowledge that comprise pediatric pharmacy practice.

According to the task analysis performed for that study, the following domains constitute pediatric pharmacy specialty practice:

- **Patient Management** – Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data, and designing, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the health care team.
Practice Management – Tasks related to advancing pediatric pharmacy practice and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.

Information Management and Education – Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of health care providers, trainees, patients, and caregivers.

Public Health and Patient Advocacy – Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population health care policy.

The role delineation study presents 30 tasks that have been validated on the basis of the importance of the task statement and the frequency that the tasks are performed. The specialized skills required to perform these functions are as follows:

- Retrieve and assess relevant medical information, manage the drug regimen, develop individualized care plans, and collaborate with other health care professionals.
- Design, implement, and monitor systems and policies to optimize the care of pediatric patients.
- Retrieve, generate, interpret, and disseminate knowledge related to pediatric pharmacy and the education of health care providers, trainees, patients, and caregivers.
- Provide preventive health services, public health information, and advocacy for health care policy that impacts the pediatric patient population.

Pediatric pharmacists engaged in specialized functions have obtained competencies in the domains of patient management, practice management, information management and education, and public health and patient advocacy. The functions and skills associated with these domains include gathering, assessing, and integrating clinical data and information from multiple sources; managing and optimizing medication use in pediatric patients; developing individualized care plans; and developing effective long-term relationships with patients, caregivers, and other health professionals. Additional skills include conducting and evaluating research; employing evidence-based medicine and clinical guidelines; and using communication, motivation, and negotiation strategies. The petition also compares the differences between the recognized domains and functional areas for pediatric pharmacists and pharmacotherapy specialists.

Criterion F: Education and Training
This criterion describes the education, training, and experience required to acquire specialized knowledge and skills to perform the specialized functions and distinguishes from the generalized practitioner and the requirements of initial licensure.
According to the Accreditation Council for Pharmacy Education (ACPE) *Accreditation Standards and Guidelines for the Professional Program in Pharmacy Leading to the Doctor of Pharmacy Degree*, the pharmacy curriculum provides a thorough foundation in the biomedical, pharmaceutical, social/behavioral/administrative, and clinical sciences and prepares graduates with the competencies needed to enter pharmacy practice in any setting and to contribute to the profession of pharmacy throughout their careers. Currently, ACPE does not require APPEs to focus specifically on the area of pediatric care. Therefore, additional training is essential beyond a Doctor of Pharmacy (PharmD) degree for the breadth of knowledge needed to be a pediatric specialist.

Because pediatrics is an evolving specialized discipline that frequently employs an interdisciplinary health care team, many pediatric pharmacists have obtained the needed knowledge, skills, and abilities through mechanisms other than structured training programs. As of September 6, 2012, there are 39 PGY2 pediatric residency programs with 48 to 51 residency positions. There are also 3 pediatric pharmacy fellowship positions.

The state licensure examination sets a minimum standard for pharmacy practice. Following licensure, pharmacists can acquire the knowledge and skills necessary to be able to practice specialized pediatric pharmacy by a variety of methods. These methods may include:

- PharmD degree education, clinical work experience, and self-study.
- PharmD degree education, PGY1 residency training, clinical work experience, and self-study.
- PharmD degree education and PGY1 residency training, followed by PGY2 residency in pediatrics, clinical work experience, and self-study.

The most effective method to prepare an individual for a career as a pediatric pharmacist is through the completion of a PGY1 residency in pharmacy practice followed by completion of a PGY2 residency in pediatrics. Pediatric residencies are structured experimental learning opportunities that allow pharmacists to gain additional knowledge to ensure the safest and most beneficial use of medications in pediatric patients. BPS determines the requirements for education and training for the eligibility of the specialist.

Criterion G: Transmission of Knowledge

The criterion establishes that there is adequate transmission of specialized knowledge through professional, scientific, and technical literature immediately related to specialized pediatric care practice.
The distribution of information pertaining to safe and effective medication use in pediatrics occurs through mainstream peer-reviewed pharmacy journals, periodicals, newsletters, and other publications to expand the knowledge base of pediatric pharmacists. Professional organizations and networking groups help pediatric specialists to provide optimal care by promoting mentorship and expansion of knowledge. Pharmacy practice organizations offer hundreds of hours of live and web-based continuing pharmacy education opportunities related to new developments and issues concerning pediatric practice each year that cause the dissemination of knowledge and practice excellence. Enduring resources also are available through various methods. A substantial number of articles pertaining to pediatric topics are published annually, which shows a need for pediatric pharmacy specialists in providing the safest and most beneficial use of medications in pediatric patients.

Conclusion

Children comprise approximately one quarter of the population in the United States. Many of the diseases and conditions common in pediatric patients are managed primarily through medications that are significantly affected by physiologic differences in the metabolism, action, and toxicity in children compared with adults. Children cannot be viewed as “little adults” when assessing and managing drug therapy. Pediatric patients require a health professional with expertise in medication use and management, augmented by specialized knowledge and skills, to achieve optimal outcomes. Effective and contemporary pharmacy practice in pediatrics requires the acquisition and application of this specialized knowledge to meet the complex medication management needs of pediatric patients and to perform specialized functions.

While there is some overlap among BPS-recognized specialty areas, the needs of pediatric patients who are at heightened risks for medication errors, adverse events, and other complications are significant and growing. Pediatric pharmacy practice requires a deeper knowledge of drug therapies and disease states to make appropriate and safe recommendations for children. Pediatric differences in pharmacokinetics and pharmacodynamics require a vastly different approach to pharmacotherapy and a significantly expanded depth and breadth of knowledge compared with the knowledge required for generalized practice and other specialty practices.

The demand for services provided by pediatric pharmacists has grown consistently over the past 20 years, and at an increasing rate especially over the past decade as improving pediatric health outcomes and improving medication use in this population have taken on greater priority within our health care system and society. The specialized knowledge and functions, supported by societal needs and strong demand, are sufficiently unique to support the recognition of pediatric pharmacy practice as a distinct specialty. Recognition of pediatric
pharmacy practice as a specialty by BPS would provide a mechanism through which pharmacists could attain voluntary certification that measures and recognizes achievement of distinct knowledge, experience, and skill in meeting the unique needs of pediatric patients.
CRITERION A: Need

The area of specialization shall be one for which specifically trained practitioners are needed to fulfill the responsibilities of the profession of pharmacy in improving the health and welfare of the public, which responsibilities may not otherwise be effectively fulfilled. This criterion addresses NEED. BPS defines NEED as a condition of requiring supply.

The American Academy of Pediatrics has defined pediatrics as the specialty of medical science concerned with the physical, mental, and social health of children from birth until young adulthood. Pediatric practice encompasses a broad group of patients that includes neonates, infants, children, and adolescents. This specialty encompasses a broad spectrum of health services ranging from preventive health care to the diagnosis and treatment of acute and chronic diseases. Pediatrics is a discipline that deals with biological, social, and environmental influences on the developing child and with the impact of disease and dysfunction on development. Children differ from adults anatomically, physiologically, immunologically, psychologically, developmentally, and metabolically.¹

In the United States, approximately 70 percent of all pediatric hospital bed days are for chronic illnesses, with 80 percent of pediatric health expenditures focused on 20 percent of children. In 2006, approximately 13.9 percent of U.S. children were reported to have special health care needs and 21.8 percent of households with children had at least one child with a special health care need.² Although the needs are substantial and diverse in the area of pediatrics, the Children’s Hospital Association reports that shortages of pediatric medical specialists mean that many young patients must wait weeks and sometimes months to get an appointment.³ In a nationwide survey of rural hospital chief executive officers (CEOs) (n = 1,031), 36.2 percent indicated they were experiencing a shortage of pediatric specialists.⁴

There are nearly 250 childrens’ hospitals (less than 5 percent of all hospitals) with pediatric pharmacists. These childrens’ hospitals include approximately⁵:

- 50 freestanding acute care childrens’ hospitals, virtually all of which are teaching hospitals.
- 40 freestanding childrens’ rehabilitation, specialty, and convalescent hospitals, including 16 short-term care facilities and 24 long-term care facilities.
- 50 freestanding childrens’ psychiatric hospitals including approximately 10 short-term care and 40 long-term care facilities.
- 100 joint childrens’ hospitals with large pediatric programs organized within larger medical centers that generally (but not always) call themselves childrens’ hospitals.

Pediatric clinical pharmacy practice is highly specialized and differentiated from the care of adult patients. Children vary in weight, body surface area, and organ system maturity, which affects their ability to metabolize and excrete medications. In addition, there are few standardized dosing regimens for children, with most medication dosing requiring body weight calculations. Because of the myriad of factors involved in proper dosing for children, these pediatric patients face an increased risk for adverse drug events (ADEs).

GUIDELINE 1. Identify specific public health and/or patient care needs which are not being met currently and which pharmacists in the proposed specialty can meet effectively.

In 2008, children comprised approximately one quarter of the U.S. population, and 13 percent of them received a medication for use on a regular basis for a duration of at least 3 months.6,7 In a study assessing pediatric services in community pharmacies, it was found that approximately 30 percent of all prescriptions filled were for pediatric patients.8 Pediatric patients utilize a significant portion of drug therapy in the United States. Due to their varying ages, weights, and developmental states, they also require highly individualized pharmaceutical care. Consequently pediatric patients have substantial unmet needs in the areas of medication error prevention, medication adherence, therapy management, individualized dosing and dosage forms, preventive care, and management of acute chronic diseases.

The World Health Organization identified some of the major challenges associated with the use of medicines in the treatment of children and adolescents9:

- Medications used for this population are often off-label and unlicensed.
- Over-the-counter, traditional, and herbal medicines are readily available, but their use is generally not evidence-based and is often inappropriate.
- Counterfeit and substandard medicines are widespread.
- Abuse by teenagers occurs with non-medical prescription of legal medicines and illegal drugs.
- New and innovative medicines are available with a pediatric indication, but with no evidence of long-term benefit and risk.

Even managing chronic conditions such as asthma and diabetes in pediatric patients can be extremely challenging. With shortages of pediatric care in many areas of the country, the need for highly trained pediatric pharmacists has never been greater. In addition, many treatment
Regimens cannot be easily individualized for the pediatric population. This complexity further emphasizes the importance of understanding pediatric physiology and pharmacotherapeutic response and implementing evidence-based care by a highly trained pediatric pharmacotherapy expert.10

The difficulty of treating pediatric patients often begins with the patient’s inability to communicate symptoms and side effects or express location and intensity of pain. Furthermore, they are dependent on an adult caregiver for medication acquisition, administration, and adherence to their prescribed medications. Pediatric patients have physiologic and epidemiologic differences compared with adults, and these factors must be considered when formulating appropriate drug recommendations. These and other challenges provide unique opportunities for pharmacists to improve the quality of care for pediatric patients.11

Physiologic differences between children and adults may result in age-related alterations in pharmacokinetics and pharmacodynamic responses. Factors such as gastric pH and emptying time, intestinal transit time, hepatic development, immaturity of secretion, and activity of bile and pancreatic fluid among other factors determine the oral bioavailability of medications in pediatric and adult populations. Anatomical, physiological, and biochemical characteristics in children also affect the bioavailability of medications through other routes of administration. Key differences in drug distribution between the pediatric population and adults are attributable to membrane permeability, plasma protein binding, and total body water. Important differences have been found in drug metabolism in the pediatric population compared with adults for both phase I and phase II metabolic enzymes. Immaturity of glomerular filtration, renal tubular secretion, and tubular reabsorption at birth and their maturation determine the different excretion of drugs in the pediatric population compared with the adult population.12

Safe medication practice is more complex in children than adults for several reasons13:

- There are age-dependent changes in pharmacokinetics, and these changes can affect dosing and patient response.
- As a result of these changes, dosages may vary greatly from patient to patient due to differences in size and maturity of systems responsible for the metabolism and excretion of medications.
- Dosing by weight, as an estimate of growth and development, increases the risk for mathematical errors.
- The majority of drugs are developed for use in adults and require adaptation for use in children.
Limited epidemiologic data are available regarding medication errors in the pediatric setting, and the potential for pediatric inpatient medical errors is substantial. Medication errors with the potential to cause harm are 8 times more likely to occur in neonatal intensive care units (NICUs) compared with hospital patient care areas for adults.14

Colleges and schools of pharmacy recognize the challenges confronting pediatric patients and have called for the expansion of pediatric education in their curricula. In a recent article evaluating pediatric pharmacotherapy education in a college of pharmacy, LaRochelle and Diaz noted that more pediatric education in the pharmacy curriculum would help produce more knowledgeable graduates who could assist in lowering medication error rates for pediatric patients.15

In comparison with pharmacy, medicine has recognized the need for specialization to meet the multifaceted medical needs of pediatric patients. The American Board of Pediatrics has now established 19 subspecialty certificate programs for its members (Table A-1).16

<table>
<thead>
<tr>
<th>Table A-1. American Board of Pediatrics Subspecialties in Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Adolescent Medicine</td>
</tr>
<tr>
<td>- Child Abuse Pediatrics</td>
</tr>
<tr>
<td>- Developmental-Behavioral Pediatrics</td>
</tr>
<tr>
<td>- Hospice and Palliative Medicine</td>
</tr>
<tr>
<td>- Medical Toxicology</td>
</tr>
<tr>
<td>- Neonatal-Perinatal Medicine</td>
</tr>
<tr>
<td>- Neurodevelopmental Disabilities</td>
</tr>
<tr>
<td>- Pediatric Cardiology</td>
</tr>
<tr>
<td>- Pediatric Critical Care Medicine</td>
</tr>
<tr>
<td>- Pediatric Emergency Medicine</td>
</tr>
<tr>
<td>- Pediatric Endocrinology</td>
</tr>
<tr>
<td>- Pediatric Gastroenterology</td>
</tr>
<tr>
<td>- Pediatric Hematology-Oncology</td>
</tr>
<tr>
<td>- Pediatric Infectious Diseases</td>
</tr>
<tr>
<td>- Pediatric Nephrology</td>
</tr>
<tr>
<td>- Pediatric Pulmonology</td>
</tr>
<tr>
<td>- Pediatric Rheumatology</td>
</tr>
<tr>
<td>- Pediatric Transplant Hepatology</td>
</tr>
<tr>
<td>- Sleep Medicine</td>
</tr>
<tr>
<td>- Sports Medicine</td>
</tr>
</tbody>
</table>
Costs of Health Care

Health care costs make up more than 17.9 percent of the gross domestic product (GDP), growing at a rate of 3.9 percent in 2011. Should this rate of growth continue, health care spending will exceed 20 percent of GDP by 2021 and reach almost 30 percent of GDP by 2030.\(^{17}\) According to the Congressional Budget Office, this exceeds our country’s spending on food or housing.\(^{18}\) Current efforts through the Patient Protection and Affordable Care Act to expand health care to uninsured children and adults place a strong emphasis on prevention for health care solutions. Adverse events, medication errors, increasing prevalence of obesity, and related chronic diseases in children\(^{19}\) contribute to rapidly rising health care costs and can be positively influenced through the care provided by pediatric pharmacy specialists to improve outcomes.

Pediatric Pharmacists in Specialized Practice

Many pharmacists who practice in neonatal and pediatric settings have distinguished themselves by gaining in-depth knowledge, advanced training, and expertise to provide specialized pharmaceutical care to pediatric patients across a wide spectrum of diseases. These pediatric pharmacists are in a position to be part of the solution to our nation’s health care crisis. In specialized practices that span a variety of both institutional and outpatient environments, pediatric pharmacists assist patients in screening and monitoring health conditions, collaboratively manage their medications, ensure appropriate dosing and medication use, and minimize avoidable complications of their diseases, conditions, and pharmacotherapy. They also provide education, counseling, and support for patients, parents, and caregivers.

Pediatric patients with acute and chronic diseases and conditions require pharmacologic management by pharmacists with specialized training, knowledge, and experience in managing pharmacotherapy in infants and children. There is a need for a mechanism for identifying, recognizing, and providing access to pediatric pharmacists who can meet patient needs for specialized medication management. Individuals who have obtained specialist recognition and have attained the additional training, experience, and expertise to lead patients, the profession, other health care providers, and society to better public health are necessary for managing disease and reducing preventable conditions, complications, and sequelae. Specialty recognition of pediatric pharmacy practice by BPS would provide a mechanism through which pharmacists could attain voluntary certification that recognizes achievement of a focused and distinct level of specialized knowledge, experience, and skills in serving the unique medication needs of pediatric patients.

GUIDELINE 2. Specify how the functions performed by pharmacists in the proposed specialty address these specific needs of the publics’ health and well-being.
Pediatric pharmacists in specialized practice are located in many different settings including health systems, ambulatory clinics, physicians’ offices, HMOs, community pharmacies, and managed care organizations. In their specialized practices, these pharmacists establish long-term relationships with patients, caregivers, and providers that form a foundation of trust, education, motivation, and support.

Pediatric pharmacists in specialized practice provide comprehensive pharmacotherapeutic management of pediatric patients that includes obtaining pertinent patient information via medical records, discussions with other health care professionals, and interviews with the patient, parent and/or caregiver. These pharmacists obtain relevant clinical and laboratory data as well as results of diagnostic procedures and they analyze and interpret all collected patient information. Pediatric pharmacists identify and prioritize current or potential patient-specific medical, medication, and nutrition-related problems. They establish therapeutic goals with the health care team, patients, parents, and caregivers. The cornerstones of their practice include designing, recommending, and implementing individualized age-appropriate therapeutic regimens and plans for monitoring the safety and efficacy of therapeutic regimens. These pharmacists also participate in the management of pediatric emergencies, reconcile medications across the continuum of care, and identify and refer patients to appropriate levels of care.

Practice management involves advancing pediatric practice through developing and implementing systems to ensure appropriate drug delivery for pediatric patients. Pediatric pharmacists participate in decision-making regarding selection and implementation of equipment and technology and provide decision support in the medication-use process. They are responsible for developing and maintaining a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs. They adopt, adapt, or develop evidence-based practice guidelines and protocols for the management of pediatric patients and establish processes to anticipate, prevent, review, and report medication errors and adverse events. Continuous quality improvement, directing the medication-use process for investigational drugs in pediatric practice, and justifying and documenting the clinical and financial value of pediatric pharmacy services are important aspects to the practice management functions of a pediatric pharmacist.

Pediatric pharmacists in specialized practice have significant responsibilities related to information management and education. They are actively engaged in providing staff development and education along with training for students and residents in pharmacy, medicine, and nursing concerning safe and effective use of medications and other issues about medication use in the care of the pediatric patient. They educate and provide counseling to
patients, parents, and caregivers regarding the safe and effective use of medications, treatment plans, the monitoring of side effects, and the importance of adherence to the treatment regimen. They make important contributions to the medical and scientific literature and retrieve and interpret biomedical literature with regard to study design, statistical analysis, study results, and applicability to pediatric pharmacy practice. Pediatric pharmacists also may be responsible for the development and maintenance of pediatric-specific medical reference libraries.

Specialized functions within pediatric practice include advocacy for public health initiatives to promote health, safety, and wellness in infants, children, and adolescents. Pediatric pharmacists advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and enhanced product labeling to promote the safe use of medication in pediatric patients. Pediatric pharmacists educate the public regarding the importance of health, safety, and wellness in infants, children, and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse) and promote the role of the pediatric pharmacy specialist to health care system administrators, legislators, patients, parents, and caregivers. Engagement and involvement in professional organizations related to pharmacy and pediatric practice is an important component of developing leadership skills and clinical competency. Pediatric pharmacists also facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.

GUIDELINE 3. Describe and document with references how the publics’ health and well-being may be at risk if the services of practitioners in the proposed specialty are not provided.

Public Health Risks of Medication-Related Problems
The management of conditions that require medication therapy in neonates, infants, and children often necessitates off-label use. Clinical studies for most medications are conducted in adult patient populations and do not include or evaluate dosing and safety in infants and children. This paucity of clinical data specific to pediatric populations exposes pediatric patients to an increased risk of experiencing ADEs, especially if dosing is calculated by extrapolation of adult doses. Pharmacodynamic responses to medications in children may not be the same as in adults, and developmental changes may alter both the action of a drug and the patient’s response to it. 20 Rapid changes of body mass and composition are associated with additional challenges in identification of adequate dosage regimens to be administered according to the existing developmental stage.
ADEs are a common complication of medical care. In pediatric medicine, doses of medications are usually calculated individually based on the patient’s age, weight, and clinical condition. Consequently, there are increased opportunities for, and a relatively high risk of, dosing errors in this population. In a systematic review conducted by Wong and colleagues of 16 pediatric studies evaluating medication errors, dosing errors were found to be the most common type of errors reported. The authors concluded that dosing errors in this population are quite common and that a 10-fold overdose caused by calculation errors has led to serious consequences, including death.21 Over an 11-year period (1995-2005), Bourgeois and coworkers estimated the mean incidence of pediatric ADEs requiring medical treatment to be 585,922. Approximately 78 percent of pediatric patients with ADEs requiring treatment were seen in outpatient clinics while 12 percent were seen in emergency departments. Children aged 0 to 4 years had the highest incidence of ADE-related visits.22

\textbf{Public Health Risks of Chronic Diseases}

An estimated 7.1 million children in the United States had asthma in 2011.23 Despite the availability of effective controller medications, the annual rate of pediatric hospital admissions for asthma remains high.24,25,26 In an analysis of population-based data from California acute-care hospitals, asthma was ranked as the primary cause of hospitalization in children aged 1 to 5 years and the third cause of hospitalization in children aged 6 to 12 years.25 In 1999, the hospitalization rate was 55.4 admissions per 10,000 population among children aged 0 to 4 years and 21.5 admissions per 10,000 population among children aged 5 to 14 years.27 The emergency department visit rates also were high for these age groups.

The disproportionate share of costs for hospitalization and unscheduled emergency care of children with asthma is largely responsible for the significant economic burden of pediatric asthma.28 The national annual health care cost for pediatric asthma is approaching $3 billion, of which direct treatment costs account for approximately $2 billion and indirect costs $1 billion.29 In 2004, a CDC analysis of the state of childhood asthma showed that over 750,000 children visited an emergency department, 198,000 children were hospitalized, and 186 children died from asthma-related complications.30

Diabetes, a leading cause of nephropathy, retinopathy, neuropathy, and coronary and peripheral vascular disease in adults, is now the third most prevalent severe chronic disease of childhood in the United States.31 Individuals with diabetes diagnosed before the age of 20 years have a life expectancy that is 15 to 27 years shorter than people without diabetes,32 although prospective data show improvements in mortality for those diagnosed in more recent years.32 Until only a decade ago, diabetes diagnosed in children and adolescents was almost entirely type 1 diabetes, resulting most often from the autoimmune destruction of the β-cells of the
pancreas leading to an absolute deficiency of insulin. Diabetes in children and adolescents is now viewed as a complex disorder with heterogeneity in its pathogenesis, clinical presentation, and clinical outcome. The occurrence of type 2 diabetes in youth, particularly overweight minority youth, has been widely reported and researchers have found that the prevalence of type 2 diabetes increased 21 percent among children and adolescents from 2001 to 2009.33

Pediatric pharmacy specialists are adept at managing the complex medication needs of pediatric patients with acute and chronic illnesses, as well as in detecting and addressing drug therapy problems, including preventable errors and predictable ADEs. With a solid relationship of trust as a foundation, these pharmacists motivate their patients and caregivers to adhere to treatment regimens and to actively and accurately monitor their chronic diseases. They likewise maintain collaborative, collegial relationships with other members of the health care team, built on a foundation of mutual respect and shared goals. These relationships foster an environment for prompt detection and resolution of medication- and disease-related problems experienced by pediatric patients. Without a sufficient supply of pharmacists who devote the majority of their time to direct, specialized patient care activities focused on pediatric patients, medication-related problems will continue to rise and persist undetected by other health professionals or pharmacists who interface with these patients episodically (or who spend the majority of their time engaged in administrative, dispensing, or general patient-care functions). Undetected preventable or ameliorable drug therapy problems lead to ADEs, nonadherence, disease progression, morbidity, or reduced quality of life for pediatric patients.6

GUIDELINE 4. Describe how functions provided by the practitioners in the proposed specialty will fulfill the responsibility of the profession of pharmacy in improving the publics’ health.

The mission of pharmacy is to serve society as the profession responsible for the appropriate use of medications, devices, and services to achieve optimal therapeutic outcomes.

The vision of pharmacy states that by 2015, “pharmacists will be the health care professionals responsible for providing patient care that ensures optimal medication therapy outcomes.”-Joint Commission of Pharmacy Practitioners34

Pharmacists have a responsibility to the American public to ensure that medications are used appropriately and desired medication outcomes are achieved. Achieving the vision of the Joint Commission of Pharmacy Practitioners will require expansion in the number of specialized pharmacists with the knowledge, skills, and abilities to manage complex medication needs specifically for pediatric patients. Pediatric pharmacy specialists adeptly manage complex
medication regimens, develop and refine individualized patient care plans, work collaboratively as members of the health care team, conduct and publish research, and maintain long-term relationships with patients, parents, and caregivers.

Pediatric pharmacists serve as practice leaders within their institutions, organizations, and the profession. They often serve as preceptors for APPEs, IPPEs, and PGY1 and PGY2 residency experiences. A new specialty in pediatrics would be consistent with the BPS mission: “to improve patient care through recognition and promotion of specialized training, knowledge, and skills in pharmacy and specialty board certification of pharmacists.”

BPS specialty certification is not only the pharmacist’s path to advancement in contemporary medicine but also a roadmap for pharmacists who desire to gain additional training and knowledge to differentiate themselves from pharmacists in general practice or other specialty practices. By achieving certification, pharmacists acquire a tool that provides assurance of their specialized knowledge and skills to other health professionals, stakeholders, and society. The complexities of care for pediatric patients continue to multiply. Advances in medications and technology are driving a need for specialty-trained pharmacists to expand their knowledge and skills to integrate and manage highly complex medication therapy needs of the pediatric patient population.

GUIDELINE 5. Describe the reasons why the needs as described above are not or cannot be met by pharmacists who do not have specialized education and training.

General practice within pharmacy and medicine are often challenged to successfully meet the medication management needs of pediatric patients. For a myriad of reasons previously outlined, pediatric patients are at higher risk for medication errors, ADEs and other negative consequences of inappropriate medication use. Pediatric patients have immature metabolic systems and variable parameters that alter their response to medications and their reactions to health conditions. Licensure examinations by state boards of pharmacy evaluate some of the core functions performed by pediatric pharmacy specialists, but do so at a generalist level that does not evaluate abilities to manage complex needs of pediatric patients. Pharmacists in general practice perform important medication management and patient education functions. However, management of complex pediatric patients frequently requires the advanced knowledge and skills of the specialized practitioner. Relying on general knowledge of medications and their predicted action, pharmacokinetics, and pharmacodynamic responses, based on adults, can have dire consequences for pediatric patients.

A significant number of pharmacists have prepared themselves to meet public health needs by providing specialized care for pediatric patients that includes comprehensive mediation
management, collaborating with other health care providers, and addressing a broad range of other health-related needs for their pediatric patients. In addition, pediatric pharmacists in specialty practice have provided leadership among the profession in establishing patient care services, precepting student pharmacists in required APPEs and IPPEs, and training other pharmacists through residencies, fellowships, and live and enduring educational programs.

By any measure, the health challenges facing today’s pediatric patients are not being-and cannot be adequately addressed by pharmacists with entry-level knowledge and skills in general practice or other types of pharmacy specialties. BPS certification of pediatric pharmacy specialists will lay the groundwork for other committed and interested pharmacists to focus their professional development, training, and educational efforts on preparing themselves to fully meet this public health need.

GUIDELINE 6. Describe in detail how the needs as described above are not or cannot be met by pharmacists in those pharmacy specialties already recognized by BPS.

The health and medication management needs of pediatric patients are complex, and effective management requires distinct knowledge, training, and skills. Pediatric patients have specialized needs based on their age, weight, physical development, and customized dosing needs. ADEs and other medication problems occur much more frequently in this group than in adults.

While there is some overlap between specialized pediatric pharmacy practice and the existing BPS pharmacotherapy specialty, the knowledge and functions of pediatric pharmacy specialists are distinct and specifically focused on the unique needs of pediatric patients. The petitioners acknowledge the existence of a mechanism for added emphasis in certain areas of “added qualifications” within BPS (e.g., infectious diseases and cardiology within the qualifications for the Board Certified Pharmacotherapy Specialist [BCPS]); however, there are significant differences between the specialized practices of pediatric pharmacy practice and pharmacotherapy that make it important to recognize the pediatric specialty independently. The knowledge, skills, training, and functions of pharmacotherapy specialists lack the depth of specificity required to provide specialized pediatric pharmacy practice, without additional training and experience. Precedent for separate recognition of specialties can be found by looking to medicine’s specialization structure, as described above in the commentary for Guideline 1.

It has long been recognized that the base of knowledge and skills in medicine far exceeds an individual’s ability to master every facet of medicine. Currently, physicians may become certified in any of 145 medical specialties or subspecialties. Among the specialties in medicine,
overlap is apparent in many areas. This overlap is unavoidable given the complexities and commonalities within patient care. In comparison with pediatric pharmacy and pharmacotherapy specialties, separate and distinct medical specialties (i.e., not subspecialties) exist in family medicine, pediatric medicine, internal medicine, and public health/preventive care.

Likewise, in pharmacy, the breadth and depth of knowledge exceed an individual’s ability to master content and skills at an advanced level in all areas of practice and pharmacotherapy. Specialty pediatric pharmacy practice is distinct from other BPS specialties in its emphasis on the pediatric patient population that requires substantial specialized knowledge, skills, and abilities working within a distinct and unique patient population.

GUIDELINE 7. Describe the reasons why the needs as described above are not or cannot be met by other health professionals.

Many of the diseases and conditions common in pediatric patients are managed primarily through medication therapy, requiring a health professional with expertise in medication use and management, including alterations in pharmacokinetics and pharmacodynamic responses that vary with age, weight, and level of development in pediatric patients. In addition, health professionals managing the pharmacotherapy of pediatric patients must possess specialized knowledge and skills regarding medication use to achieve optimal outcomes. Pediatric pharmacists are uniquely qualified among all health professionals as the medication-use experts on the health care team. Physicians, nurses, physician assistants, nurse practitioners, and others do not have the pharmacologic and pharmacotherapeutic expertise to identify drug therapy problems and manage nuances of medication use in pediatric patients with the perspective and understanding of the pharmacist. Pharmacists with specialized knowledge, skills, and practices in the care of pediatric patients are best positioned to meet the complex medication management needs of pediatric patients.

GUIDELINE 8. If these needs are currently being met by other areas of pharmacy practice, or by other health professionals, describe how these needs can be met more effectively by pharmacists in the proposed specialty.

Pharmacists in community pharmacies, hospitals, ambulatory care clinics, managed care organizations, and other settings where pediatric patients receive care are providing medication management, conducting screenings and monitoring, and performing important functions to optimize medication use. Patients with general needs are being served more effectively than are the increasing numbers of patients with complicated needs. These
successes contribute to the emerging, impressive data being gathered and published demonstrating the value of pharmacists’ services and care for pediatric patients.

All pharmacists perform important patient care functions in serving the public health needs of society. By definition, pharmacists who voluntarily choose to earn BPS certification are prepared to meet the needs of patients within their respective specialty areas more effectively than entry-level pharmacists, because they have acquired specialized knowledge and training beyond the Doctor of Pharmacy degree and minimum standards for licensure. In all areas of pediatric pharmacy practice, collaboration with other members of the health care team is critical to prevent medication errors, ensure appropriate medication use, and ensure that desired therapeutic outcomes are achieved within the pediatric population. The needs of pediatric patients are significant, variable, and growing, and their needs are sufficiently distinct to support recognition of pediatric pharmacy practice as a separate specialty. Effective, successful, high-quality care for neonates, infants, and children will require the full application of specialized knowledge and skills of pediatric pharmacists and those who would seek to achieve specialty recognition in pediatric pharmacy practice.

CRITERION B: Demand

The area of specialization shall be one in which there exists a significant and clear health demand to provide the necessary public reason for certification. This criterion emphasizes DEMAND. BPS defines DEMAND as a willingness and ability to purchase the services of a Board Certified Pharmacist.

The demand for pediatric pharmacists practicing at the specialty level can be expressed in terms of requests for services from patients and other health professionals. Employment trends and surveys that document increased demand for pharmacists who provide care to pediatric patients also reflect a significant and clear health demand.

Demand for Pediatric Pharmacist Services

Management of drug therapy for pediatric patients is complex and unique. Children of all ages are treated with medications that have been developed for adults, for which limited data exist on how best to dose and monitor therapy to ensure optimal patient outcomes for the pediatric patient. These medications are often used off-label without suitable formulations or appropriate strengths because pediatric products are not commonly commercially available. Pediatric medications are frequently extemporaneously prepared formulations with liquids and injections diluted and tablets split to meet the specific needs of individual patients. These factors increase the likelihood of medication errors and may lead to variations in drug effects.\(^1\) Drug therapy is further complicated in children because of their lower body weight and age-specific changes in pharmacokinetics and pharmacodynamics. These factors provide unique opportunities for pediatric pharmacists to improve the quality of care for pediatric patients.\(^1\)

The value of pediatric pharmacists with specialized knowledge and skills is increasingly recognized. Pediatric groups external to the profession of pharmacy have indicated a demand for highly trained, experienced, and credentialed pediatric pharmacists. The American Academy of Pediatrics recognizes the role of the clinical pharmacist and provides recommendations that encourage a team environment for review of orders among health care professionals, foster pharmacist consultation, and support integration of clinical pharmacists into patient care rounds.\(^2\) The American Academy of Pediatrics also acknowledges the value of skilled clinical pharmacists who specialize in pediatric oncology.\(^3\) In a position statement on medication safety in the NICUs, the National Association of Neonatal Nurses supports the involvement of
pharmacists in medication order review and on patient care rounds as a mechanism to improve medication safety.

In addition, the *California Children’s Services Manual of Procedures* has developed standards for NICUs that require pediatric pharmacist expertise within health systems that provide neonatal care. These standards require that:

- There shall be at least one licensed pharmacist holding a Doctor of Pharmacy degree with neonatal expertise available for consultation to the NICU staff.
- Pharmacy staff and pharmaceutical services shall be available on a 24-hour basis.
- Pharmacy staff shall provide neonatal unit doses including individual neonatal intravenous and parenteral nutrition solutions, and neonatal nutritional products, in clearly marked containers, and shall also provide continuous drug surveillance.

GUIDELINE 1. Include statements of support by stakeholder organizations and other entities, other than petitioners, that attest to the demand for pharmacists with training and knowledge to provide services in the proposed specialty. Stakeholder organizations can include non-pharmacist health professional organizations, public and private health care entities, and consumer organizations.

Appendix B-1 provides statements from the following individuals and organizations that specifically attest to the demand for pharmacists with training and knowledge to provide services in pediatric practice:

Daniel K. Benjamin Jr., MD, PhD, MPH
Professor, Duke University
Chair, Pediatric Trials Network
Faculty Associate Director, Duke Clinical Research Institute

Robert W. Block, MD, FAAP
Professor Emeritus, Pediatrics
University of Oklahoma School of Community Medicine
President, American Academy of Pediatrics

William Greene, PharmD, BCPS, FASHP
Chief Pharmaceutical Officer
St. Jude Children's Research Hospital
Professor (Affiliated), Department of Clinical Pharmacy
The University of Tennessee College of Pharmacy
Key points within these letters of support speak to the demand for pediatric pharmacists practicing at the specialty level. Some of these valuable points that underscore the demand for specialty recognition are outlined below:

In his letter of support, William Greene, PharmD, BCPS, FASHP, Chief Pharmaceutical Officer, St. Jude Children's Research Hospital speaks directly to the demand for clinical pharmacists within his institution. Dr. Greene acknowledges that pediatric practitioners have long accepted pharmacists as collaborators in care of their patients. However, increasingly, institutions are
recognizing “advanced practice pharmacists” in a formal manner. Some institutions are pursuing formal pathways of privileging and credentialing that are similar to those currently in place for other “mid level” practitioners. St. Jude Children’s Research Hospital has recently taken the steps to privilege Clinical Pharmacy practitioners. This privileging process uses Board Certification (by BPS) as one of the “criteria” that must be fulfilled to be eligible for privileging.

William A. Miller, PharmD, FCCP, FASHP, Professor Emeritus, University of Iowa, and Chairman, Pharmacotherapy Board of Directors speaks directly to the value of pediatric specialists in managing care. Based upon my experience in serving as a lead surveyor for residency programs in children’s hospitals and hospitals with high-risk pediatric patient populations (e.g., pediatric intensive care units [PICU], neonatal intensive care units [NICU], oncology, transplant, and general and other specialized pediatric patient care units or clinics), I can say with confidence that Chief Executive Officers, Chief Medical Officers, and Directors of Pharmacy in these institutions recognize the high risks of drug therapy in pediatric patient populations. For this reason, it is uncommon to find a hospital with a PICU, NICU, or other specialized unit that does not have pharmacists as members of specialized pediatric teams managing the care of these patient populations.

Robert W. Block, MD, FAAP, Professor Emeritus of Pediatrics at the University of Oklahoma School of Community Medicine and President of the American Academy of Pediatrics also speaks to the demand for pediatric pharmacy specialists. Pediatric pharmacy is as important as pediatricians. Family physicians need assistance [from pediatric pharmacists] with clinical prescribing for children. In the pediatric department I used to chair, we had pediatric pharmacists on our faculty as part-time instructors for our pediatric faculty and residents, in addition to their duties in their primary appointment within the College of Pharmacy. In short, they were essential for teaching and developing policy to reduce medical errors. Access to pediatric pharmacists has been an important component of clinical care and education in our department of pediatrics.

The value of pharmacists practicing at the specialty level in pediatrics also was supported by Gregory Kearns, PharmD, PhD, Marion Merrell Dow/Missouri Chair in Pediatric Medical Research and Professor of Pediatrics and Pharmacology at the University of Missouri–Kansas City. In both inpatient and outpatient pediatric medical settings, highly skilled, expertly trained clinical pharmacists serve the pharmaceutical needs of infants, children, and adolescents. Their contributions range from direct patient care to the conduct of research, which translates in effective therapeutic decisions that directly impact the lives of patients and their families. The ever-changing physical and psychosocial makeup of pediatric patients requires that pharmacists
who serve them have a highly specialized body of knowledge that is vastly different from those of their colleagues who provide care to adults.

In speaking to the contributions that pediatrics pharmacists make to the health care team, Isabelle Von Kohorn, MD, PhD, a practicing neonatologist and Program Officer for the Institute of Medicine reflects that despite extensive training in pharmacology, physicians are often not equipped to handle the increasingly complex pharmacotherapy needs of their patients. This can be particularly true in pediatrics where drugs are often used off-label, and the data are complex and ever changing. Clinical pharmacists deeply skilled and experienced in pediatric pharmacy are invaluable members of the pediatric team and truly impact the ability to improve the triple aim—providing better care for patients, better health for populations, and lowering the costs of health care.

The demand for clinical pharmacists in pediatrics also extends to ensuring a competent, credible, and effective research network. Daniel K. Benjamin, MD, PhD, MPH, Professor at Duke University and Chair of the Pediatric Trials Network (PTN) speaks to the value of clinical pharmacists in research. The PTN is responsible for designing and completing trials to determine the exposure and safety of all off-label therapeutics in children. As an investigator conducting clinical research in infants and children, I am very familiar with the challenges in providing optimal drug therapy in this population and believe that it is necessary for pharmacists caring for children to have specialized training. The PTN has a number of prominent pharmacists and pharmacologists in the fields of developmental pharmacology and pharmacogenomics. The expertise that these investigators bring to our program has allowed us to make considerable progress in evaluating the safety and efficacy of drugs in children.

The role of pharmacists and the value of their knowledge base is highlighted by Robert Luten, MD, Professor, Department of Emergency Medicine, Division of Pediatric Emergency Medicine at the University of Florida–Shands Jacksonville Medical Center. In my experience, there is frequently a need for recommendations [in translating pediatric doses to adult doses] for specific critical medications that are rarely ever resolved or even addressed by organizational consensus. The significance of these decisions cannot be underestimated. In these instances, the dosing guidelines generated were published and widely disseminated both nationally and internationally and have formed the standard upon which much of pediatric acute medicine is practiced today. The final decisions reached in all of these areas required the distillation of published literature, consensus expert opinion, and represented a unique body of knowledge which did not exist before that permitted clinicians to meet the unique needs of the critically ill child.
Rita K. Jew, PharmD, FASHP, Executive Director, Pharmacy and Clinical Nutrition Services at CHOC Children’s Hospital in Orange, California, quantified the demand for pediatric pharmacists in her letter of support. The need for pediatric pharmacists has grown exponentially throughout the last decade. During my tenure here at CHOC Children’s Hospital, the number of inpatient pharmacists has grown 113 percent from 12.5-full time equivalent (FTE) (or 15 pharmacists) 7 years ago to 26.65 FTE (or 29 pharmacists) today. This number is expected to reach 31.35 FTE (or 34 pharmacists) by July 2013. The same growth is experienced by most other stand-alone children’s hospital around the country. In addition, as a specialty, Pediatric Pharmacy Practice has just begun to venture out to the ambulatory care setting. There will be additional demands for pediatric pharmacist specialists to expand to the ambulatory care setting as we move forward with the health care reform, as well as the accountable care organizations (ACO) and medical home models. Therefore, the demand for specialty pediatrics services will continue to grow, as will the need for Board Certified Pediatric Specialists.

Stuart Levine, PharmD, Informatics Specialist at the Institute for Safe Medication Practices, promotes medication safety through the use of electronic information technology. He was part of the consult team that regularly assessed medication safety in pediatric hospitals around the country and provided his reflection on the lack of expertise in caring for pediatric patients. As part of our consults, we evaluated the pediatric pharmacy clinical expertise available within both freestanding pediatric hospitals and those pediatric units that were part of primarily adult facilities. In many cases, we were surprised to see a lack of pediatric pharmacy expertise. This might mean the lack of expertise in general or the lack of expertise on off-shifts such as evening, nights, weekends, and holidays. It is very common in adult facilities that adult-oriented pharmacists are responsible for reviewing orders and preparing medications for pediatric and neonatal patients. In some cases, it has been years since they had an orientation to pediatric and neonatal pharmacology.

Christopher Jerry is the President and CEO of The Emily Jerry Foundation. His daughter Emily died as a result of a medication error in Cleveland, Ohio after overcoming cancer. Shortly after Emily’s death, I decided to honor my beautiful little girl by changing careers and becoming a full-time patient safety advocate. I made this important decision in an effort to positively affect change in medicine in the United States and prevent similar errors from happening. I truly believe that offering this type of recognition to pharmacists across the United States is absolutely imperative. The primary reason being, it would definitely help ensure the safe and effective use of medications on our nation’s smallest of patients. Most importantly, it would help significantly reduce the number of overall medication errors and subsequent deaths like my beautiful 2 year-old daughter Emily’s that occur every year with our children, neonates, and adolescents.
These statements are representative of the broad base of support and acceptance for recognition of pediatric pharmacists as specialists and reflect the widespread and growing demand for specialized pharmacy services for pediatric patients. All letter writers indicated their support for the recognition of pediatric pharmacy practice as a specialty.

GUIDELINE 2. Include estimates of positions for pharmacists with specialized training and knowledge in the proposed specialty that are currently filled and those that are currently unfilled. Identify these positions by practice settings. Describe the sources and methods used to determine these estimates.

According to the American Hospital Association Guide, there are nearly 250 children’s hospitals (less than 5 percent of all hospitals) with pediatric pharmacists. These children’s hospitals include approximately:

- 50 freestanding acute care children’s hospitals, virtually all of which are teaching hospitals.
- 40 freestanding children’s rehabilitation, specialty, and convalescent hospitals, including 16 short-term care facilities and 24 long-term care facilities.
- 50 freestanding children’s psychiatric hospitals including approximately 10 short-term care and 40 long-term care facilities.
- 100 joint children’s hospitals with large pediatric programs organized within larger medical centers that generally (but not always) call themselves children’s hospitals.

In an effort to estimate the number of positions for pharmacists with specialized training and knowledge in pediatric practice, the petitioning organizations conducted a survey of pediatric pharmacists. The Pediatric Pharmacist Survey included a subset of questions that were completed by individuals with direct responsibility for hiring pharmacists in pediatric practice. Eighty-seven individuals completed the survey.

Responding employers were asked to provide the total number of FTEs allocated to serving pediatric patients within their organization. Although the number of positions varied greatly (range, 1 to 80 allocated FTEs), the average number of FTEs across responding organizations was 25.7. Hiring managers from 69 organizations that responded indicated that they had recruited for 288 pediatric pharmacy specialists over the past 3 years and had filled more than 96.6 percent of these positions. These same employers estimate that they will fill an additional 226 positions over the next 3 years and currently report 34 vacant positions within their organizations. Employers also estimated the growth in the number of pediatric pharmacy
positions within their organizations over the next 5 years. These results are provided in Figure B-1.

Figure B-1. Anticipated Growth in Pediatric Pharmacist Positions over the Next 5 Years

This information provided by employers of pediatric pharmacists demonstrates a consistent and growing market for pediatric specialists.

GUIDELINE 3. Include estimates of filled and unfilled positions in each of the past three (3) years in order to demonstrate a sustained or increased demand for pharmacists with specialized knowledge and training. Describe the sources and methods used to determine these estimates.

Employer demand for specialized pediatric services can be documented by tabulating employment opportunities for pharmacists that appear in selected pharmacy journals and in online employment sites for pharmacists. Figure B-2 details the numbers and sources for pediatric employment advertisements published from July 1, 2009, through January 1, 2012.
Figure B-2. Pediatric Pharmacist Employment Advertisements within the Profession

<table>
<thead>
<tr>
<th>Professional Organization</th>
<th>Year</th>
<th>Number of Advertised Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCP</td>
<td>2009</td>
<td>70</td>
</tr>
<tr>
<td>ACCP</td>
<td>2010</td>
<td>89</td>
</tr>
<tr>
<td>ACCP</td>
<td>2011</td>
<td>63</td>
</tr>
<tr>
<td>Total ACCP Advertisements</td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>ASHP</td>
<td>2009</td>
<td>25</td>
</tr>
<tr>
<td>ASHP</td>
<td>2010</td>
<td>30</td>
</tr>
<tr>
<td>ASHP</td>
<td>2011</td>
<td>21</td>
</tr>
<tr>
<td>Total ASHP Advertisements</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>PPAG</td>
<td>2009</td>
<td>17</td>
</tr>
<tr>
<td>PPAG</td>
<td>2010</td>
<td>31</td>
</tr>
<tr>
<td>PPAG</td>
<td>2011</td>
<td>28</td>
</tr>
<tr>
<td>Total PPAG Advertisements</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>TOTAL ADVERTISEMENTS from January 1, 2009–January 1, 2012</td>
<td></td>
<td>374</td>
</tr>
</tbody>
</table>

The quantity of advertisements demonstrates growth in available pediatric pharmacist positions, although the number of positions was likely impacted in 2011 by the economic recession. Organizational partners report that available positions to date in 2012 seem to demonstrate a renewed interest in hiring for pediatric specialists, possibly reflecting a potential positive shift in employer budgets and spending.

In addition, searches on a national employment web site aggregator (www.indeed.com) on July 28, 2012, yielded a significant number of open positions and an active recruiting environment for “pediatric pharmacists.” Results of these searches included 100 positions, 33 posted by organizations and 67 posted by professional recruiters. The same search was conducted on September 10, 2012, with results indicating 80 open positions, 38 posted by organizations and 42 posted by professional recruiters. The petitioning organizations made no attempt to differentiate practice functions requested by the employer in these advertisements. However, all advertisements specifically called for a pediatric pharmacist. Positions were offered primarily within schools and colleges of pharmacy and health systems.
Throughout print and online sources, the number of positions is probably underestimated for two reasons. First, it is not possible to estimate or make accurate assumptions concerning other methods employed to recruit pediatric pharmacy specialists, such as internal placements, word-of-mouth advertising, networking, or use of professional search firms. Second, professional recruiting efforts have shifted from published media (e.g., journals, newsletters) to electronic communication vehicles (online recruiting), where historical records are often not maintained when these positions have been filled. It is highly likely that positions advertised in the past 3 years have been increasingly electronic, and have not been adequately captured within this assessment.

Notably, the value of specialty recognition is becoming increasingly important to employers of pediatric pharmacists. Almost 70 percent of employers responding to the Pediatric Pharmacist Survey indicated that it was “highly likely,” “likely,” or “somewhat likely” that they would require a new specialty credential in pediatrics if approved by BPS. The survey also showed that only 11.5 percent of pediatric pharmacist positions currently require BPS certification or other earned credential. These results imply that a credential more targeted to the specific needs of pediatric pharmacists would be in demand in the marketplace.

The data sources for determining the number of pharmacists in pediatric practice and the time spent in this proposed specialty area include:

- The *Report of the Role Delineation Study of Pediatric Pharmacy* conducted by the Professional Examination Service on behalf of BPS.
- An analysis of membership records of ACCP, APhA, ASHP, and PPAG.
- Results of a membership survey, conducted by ACCP, on the topic of Recognition of New Specialties administered in March 2011.
- Results of a membership survey, conducted by ACCP, ASHP, and PPAG, on the topic of Board Certification in Pediatric Pharmacy Practice administered in June 2010.
- Results of a survey of pharmacists primarily practicing in pediatric practice as identified by the petitioning organizations. The Pediatric Pharmacist Survey was fielded to 2,153 pharmacists in August 2012.

GUIDELINE 1. Estimate the number of pharmacists currently practicing in the proposed specialty. Identify the types of practice settings for these pharmacists (e.g., academic, hospital, managed health care, community). Describe the sources and methods used to determine these estimates.

Specialty practice in pediatrics has experienced significant growth over the past 10 years. One indicator of this growth is the increased number of PGY2 specialty residency programs in pediatrics. Ten years ago, there were 17 ASHP-accredited specialty residency programs in pediatrics. Today, these programs number 39—an increase of 129 percent. In comparison to other recognized specialties, there are currently 72 PGY2 residency programs in oncology, 60 PGY2 residency programs in ambulatory care, 24 PGY2 residency programs in psychiatry, and 3 PGY2 residency programs in nutrition support. Currently, specialty residencies in pediatrics graduate approximately 44 pediatric pharmacy specialists each year.
To determine the number of practitioners who identified themselves as practicing in pediatric pharmacy, membership records from the four petitioning organizations were analyzed. After removing duplicate entries, we defined 2,153 individuals as currently working in a pediatric pharmacy practice setting. Clearly, this number underestimates the actual number of practicing pediatric pharmacists because not all pharmacists in pediatric practice are members of the organizations from whose records names were drawn and some may not have identified themselves as pediatric pharmacists in the membership records. However, we believe that those pharmacists who are more professionally engaged are more likely to pursue specialty recognition.

The Pediatric Pharmacist Survey was developed by the petitioning organizations to obtain additional quantitative data on the demand for pediatric specialists, the amount of time spent in pediatric practice, and the education and training of those practicing in the proposed specialty. The survey was fielded in mid-August 2012 and distributed to the 2,153 individuals identified through the database analysis of membership records from ACCP, APhA, ASHP, and PPAG. The response rate for this survey was 31 percent (667 pharmacists). More than 430 survey respondents took the initiative to sign the online petition in support of specialty recognition for pharmacists in pediatric practice. A copy of the survey instrument is attached as Appendix C-1.

Based upon these survey results and the estimated percentages of pharmacists who join professional organizations, we estimate that a total of 4,000 to 5,000 pharmacists are currently engaged in specialized pediatric practice.

Of the pharmacists surveyed, 94 percent indicated that they are practicing at a specialty level according to the following definition:

Definition of Pediatric Pharmacy Practice

Pediatric pharmacy practice specializes in the delivery of patient care services by pharmacists that ensures the safe and effective use of medications for all children from neonates through adolescents. The practice includes direct patient care for children, often provided through interprofessional health care teams, as well as advocacy and education for children and their families, wellness and health promotion, and activities that advance knowledge and skills in pediatric pharmacy.
The *Report of the Role Delineation Study of Pediatric Pharmacy* describes surveyed pharmacists’ responses to questions about the setting where they provided the majority of their patient care and their primary role within that setting. Pediatric pharmacists worked most frequently at a freestanding, pediatric hospital (43.8 percent), and more than 50 percent of respondents indicated that they were practicing in the role of clinical specialist. The results from the role delineation study are shown in Figures C-1 and C-2.¹

Figure C-1. Practice Settings for Pharmacists in Pediatric Practice

<table>
<thead>
<tr>
<th>Practice Setting</th>
<th>Number of Responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult hospital with pediatric wing/services</td>
<td>81</td>
<td>17.6%</td>
</tr>
<tr>
<td>Adult hospital with children’s hospital within it</td>
<td>153</td>
<td>33.2%</td>
</tr>
<tr>
<td>Pediatric hospital, freestanding</td>
<td>202</td>
<td>43.8%</td>
</tr>
<tr>
<td>Pediatric ambulatory care clinic – freestanding</td>
<td>5</td>
<td>1.1%</td>
</tr>
<tr>
<td>Home care</td>
<td>2</td>
<td>0.4%</td>
</tr>
<tr>
<td>Other</td>
<td>18</td>
<td>3.9%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>461</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure C-2. Roles of Pharmacists in Pediatric Practice

<table>
<thead>
<tr>
<th>Practice Role</th>
<th>Number of Responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Pharmacy</td>
<td>13</td>
<td>2.8%</td>
</tr>
<tr>
<td>Clinical manager</td>
<td>23</td>
<td>5.0%</td>
</tr>
<tr>
<td>Operational manager</td>
<td>6</td>
<td>1.3%</td>
</tr>
<tr>
<td>Clinical specialist</td>
<td>233</td>
<td>50.5%</td>
</tr>
<tr>
<td>Generalist pharmacist/decentralized pharmacist</td>
<td>63</td>
<td>13.7%</td>
</tr>
<tr>
<td>Staff pharmacist</td>
<td>43</td>
<td>9.3%</td>
</tr>
<tr>
<td>Academia</td>
<td>36</td>
<td>7.8%</td>
</tr>
<tr>
<td>Researcher</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>Medication safety officer</td>
<td>3</td>
<td>0.7%</td>
</tr>
<tr>
<td>Other</td>
<td>40</td>
<td>8.7%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>461</td>
<td>100%</td>
</tr>
</tbody>
</table>

GUIDELINE 2. For the pharmacists identified in Guideline 1, estimate the percentage of time they devote exclusively to the practice of the proposed specialty. Describe the sources and methods used to determine these estimates.
In the role delineation study, results show that respondents are highly engaged in the specialty of pediatric pharmacy with an average of 87 percent of work time spent providing pharmacy services to pediatric patients. Of the time spent providing services to pediatric patients, an average of 54 percent of time was spent providing direct patient care.1

Respondents to the Pediatric Pharmacist Survey indicated the number of hours worked per week in their pediatric practice site and the percentage of time they devoted to exclusively providing patient care and services according to the Definition of Pediatric Pharmacy Practice. These results are outlined in Figures C-3 and C-4 and demonstrate that the vast majority of pediatric pharmacists practice within their pediatric site at least 40 hours per week (74.0 percent) and provide direct patient care and services at the specialty level more than 50 percent of the time (79.8 percent).

Figure C-3. Hours Worked Per Week in Pediatric Practice Site

<table>
<thead>
<tr>
<th>Hours per Week</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9 hours</td>
<td>5.3%</td>
</tr>
<tr>
<td>15-20 hours</td>
<td>3.3%</td>
</tr>
<tr>
<td>25-30 hours</td>
<td>4.6%</td>
</tr>
<tr>
<td>40 or more hours</td>
<td>7.3%</td>
</tr>
<tr>
<td>Total</td>
<td>74.0%</td>
</tr>
</tbody>
</table>

Figure C-4. Percent of Time Devoted Exclusively to Providing Direct Patient Care and Services According to the Definition of Pediatric Pharmacy Practice

<table>
<thead>
<tr>
<th>Percentage of Time</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 50%</td>
<td>20.2%</td>
</tr>
<tr>
<td>50%-59%</td>
<td>9.3%</td>
</tr>
<tr>
<td>60%-69%</td>
<td>5.2%</td>
</tr>
<tr>
<td>70%-79%</td>
<td>13.5%</td>
</tr>
<tr>
<td>80%-89%</td>
<td>14.1%</td>
</tr>
<tr>
<td>90%-100%</td>
<td>37.7%</td>
</tr>
</tbody>
</table>
GUIDELINE 3. Estimate the number of pharmacists who would likely seek board certification in the proposed specialty during the first five years in which board certification would be available. Describe the sources and methods used to determine these estimates.

In June 2010, ACCP, ASHP, and PPAG surveyed their membership on the topic of board certification in pediatric pharmacy practice. A total of 1,985 pharmacists responded to the question: “If BPS were to develop a Pediatric Certification Exam would you plan to sit for the exam?” Almost 80 percent (1,584) of respondents indicated yes (Figure C-5).

Figure C-5. Likelihood of Pursuing Pediatric Pharmacy Specialty Recognition Among ACCP, ASHP, and PPAG Members

<table>
<thead>
<tr>
<th>Would pursue pediatric specialty recognition</th>
<th>% of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>79.8</td>
</tr>
<tr>
<td>No</td>
<td>20.2</td>
</tr>
</tbody>
</table>

In March 2011, ACCP conducted a survey of their members to assess opinions on the recognition of new specialties. Respondents indicated that a specialty certification in pediatric pharmacy was needed to appropriately certify clinical pharmacy practitioners. Of the 1,099 respondents who are currently board certified, 56.7 percent believed that new BPS specialty certifications are needed to appropriately certify clinical pharmacy practitioners in pediatrics. In addition, the survey indicated that 107 individuals who are currently certified would seek specialty recognition in pediatrics if BPS specialty certification were offered. For respondents who were not currently board certified, 55.8 percent of the 724 respondents felt that new BPS specialty certifications are needed to appropriately certify clinical pharmacy practitioners in pediatrics. Ninety-seven individuals who currently are not certified would seek specialty recognition in pediatrics if BPS specialty certification in pediatrics were offered.

In addition, the Pediatric Pharmacist Survey conducted by the petitioning organizations asked respondents to indicate how likely they would be to pursue this specialty recognition within the
next 5 years if the petition to recognize pediatric pharmacy practice as a specialty is approved. Almost 88 percent of respondents, or 567 pharmacists, indicated that they would be “highly likely,” “likely,” or “somewhat likely” to pursue specialty recognition in pediatrics (Figure C-6).

Figure C-6. Likelihood of Pursuing Specialty Recognition within the Next 5 Years

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Unlikely</td>
<td>5</td>
</tr>
<tr>
<td>Unlikely</td>
<td>7.1</td>
</tr>
<tr>
<td>Somewhat Likely</td>
<td>10</td>
</tr>
<tr>
<td>Likely</td>
<td>13</td>
</tr>
<tr>
<td>Highly Likely</td>
<td>64.9</td>
</tr>
</tbody>
</table>

Since this survey sampled only a portion of the individuals who may be engaged in pediatric specialty practice, the number of individuals who would seek certification is probably underrepresented. The growth and number of residency programs and the number of individuals who have indicated that they would be interested in certification are comparable to those of specialties currently recognized by BPS. Recognition of pediatric practice as a specialty has broad acceptance within the profession, as evidenced by the petitioning organizations, and will certainly increase the number of individuals who are likely to seek certification.

CRITERION D: Specialized Knowledge

The area of specialization shall be based on specialized knowledge of one or more of the pharmaceutical sciences and the biological, physical, behavioral, and administrative sciences which underlie them. Procedural or technical services and the specific environment in which pharmacy is practiced are not applicable to this criterion.

This criterion relates to SPECIALIZED KNOWLEDGE.

The pediatric population represents a spectrum of physiologies, and children cannot be viewed as “little adults” when assessing and managing drug therapy. Substantial changes in body proportions and composition accompany growth and development in pediatric patients. The developmental changes in physiology and, subsequently, changes in pharmacology, influence the efficacy, toxicity, and dosing regimens of medications in children. These changes result in differences in absorption, distribution, elimination, hepatic and renal function, pharmacodynamics, and pharmacogenomics¹ and thus profoundly influence the decisions made by pediatric pharmacy specialists. Diseases in neonates, infants, and children also may be qualitatively and quantitatively different from those observed in adult patients, and both benefits and risks of drug therapies are unique in this population.² Specialized knowledge is required to assess and evaluate all of these intersecting concerns and make appropriate decisions for individual patients. A number of diseases typically affect the pediatric population and are not commonly diagnosed in adults. In addition, a large proportion of routine vaccination protocols involve care of pediatric patients.

Specialized pharmacy practice in pediatrics requires the acquisition and application of specialized knowledge to meet the complex medication management needs of pediatric patients and to perform the specialized functions detailed in Criterion E (Specialized Functions). Pediatric pharmacy specialists obtain this knowledge through a variety of means, which are discussed in detail under Criterion F (Education and/or Training) and Criterion G (Transmission of Knowledge).

The specialized knowledge of pharmaceutical sciences required to practice in this specialty is outlined below in Guideline 1. Guideline 2 associates this knowledge with the biological, physical, and behavioral sciences. Guidelines 3 and 4 explain how the knowledge applied by the
pediatric pharmacy specialist differs from that of the general practice pharmacist and of pharmacists practicing specialists in other recognized specialty areas of pharmacy practice.

GUIDELINE 1. Describe in detail the specialized knowledge of pharmaceutical sciences required for the proposed specialty.

There are significant differences between adult pharmacy practice and pediatric pharmacy practice. Patients with a broad range of diseases and conditions are managed in pediatric settings. These conditions often require complicated medication therapy and other interventions. Doses are much more individualized in pediatric practice, and there is often a lack of evidence for the therapies prescribed. In fact, greater than 70 percent of drugs used in pediatrics do not have a Food and Drug Administration–approved indication for use in pediatric patients. To effectively care for this complex patient population and take responsibility for achieving intended therapeutic outcomes, pediatric pharmacy specialists rely on a specialized body of knowledge that is distinct in both breadth and depth.

In 2012, a role delineation study was conducted to describe and empirically validate the domains, tasks, and knowledge that comprise specialty practice in pediatrics. The complete study is attached as Appendix D-1: Report of the Role Delineation Study of Pediatric Pharmacy. The role delineation study identified and validated four domains of specialty practice in pediatrics and the knowledge areas associated with each domain. The domains are:

- **Patient Management** – Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data, and designing, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the health care team.
- **Practice Management** – Tasks related to advancing pediatric pharmacy practice and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.
- **Information Management and Education** – Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of health care providers, trainees, patients, and caregivers.
- **Public Health and Patient Advocacy** – Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population health care policy.

This criterion documents the specialized knowledge required for professional practice as a pediatric pharmacy specialist. In order to perform functions of specialized pediatric practice, pharmacists must attain specialized knowledge in each of the four domains. This knowledge is
unique and required at a significantly deeper level, in comparison with the knowledge required by individuals in general practice or in other BPS-recognized specialties.

The *Report of the Role Delineation Study of Pediatric Pharmacy* lists 58 areas of knowledge identified within the four domains of pediatric practice. These areas of specialized knowledge are summarized in Table D-1.

Table D-1. Specialized Knowledge Unique to or Applied with Greater Emphasis and/or Depth by Pediatric Pharmacy Specialists

<table>
<thead>
<tr>
<th>Domain</th>
<th>Knowledge Unique or Required with Greater Emphasis/Depth by Pediatric Pharmacy Specialists</th>
</tr>
</thead>
</table>
| Domain 1: Patient Management | ▪ Normal growth and development of the pediatric population
▪ Age-appropriate interviewing techniques for patients, parents, and caregivers
▪ Essential components of a medical history including maternal and birth history and childhood immunization status, if appropriate
▪ Essential components of a social history, including day care attendance, siblings, smoke exposure, home environment
▪ Pathophysiology, epidemiology, risk factors, diagnosis, prevention, and evidence-based treatment of common diseases and conditions in pediatric patients
▪ Equations to calculate body surface area, creatinine clearance, fluid requirements, and ideal body weight from birth to adult
▪ Pediatric populations for which standard calculated methods of assessment of renal impairment are not reliable
▪ Urine output calculation for body weight and appropriate output per age
▪ Methods for assessment of hepatic function in pediatric populations
▪ Normal laboratory values and vital signs from birth to adult
▪ Age-associated differences in pathophysiology and clinical manifestations of disease across patient populations
▪ Age-specific pharmacokinetic differences in neonates, infants, children, and adolescents
▪ Age-specific pharmacodynamic differences in neonates, infants, children, and adolescents
▪ Pharmacogenomic considerations in pediatric patients |
- Appropriate use of off-label medications to treat pediatric patients
- Pediatric-specific drug interactions (e.g., ceftriaxone and calcium-containing products in the neonate, calcium and phosphorous in parenteral nutrition)
- Clinical or therapeutic implications in the fetus and neonate of placental transfer of medications or other substances (e.g., antenatal steroids, neonatal abstinence syndrome [NAS], anticonvulsant withdrawal)
- Influence of medications on the production of breast milk
- Excretion of medications and other substances in breast milk
- Appropriate dosing based on age and body size (e.g., body surface area, post-menstrual age, gestational age, dosing weight)
- Medication dosing in extracorporeal membrane oxygenation (ECMO) and in renal replacement therapy (e.g., continuous renal replacement therapy [CRRT], peritoneal dialysis [PD], hemodialysis [HD])
- Medication dose adjustment in pediatric patients with renal and hepatic impairment
- Essential components of medication reconciliation in pediatric patients (e.g., concentration, dose in mg, palatability)
- Pediatric-specific adverse effects (e.g., liver failure with valproate, tetracycline and tooth discoloration)
- Differences in laboratory sampling for pediatric patients (e.g., blood volume; method, frequency and timing of sampling)
- Differences in the management of pediatric emergencies (e.g., respiratory distress, neonatal seizures, cardiopulmonary arrest)
- Nutritional and fluid requirements for infants and children for normal growth and disease
- Childhood immunization schedules
- Factors affecting adherence to the treatment regimen
- Specialty needs of pediatric patients requiring referral to other providers (e.g., infant with signs of dehydration, patient needs compounded oral formulation)

Domain 2: Practice Management

- Medication safety considerations (e.g., Institute for Safe Medication Practices [ISMP] and Joint Commission recommendations, Food and Drug Administration [FDA] alerts)
- Position statements, white papers, and national guidelines as an aid to the development of health-system policies and procedures
- Pediatric-specific considerations (e.g., age and body size) in the design or
improvement of medication use processes (e.g., computerized physician order entry [CPOE], infusion pumps, electronic medical record [EMR])

- Routes of administration (e.g., intraosseous, oral/enteral, parenteral, IM, transdermal, intranasal, intraventricular)
- Impact of medication administration techniques on drug delivery in pediatric patients (e.g., inhalers, dead space in intravenous (IV) tubing, overfill, j-tip device)
- Medication administration technology (e.g., infusion pumps, subcutaneous needle devices, intranasal administration devices, aerosols)
- Appropriate references to support the preparation of pediatric formulations (e.g., IV dilutions, extemporaneously compounded preparations)
- Considerations when selecting pediatric-appropriate dosage formulations
- Metrics for evaluating quality of pediatric pharmacy services (e.g., patient/parent/caregiver satisfaction, length of stay, readmission, medication errors)

<table>
<thead>
<tr>
<th>Domain 3: Information Management and Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Principles and methods of educating pharmacy staff, fellows, residents, student pharmacists and/or other health care professionals regarding pediatric health-related issues</td>
</tr>
<tr>
<td>• Age-appropriate patient education principles and methods</td>
</tr>
<tr>
<td>• Health literacy and cultural considerations in educating patients/parents/caregivers</td>
</tr>
<tr>
<td>• Tools, methods and counseling techniques to increase adherence to the treatment regimen</td>
</tr>
<tr>
<td>• Research design, methodology, and statistical analysis</td>
</tr>
<tr>
<td>• Clinical application and limitations of published data and reports</td>
</tr>
<tr>
<td>• Regulatory/Institutional Review Board (IRB)/human subjects safety requirements and concerns for conducting research in the pediatric population</td>
</tr>
<tr>
<td>• Medical literature publication and review process</td>
</tr>
<tr>
<td>• Opportunities for disseminating pediatric knowledge and scholarly activity (e.g., presentations, manuscripts, newsletters, abstracts, posters)</td>
</tr>
<tr>
<td>• Appropriate pediatric-specific references</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain 4: Public Health and Patient Advocacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Health care disparities in pediatric patients</td>
</tr>
<tr>
<td>• Access to care disparities in pediatric patients</td>
</tr>
<tr>
<td>▪ Emergency preparedness resources for pediatric patients</td>
</tr>
<tr>
<td>▪ Public health resources for pediatric patients (e.g., childhood immunizations, sexually transmitted disease [STD] treatment, free health clinics)</td>
</tr>
<tr>
<td>▪ Public health initiatives and legislation to improve the overall well-being of children (e.g., smoking cessation, child proof caps, poison prevention, Best Pharmaceuticals for Children Act)</td>
</tr>
<tr>
<td>▪ Resources that improve access to medications and other therapies necessary for the care of pediatric patients (e.g., Women’s, Infants and Children Special Supplemental Nutrition Program (WIC), patient assistance programs, specialty pharmacies, compounding pharmacies)</td>
</tr>
<tr>
<td>▪ Professional organizations and their roles and resources related to advocacy</td>
</tr>
<tr>
<td>▪ Appropriate avenues to advocate for safe and effective use of medications in the pediatric populations (e.g., pediatric-specific formulations, removal of dangerous substances from the market, pediatric-specific product labeling)</td>
</tr>
<tr>
<td>▪ Evidence demonstrating value of post doctoral pediatric training and the pediatric pharmacy specialist (e.g., decreasing medication errors, decreased cost, decreased length of stay, improved outcomes)</td>
</tr>
</tbody>
</table>

Specifically related to pharmaceutical sciences, in-depth knowledge of drugs used in all disease states and conditions prevalent in pediatrics are required. Knowledge of integrated pharmacotherapeutic principles associated with medications and diseases managed in pediatrics—and the interplay of each—is particularly important in specialized pediatric practice. Specialized knowledge of pharmaceutical sciences in pediatrics requires a solid educational foundation, such as that acquired through entry-level Doctor of Pharmacy programs and defined in the ACPE Accreditation Standards and Guidelines for the Professional Program in Pharmacy Leading to the Doctor of Pharmacy Degree.

Pediatric pharmacy specialists build on a foundation of knowledge in medicinal chemistry, including the chemical basis of pharmacology and therapeutics and structural activity relationships that lead to drug-target interactions, and chemical pathways of drug metabolism, coupled with a broad understanding of pharmacology. Pharmacologic principles of medications used in pediatrics, including mechanism of action, pharmacodynamics, pharmacokinetics, bioavailability, bioequivalence, potential ADEs, and interactions between drug-target, drug-drug, drug-food, and drug-lab tests underpin these pharmacists’ ability to analyze individual patient situations and make determinations regarding medication treatment. Knowledge of pharmaceutics and biopharmaceutics provides important insights into drug delivery through varying dosage forms and their associated physical-chemical properties, which may influence adherence and product selection for patients. Knowledge of toxicology, exposure, and poison
control, and a baseline understanding of pharmacogenomics, extemporaneous compounding, and enteral and parenteral nutrition add to this foundation.

Bloom’s taxonomy of learning states that acquiring knowledge is only the first step in the hierarchy of cognitive learning that enables critical thinking, synthesis, and problem solving. Specialized knowledge provides the foundation—the means to the desired end—enabling pharmacists to perform the specialized tasks and functions required to identify and solve drug therapy problems.3,7

Knowledge associated with the detection, assessment, understanding, and prevention of ADEs is critical. Pediatric patients, especially all newborns and infants, are particularly at risk for experiencing ADEs. These ADEs may have a more severe effect in pediatric patients compared with adults and can lead to significant morbidity and mortality.8 For example, weight-based (mg/kg) or body surface area (mg/m²) dosing results in an infinite number of possible doses. Neonatal and pediatric patients can vary in weights from the 0.5 kg premature neonate to the 200 kg obese adolescent, which makes for the potential of a 400-fold dosing error. In adult patients, a 2-fold dosing error is usually the maximum encountered.3 Pediatric pharmacy specialists enhance their ability to prevent, detect, or ameliorate ADEs through acquiring and maintaining specialized knowledge of potential ADEs associated with medications and combinations of medications used in the management of pediatric patients.

GUIDELINE 2. Explain fully the relationship of this specialized knowledge to the biological, physical, and behavioral sciences.

A broad-based, in-depth, specialized knowledge of the pharmaceutical sciences provides the critical underpinning of the complex knowledge in the biological, physical, and behavioral and social sciences required to manage the needs of pediatric patients. Increasing attention is being given to the importance of knowledge acquisition and maintenance and its influence on health care quality in the United States.9 Pediatric pharmacy specialists must possess specialized knowledge in anatomy and physiology, pathophysiology, and pathogenesis of diseases and conditions commonly experienced by patients in pediatrics, along with knowledge of physical and clinical assessment techniques. They must keep abreast of changes in technology associated with detecting, diagnosing, and managing patients, as well as integrate knowledge of laboratory analyses and their relation to health status and drug therapy. To ensure quality, pediatric pharmacy specialists must maintain specialized and up-to-date knowledge of evidence-based medicine, clinical practice guidelines, and clinical research. They must often understand systems and processes in pediatric research. The ability to interpret the published literature to determine the validity of the research methods, results, and outcomes and to
make judgments regarding the relative merits of conflicting information is a critical, foundational skill used by the pediatric pharmacy specialist.

In the behavioral sciences, pediatric pharmacy specialists must understand theory and strategies of motivational interviewing, interpersonal communication, listening, negotiation, cultural competence, and health literacy. These skills must be applied broadly to patients, caregivers, and other health care professionals. In addition, the pediatric patient population in the United States is becoming more culturally diverse. It is estimated that by the year 2020, approximately 40 percent of school-aged children will be from minority groups.10

This knowledge also sustains skills required to motivate patients and/or caregivers to adhere to medication therapies, to make choices that have a positive influence on the patient’s health, and to detect ADEs or other medication problems.

Collaboration with prescribers and other members of the health care team in managing complex pediatric patients requires specialized knowledge in communication and negotiation strategies with peers, subordinates, and superiors. In addition, the pediatric pharmacy specialist must be knowledgeable regarding the methods and systems for documenting patient-care activities and plans (e.g., through SOAP notes, electronic communication systems).

Pediatric pharmacy specialists need to be highly skilled in the public health, social, and political dimensions of health care, including expertise in drug development, medication evaluation, regulation and reimbursement issues, and evidence-based therapeutic decision-making skills to inform both clinical practice and broader medication policy. Pediatric pharmacy specialists also require sophisticated knowledge of, and skills in, ethical interactions with the pharmaceutical industry, whether through involvement in the design, conduct, or review of medication research, or through playing a key role in helping achieve rational use of medicines in clinical practice across a range of settings. These pharmacists also must be highly skilled in conducting high-quality research to generate needed evidence in pediatric practice.11

The body of specialized knowledge described in Guidelines 1 and 2 provides the required foundation for the development of the analysis, synthesis, and problem-solving skills required by pediatric pharmacy specialists. As Bloom suggests, learning is hierarchical. Learning and performance at high levels, such as that required for the management of complex chronic diseases and associated drug therapy follows a process that begins with obtaining knowledge (i.e., learning facts) and comprehending that knowledge.6 Applying the knowledge is an interim step, leading ultimately to the ability to fully use the knowledge in analysis, synthesis, and evaluation. The skills and functions performed by pediatric pharmacy specialists that
demonstrate the highest levels of specialized knowledge acquisition needed to make determinations regarding drug choice, treatment of pediatric diseases, and synthesis of care plans are described in Criterion E.

GUIDELINE 3. Discuss in detail how this specialized knowledge differs from the knowledge base of a recent graduate with a Doctor of Pharmacy degree.

An individual who has earned a Doctor of Pharmacy degree is educated to provide care in generalized practice in a variety of patient care settings. The scope of practice defined by licensure examination (through the North American Pharmacist Licensure Examination [NAPLEX] in most states) assures that a licensed pharmacist has met the baseline, minimum standards to practice pharmacy. An earned degree from an accredited school or college of pharmacy and licensure by examination prepare an entry-level pharmacist to deliver generalized pharmaceutical care more effectively than any other type of health professional in the U.S. health care system.

The licensure examination, by definition, sets a minimum competency standard. Specialty certification, by contrast, confirms the acquisition of specialized knowledge that prepares a pharmacist to contribute at evolved and advanced practice levels.” Most patients who receive care in pediatric settings require the skillful, specialized knowledge and medication therapy management provided by pediatric pharmacy specialists in order to reach their desired health outcomes.

The NAPLEX Blueprint (see Appendix D-2) is a list of competency statements describing the knowledge, judgment, and skills expected of an entry-level pharmacist. The licensure examination establishes the acquisition, comprehension, and application of basic, general pharmacy practice knowledge but not the analysis, synthesis, and evaluation of specialized knowledge in relation to complex medication therapy. The minimum competency standards set by licensure fall short of the validated knowledge and expertise required of a pediatric pharmacy specialist.

Pediatric pharmacy specialists apply specialized knowledge in the domains of patient management, practice management, information management and education, and public health and patient advocacy. These domains include specialized knowledge in the pharmaceutical, biological, and behavioral sciences associated with managing and optimizing medication use, developing individualized care plans (including clinical pharmacokinetic dosing when necessary), and developing long-term relationships with patients and other health professionals. Required specialized knowledge also includes expertise associated with the
conduct and evaluation of research; evidence-based medicine and clinical guidelines; and communication, motivation, and negotiation strategies.

While many of these concepts are introduced in the Doctor of Pharmacy curriculum, they are neither mastered at a specialty level during entry-level education nor measured by the licensure examination. Doctor of Pharmacy curricula generally devote minimal hours to the diseases that occur and the drug therapies used in pediatric populations. Remarkably, in a survey of entry-level Doctor of Pharmacy programs in the United States, only 18 percent of programs offered an elective course in pediatric pharmacology. In a 2005 opinion paper, the ACCP Pediatric Practice and Research Network stated that the ideal pediatric curriculum within an entry-level program should consist of 25 to 30 hours of didactic instruction in pediatric-specific topics, the availability of an elective course in pediatric pharmacotherapy, and at least one required APPE that is facilitated by a pediatric specialist. However, many programs appear to fall short of these recommendations.

There are expectations that pediatric pharmacy specialists are able to continuously evaluate new data and put them in the appropriate context. The capacity to critically appraise data and information in all pharmaceutical sciences as well as synthesize and translate the information into effective solutions are primary functions of the pediatric pharmacy specialist. These abilities often require significant practical experience beyond the completion of the Doctor of Pharmacy degree.

Specialty pediatric practice requires a deeper knowledge of drug therapies and disease states to make appropriate and safe recommendations for children. Pediatric differences in pharmacokinetics, pharmacodynamics, and pharmacogenomics require a completely different approach to pharmacotherapy and a significantly expanded depth and breadth of knowledge compared with generalized practice. This knowledge and required approaches to applying this knowledge in pediatric practice are not routinely integrated into the current Doctor of Pharmacy curriculum.

GUIDELINE 4. Discuss in detail how this specialized knowledge differs from the knowledge base of those specialty areas already recognized by BPS.

No currently recognized BPS specialty encompasses the domains and specialized areas of knowledge required of pediatric pharmacy specialists. Nuclear pharmacy lacks the fundamental pharmacotherapeutic, medication management, and direct patient care–related knowledge of pediatrics. Specialties in ambulatory care, nutritional support, psychiatry, and oncology focus on relatively narrow segments of pediatric patients and therefore lack the required breadth.
The sole BPS specialty that initially appears to require specialized knowledge in areas that overlap with some of those of the proposed pediatric specialty is pharmacotherapy.

Pediatrics has a unique body of knowledge that is not currently assessed on the pharmacotherapy specialist examination. Currently, there an extremely limited number of questions that deal specifically with pediatric practice on either the pharmacotherapy or nutrition support specialty exams. While some overlap in knowledge domains exists, the significant differences in the needs and care requirements of the pediatric patient population are substantial. The proposed specialty in pediatric practice requires, at its foundation, knowledge of similar domains to those in pharmacotherapy15, but with a much greater focus on medication knowledge and its application in the pediatric population. In contrast, knowledge domains for pharmacotherapy specialists are primarily focus on adults. Table D-2 compares these domains with the four domains of the proposed pediatric specialty.

Table D-2. Comparison of Domains in Pediatric Pharmacy and Pharmacotherapy

<table>
<thead>
<tr>
<th>Pediatric Pharmacy Specialist Domains (Proposed Examination Percentage)</th>
<th>Pharmacotherapy Specialist Domains (Examination Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Management (60%)</td>
<td>Patient-Specific Pharmacotherapy (60%)</td>
</tr>
<tr>
<td>Practice Management (20%)</td>
<td>Retrieval, Generation, Interpretation, and Dissemination of Knowledge in Pharmacotherapy (25%)</td>
</tr>
<tr>
<td>Information Management and Education (18%)</td>
<td>Systems and Population-Based Pharmacotherapy (15%)</td>
</tr>
<tr>
<td>Public Health and Patient Advocacy (2%)</td>
<td></td>
</tr>
</tbody>
</table>

Knowledge in pediatrics demands in-depth assessment of pharmacology, toxicology, pharmacokinetic, and dosing challenges specifically within pediatric populations. For example, pharmacists practicing in the NICU deal with disease states that are uncommonly seen in other patient populations (i.e., necrotizing enterocolitis, congenital surgical issues). Disease state management is also very different between children and adults. In oncology, adults commonly confront prostate, lung, and breast cancer, while these diseases are not seen in pediatric populations. Pediatric pharmacy specialists must be prepared to manage conditions such as acute lymphoblastic leukemia that only affect children and are not likely a practice focus for pharmacotherapy specialists.

Pediatric pharmacy specialists must engage in higher level, more complex evaluation of pediatric patients, often requiring the evaluation and interpretation of literature to guide drug treatment and patient management decisions. An understanding of ethical issues associated with caring for and/or studying drug effects in a vulnerable population is also required. These
are examples of issues that are not part of routine practice for most pharmacotherapy specialists.

CRITERION E: Specialized Functions

The area of specialization shall represent an identifiable field of pharmacy practice which requires specialized functioning by the practitioner and which is distinct from other BPS-recognized pharmacy specialties. This criterion refers to SPECIALIZED FUNCTIONS.

GUIDELINE 1. Specify and describe in detail, specialized functions performed routinely by practitioners in the proposed specialty which are not performed by pharmacists in general.

Functions performed by pediatric pharmacy specialists are qualitatively different from those provided by general practice pharmacists. While pediatric pharmacy specialists may occasionally perform some of the same functions as a general pharmacy practitioner, many functions performed by a specialist are distinctly different. Pharmacists in specialized practice routinely perform functions that are unique and require greater depth, or greater emphasis, than do their counterparts in general pharmacy practice.

BPS analyzed these functions in the Report of the Role Delineation Study of Pediatric Pharmacy, which describes and empirically validates the domains, tasks, and knowledge that comprise pediatric pharmacy practice.¹ According to the BPS task analysis, the following four domains are associated with pediatric pharmacy specialty practice:

- **Patient Management** – Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data, and designing, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the health care team.

- **Practice Management** – Tasks related to advancing pediatric pharmacy practice and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.

- **Information Management and Education** – Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of health care providers, trainees, patients, and caregivers.

- **Public Health and Patient Advocacy** – Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population health care policy.
Within these domains, the role delineation study presents 30 tasks that have been validated on the basis of the importance of the task statement and the frequency that the tasks are performed. The full list of validated tasks in pediatric pharmacy practice can be found in Appendix D-1. The essential functions in specialized pediatric pharmacy practice are reported in Table E-1.

Table E-1. Essential Functions in Specialized Pediatric Pharmacy Practice

<table>
<thead>
<tr>
<th>Domain</th>
<th>Essential Functions in Managing Complex Pediatric Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Patient Management</td>
<td>▪ Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with health care colleagues and/or patient/parent/caregiver interview.</td>
</tr>
<tr>
<td></td>
<td>▪ Obtain relevant clinical and laboratory data and results of diagnostic procedures.</td>
</tr>
<tr>
<td></td>
<td>▪ Analyze and interpret collected patient information.</td>
</tr>
<tr>
<td></td>
<td>▪ Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.</td>
</tr>
<tr>
<td></td>
<td>▪ Establish therapeutic goals with health care team and patient/parents/caregivers.</td>
</tr>
<tr>
<td></td>
<td>▪ Design, recommend and/or implement an age-appropriate therapeutic regimen with health care team and patient/parents/caregivers.</td>
</tr>
<tr>
<td></td>
<td>▪ Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.</td>
</tr>
<tr>
<td></td>
<td>▪ Participate in the management of pediatric emergencies.</td>
</tr>
<tr>
<td></td>
<td>▪ Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.</td>
</tr>
<tr>
<td></td>
<td>▪ Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to</td>
</tr>
</tbody>
</table>
| Domain 2: Practice Management | • Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.
• Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g., infusion pumps, computerized physician order entry, bar coding).
• Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.
• Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.
• Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).
• Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.
• Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.
• Justify and document the clinical and financial value of pediatric pharmacy services. |
| --- | --- |
| Domain 3: Information Management and Education | • Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.
• Educate health care professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.
• Educate and provide counseling to |
patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.

- Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).
- Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice.
- Develop and maintain a pediatric-specific medical reference library (electronic or print).

<table>
<thead>
<tr>
<th>Domain 4: Public Health and Patient Advocacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
</tr>
<tr>
<td>- Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
</tr>
<tr>
<td>- Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
</tr>
<tr>
<td>- Participate in professional organizations related to pharmacy and pediatric practice.</td>
</tr>
<tr>
<td>- Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
</tr>
<tr>
<td>- Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., health care system administrators, legislators, patients/parents/caregivers).</td>
</tr>
</tbody>
</table>
GUIDELINE 2. Describe the special skills required to perform functions specified above.

All pharmacists are educated to obtain, interpret, and evaluate patient information to appropriately manage drug therapy, assess the need for treatment and/or referral, and identify patient-specific factors that affect health, pharmacotherapy, and disease management. Pediatric pharmacy specialists have refined and expanded these skills, often through additional training, experience, and credentials, and they more frequently perform specialized functions in caring for pediatric patients. The specialized functions described in Guideline 1 are the foundation for the analytic and problem-solving skills required by pediatric pharmacy specialists. Based on the role delineation study, the following skills are required to perform specialized functions:

1. *Retrieve and assess relevant medical information, manage the drug regimen, develop individualized care plans, and collaborate with other health care professionals.*

Specialists treat, assess, and appropriately triage pediatric patients. Specialists gather appropriate and required information from medical records, caregivers, and other health professionals to evaluate the patient’s medication regimen. They analyze and interpret information on agents, dosing regimens, dosage forms, routes of administration, and delivery systems and work with the health care team, the patient, and caregivers to establish appropriate medication therapy. They are skillful in detecting and preventing ADEs and other medication problems. Specialists monitor the safety and effectiveness of prescribed agents and reconcile any issues with drug therapy. This requires specialists to be skillful in gathering and assessing complete information related to drug problems and response to therapy. Pediatric pharmacy specialists rely on close collaboration with caregivers and other members of the health care team in managing pediatric patients. These professional interactions require performance of specialized functions in communication and negotiation strategies with both peers and subordinates.

2. *Design, implement, and monitor systems and policies to optimize the care of pediatric patients.*

Specialists must have organizational and management skills that support the identification and analysis of issues and problems in conjunction with subsequent development and implementation of solutions. Pediatric pharmacy specialists employ evidence-based medicine and clinical guidelines to plan, develop, and implement systems and processes to ensure appropriate drug use in pediatric patients. They must understand evidence-based guidelines and protocols as well as implement methods and systems for documenting patient care.
activities and plans (e.g., through SOAP notes or electronic communication systems). Specialists also have the skills necessary to perform continuous quality improvement activities aimed at enhancing the safety and effectiveness of drug use.

3. Retrieve, generate, interpret, and disseminate knowledge related to pediatric pharmacy and the education of health care providers, trainees, patients, and caregivers.

Specialists must have the skills to investigate, search for, retrieve, and assess information from a variety of sources, including the peer-reviewed scientific literature, clinical guidelines, and other information and resources for patients and health care professionals. Specialists are able to analyze information from multiple sources and to synthesize and apply this knowledge to the management and care of individual patients.

Specialists employ exceptional communications skills, negotiation skills, and conflict-resolution techniques. They possess interviewing skills that enable them to obtain information relevant to the care of the patient, discover pertinent elements of the patient’s history, assess information to identify nonmedication factors that may affect patient outcomes, and determine potential issues with health literacy or cultural competency.

4. Provide preventive health services, public health information, and advocacy for health care policy that impacts the pediatric patient population.

Specialists must understand and appreciate the health care disparities in pediatric patients and possess planning and management skills that support engagement in public health initiatives that promote the health, safety, and wellness of pediatric patients. Skills in research can help provide a needed evidence base for use of medications in pediatric populations. Public speaking skills, leadership abilities, negotiation strategies, and communications skills are often required to facilitate access to care, advocate for patients, resolve financial issues or drug shortage concerns, and demonstrate leadership in the event of a public health threat.

GUIDELINE 3. Discuss in detail how these specialized functions differ from the functioning of a recent graduate with a Doctor of Pharmacy degree.

A recent graduate with a Doctor of Pharmacy degree is educated to provide care in generalized practice in a variety of settings. The scope of practice defined by the licensure examination assures that a licensed pharmacist has met the baseline, minimum standards to practice pharmacy. The licensure examination, by definition, sets a minimum competency standard. BPS certification is a voluntary process by which a pharmacists’ education, experience, knowledge,
and skills in a particular practice area are confirmed well beyond what is required for licensure.2 Pediatric patients who receive care require the specialized skills provided by pediatric pharmacy specialists in order to optimize health and medication-use outcomes.

The NAPLEX Blueprint3 (see Appendix D-2) is a list of competency statements describing the knowledge, judgment, and skills expected of an entry-level pharmacist. Achieving a passing score on the licensure examination confirms the acquisition, comprehension, and application of basic, general pharmacy practice skills; it does not indicate the ability to engage in the specialized tasks or functions in relation to complex medication therapy as outlined in the \textit{Report of the Role Delineation of Pediatric Pharmacy}. These minimum competency standards do not encompass the validated functions and skills required of the pediatric pharmacy specialist.

Pediatric pharmacy specialists engaged in specialized functions have obtained competencies in the domains of patient management, practice management, information management and education, and public health and patient advocacy. The functions and skills associated with these domains include gathering, assessing, and integrating clinical data and information from multiple sources; managing and optimizing medication use in pediatric patients; developing individualized care plans; and developing effective long-term relationships with patients, caregivers, and other health professionals. Additional skills include conducting and evaluating research; employing evidence-based medicine and clinical guidelines; and using communication, motivation, and negotiation strategies. While pharmacy students acquire and practice some of these skills and functions during their Doctor of Pharmacy program, they are neither mastered at a specialty level during entry-level education nor measured by the licensure examination.

\textbf{GUIDELINE 4. Discuss in detail how these specialized functions differ from the functions required in those pharmacy specialties already recognized by BPS.}

No currently recognized BPS specialty encompasses the specialized functions required of the pediatric pharmacy specialist. For example, specialists in nuclear pharmacy lack the fundamental pharmacotherapeutic, medication management, and direct patient-care skills of pediatric pharmacy specialists. Specialties in ambulatory care, nutritional support, psychiatry, and oncology do not focus on the care of pediatric patients and consequently lack the required breadth. The sole currently recognized specialty area that appears to require specialized knowledge in areas that overlap with those of the proposed pediatric specialty is pharmacotherapy. A closer look at the domains and specialized areas of knowledge for both specialty areas, however, reveals important differences.
The BPS-recognized specialty in pharmacotherapy is divided into three domains: patient-specific pharmacotherapy; retrieval, generation, interpretation, and dissemination of knowledge in pharmacotherapy, and systems and population-based pharmacotherapy.

Table E-2 compares the pharmacotherapy specialist domains with those outlined in the Report of the Role Delineation Study of Pediatric Pharmacy.

Table E-2: Comparison of Domains in Pediatric Pharmacy and Pharmacotherapy

<table>
<thead>
<tr>
<th>Pediatric Pharmacy Specialist Domains (Proposed Examination Percentage)</th>
<th>Pharmacotherapy Specialist Domains (Examination Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Management (60%)</td>
<td>Patient-Specific Pharmacotherapy (60%)</td>
</tr>
<tr>
<td>Practice Management (20%)</td>
<td>Retrieval, Generation, Interpretation, and Dissemination of Knowledge in Pharmacotherapy (25%)</td>
</tr>
<tr>
<td>Information Management and Education (18%)</td>
<td>Systems and Population-Based Pharmacotherapy (15%)</td>
</tr>
<tr>
<td>Public Health and Patient Advocacy (2%)</td>
<td></td>
</tr>
</tbody>
</table>

While some overlap in functional domains exist, the differences are significant. Pediatric pharmacy specialists require skills that allow them to engage in defined and important tasks and functions specific to the care of pediatric patients. Indeed, as the role delineation survey reveals, the pediatric pharmacy specialist performs in depth a substantial range of direct management functions such as obtaining required patient information via medical record or engaging in discussions with health care colleagues, parents, patients, and caregivers. Pediatric specialists then analyze and interpret collected information to prioritize current or potential patient-specific medical, medication, and nutrition-related problems. They often perform these functions without the benefit of an evidence-based literature base owing to the nature of the patient population that they serve. Domains of practice management and public health and patient advocacy within pediatric pharmacy practice do not significantly overlap with pharmacotherapy.

Significant differences in the depth of the functional areas with regard to the care of pediatric patients differentiate the pediatrics and pharmacotherapy. Functions associated with the care and management of pediatric patients are focused on the unique, and often nuanced care required due to variations in development and age-related pharmacokinetic changes. Examples
of functions that are unique to pediatric specialists would include managing pediatric emergencies, performing age-appropriate medication counseling with the child and family members, and ensuring that infants or children are appropriately immunized according to the current CDC Recommended Immunization Schedule for Children. Pediatric pharmacy specialists also bear responsibility for the development and maintenance of pediatric-specific medical reference libraries. These specialists also advocate for the availability of age-appropriate formulations, for safety and efficacy studies in children, and for information product labeling for children.

CRITERION F: Education and/or Training

The area of specialization shall be one in which schools and colleges of pharmacy and/or other organizations offer recognized education and training programs to those seeking advanced knowledge and skills in the area of specialty practice. This criterion addresses EDUCATION and/or TRAINING.

GUIDELINE 1. Describe in detail the education, post-graduate training programs, and/or experience required to acquire such specialized knowledge and skills. Discuss how such education, post-graduate training programs, and/or experience differ from the education, post-graduate training programs, and/or experience of a recent graduate with a Doctor of Pharmacy degree.

According to the ACPE Accreditation Standards and Guidelines for the Professional Program in Pharmacy Leading to the Doctor of Pharmacy Degree, the pharmacy curriculum provides a thorough foundation in the biomedical, pharmaceutical, social/behavioral/administrative, and clinical sciences; the Doctor of Pharmacy degree program prepares graduates with the competencies needed to enter pharmacy practice in any setting and contribute to the profession of pharmacy throughout their careers.¹

The pharmacy curriculum ensures optimal medication therapy outcomes and patient safety, satisfies the educational requirements for licensure as a pharmacist, and meets the requirements of universities for the degree. The curriculum also develops in graduates the knowledge that meets the criteria of good sciences, professional skills, attitudes, and values as well as the ability to integrate and apply learning both to the present practice of pharmacy and to the advancement of the profession. The Doctor of Pharmacy degree curriculum provides the basic education and training that graduates need to practice at a generalist level. It also provides general education and training for the pediatric pharmacist.

ACPE’s standards and guidelines also require a pharmacy practitioner to be knowledgeable and competent in many areas critical to the foundation and delivery of effective patient care. The standards outline broad, general requirements for pharmacist-provided care for special populations, including pediatric patients. These requirements indicate that pharmacists must
be competent in pathophysiologic and pharmacotherapeutic alterations specific for special-population patients, prescription and nonprescription medications dosage calculations, and adjustments in drug monitoring for positive/negative outcomes in special populations of patients. However, according to a review published in 2012, the mean time devoted to pediatric topics in U.S. Doctor of Pharmacy programs is only 17 hours (range, 2.8 to 52.8 hours), despite the fact that pediatric patients are a significant patient population for pharmacists in practice.

Experientially, ACPE standards require students to complete IPPEs and APPEs. Furthermore, ACPE standards require that APPEs include primary, acute, chronic, and preventive care among patients of all ages and that these experiences develop pharmacist-delivered patient care competencies. ACPE standards do not require APPEs to specifically address the area of pediatric practice. However, some schools and colleges of pharmacy do require completion of an APPE and/or IPPE in pediatrics. In other schools and colleges, pediatrics can be chosen as an elective or, to some extent, may be experienced during an inpatient or acute care medicine rotation.

Following completion of the academic degree program, pharmacists must pass the NAPLEX, developed by the National Association of Boards of Pharmacy. Successful performance on the NAPLEX is an indication that the candidate demonstrates the knowledge, judgment, and skills required of an entry-level pharmacist. The three areas of expected competency assessed on the NAPLEX are as follows:

- **Area 1**: Assure safe and effective pharmacotherapy and optimize therapeutic outcomes.
- **Area 2**: Assure safe and accurate preparation and dispensing of medications.
- **Area 3**: Provide health care information and promote public health.

Following licensure, pharmacists can acquire the differentiated knowledge and skills required for specialized pediatric pharmacy practice by a variety of methods. These methods may include:

- PharmD degree education, clinical work experience, and self-study.
- PharmD degree education PGY1 residency training, clinical work experience, and self-study.
- PharmD degree education and PGY1 residency training, followed by PGY2 residency in pediatrics, clinical work experience, and self-study.

The most effective way to prepare for a career as a pediatric pharmacist is to complete a PGY1 pharmacy residency followed by completion of a PGY2 residency in pediatrics. Residency programs provide the most effective structured experiential learning opportunities in pediatric pharmacy practice.
The petitioning organizations conducted the Pediatric Pharmacist Survey that asked employers of pediatric pharmacists the desired level of training for pharmacists practicing in their pediatric pharmacy. In ranked order of preference, the responses from 68 individuals responsible for hiring within their organizations, were as follows (from most desirable to least desirable):

- PGY2 residency program.
- PGY2 residency program in pediatrics.
- PGY1 residency with pediatric emphasis (located at a freestanding children’s hospital or a health system with a pediatric hospital).
- Employer-provided training program.
- PGY1 pharmacy practice residency.
- None required or desired.

The Doctor of Pharmacy degree alone does not provide knowledge of sufficient depth and breadth for pediatric pharmacists to provide specialized care. Additional training, clinical work experience, and study are necessary. Because pediatrics is an evolving specialty, many pediatric pharmacists have obtained specialized knowledge, skills, and abilities through mechanisms other than structured training programs.

GUIDELINE 2. Describe in detail the nature of training programs in the area of specialty practice including their length, content, and objectives.

As stated above, there are several ways in which pharmacists can acquire the knowledge and skills needed to provide a specialized practice in pediatrics. The most efficient way is through an accredited residency program in pediatric pharmacy practice. In 2008, ASHP, in collaboration with PPAG and ACCP, approved accreditation standards for PGY2 pharmacy residencies and published educational outcomes, goals, and objectives for PGY2 pediatric pharmacy residency programs (see Appendix F-1). In addition, approximately 30 PGY1 residency programs are conducted within freestanding children’s hospitals or health systems that include children’s hospitals. These experiences, by nature of their primary patient populations, have an emphasis in pediatrics and thereby provide a unique opportunity to build initial skills in the specialty prior to entering a PGY2 residency program.

Residency Training

PGY2 residency training is an organized, directed, accredited program that builds upon the competencies established in PGY1 residency training. The PGY2 program increases the resident’s depth of knowledge, skills, attitudes, and abilities and is designed to develop accountability, practice patterns, and habits in order to raise the resident’s level of expertise in medication management and clinical leadership in the area of focus.
PGY2 residencies build upon the broad-based competencies achieved in a PGY1 residency, deepening the resident’s ability to provide care in the most complex cases or to support care through practice leadership. Therefore, PGY2 residencies provide residents with opportunities to function independently as practitioners by conceptualizing and integrating accumulated experience and knowledge, transforming both into improved medication therapy. A resident who successfully completes an accredited PGY2 residency program should possess the competencies needed to earn board certification in the practice area (provided that certification for the particular practice area exists).

The PGY2 pharmacy residency in pediatrics is designed to transition PGY1 residency graduates from generalized practice to specialized practice focused on the care of pediatric patients. Residency graduates are equipped to participate as integral members of interdisciplinary teams caring for pediatric patients and assuming responsibility for pharmaceutical care. These residents acquire the capacity to deliver evidence-based care to pediatric patients within the limitations presented by the shortage of research on medication use in this patient population. They are able to prepare or supervise the preparation of the unique formulations required by pediatric patients as those patients’ needs change according to their stage of growth and development.

Pediatric pharmacy residency graduates will serve health care organizations successfully as the ultimate resource for information about medications used in the care of children and for decision making affecting the care of these patients. Their expertise includes leadership in decision making related to the use or modification of guidelines for the care of individual patients and active participation in organizational planning, implementation, and maintenance of technology and automation systems.

Exiting residents have been trained to assume responsibility for identifying and implementing opportunities to improve the medication-use system in pediatric practice. Groomed for practice leadership, pediatric pharmacy residency graduates can be expected to continue their pursuit of expertise in practice; to possess advanced skills to identify the pharmacotherapy and medication-use training needs of other health care professionals caring for pediatric patients; to deliver effective training to those health care professionals; and to contribute to public health efforts for health improvement, wellness, and disease prevention.

Expected outcomes for PGY2 residencies in pediatric care include the following:

1. resident's ability to provide care in complex cases or support care through practice leadership.
2. PGY2 residencies provide opportunities for independent practice.
3. Capacity to deliver evidence-based care for pediatric patients.
4. Preparation or supervision of unique formulations.
5. Expertise in decision-making related to guidelines.
6. Active participation in organizational planning.
7. Improvement of medication-use system.
- Outcome R1: Demonstrate leadership and practice management skills in the pediatric patient care setting.

- Outcome R2: Optimize the care of inpatient and outpatient pediatric patients by providing evidence-based, patient-centered medication therapy as an integral part of an interdisciplinary team.

```
Establish collaborative professional relationships with health care team members
↓
Prioritize delivery care to pediatric patients
↓
Establish collaborative pharmacist-patient and pharmacist-caregiver relationships
↓
Collect and analyze patient information
↓
When necessary make and follow up on patient referrals/consults
↓
Design evidence-based therapeutic regimen
↓
Design evidence-based monitoring plan
↓
Recommend or communicate regimen and monitoring plan
↓
```
Implement regimen and monitoring plan

↓

Evaluate patient progress and redesign as necessary

↓

Communicate ongoing patient information

↓

Document direct patient care activity

- Outcome R3: Serve as an authoritative resource on the optimal use of medications used to treat pediatric patients.

- Outcome R4: Evaluate, manage, and improve the medication-use process in pediatric patient care areas.

- Outcome R5: Demonstrate excellence in the provision of training or educational activities for pediatric health care professionals, health care professionals in training, and the public.

- Outcome R6: Conduct pediatric pharmacy research.

A copy of the Educational Outcomes, Goals, and Objectives for Postgraduate Year Two (PGY2) Pharmacy Residencies in Pediatrics is attached as Appendix F-1. Traditionally, completion of these goals and objectives would provide the education and training needed to sit for the BPS certification exam.

Fellowship Training

According to the ACCP Guidelines for Clinical Research Fellowship Training Programs, a fellowship program is a directed, individualized postgraduate training program designed to prepare the fellow to function as an independent investigator. Fellowships typically require prior completion of a master’s degree or doctoral degree in a health science discipline, completion of a residency or equivalent clinical experience, and demonstrated interest in research. Fellowship programs prepare the pharmacist to be competent in the scientific
research process. The training is typically divided as approximately 80 percent research and 20 percent advanced practice experiences.

Pediatric fellowship programs model other fellowships and emphasize research and practice in the pediatric setting. Fellowship experience is typically gained in protocol design; study design; data acquisition, analysis, and interpretation; grant writing; manuscript preparation; implementation of institutional review board (IRB) submission; and conducting clinical and laboratory research projects. Didactic and clinical training of pharmacy students and other health care professionals is also a common component of these programs. The ultimate goal of a pediatric fellowship program is to provide the pharmacist with specialized practice experience and essential knowledge, skills, and abilities to conduct research and function as a primary investigator in pediatrics.

A copy of the AACP Guidelines for Clinical Research Fellowship Training Programs is attached as Appendix F-2.

GUIDELINE 3. Provide a comprehensive listing of such programs, detailing sponsoring organizations or institutions, locations, and individuals in charge.

Table F-1 lists PGY2 pediatric residency programs as of September 6, 2012, including 39 programs with 48 to 51 residency positions. There are also 3 pediatric pharmacy fellowship positions as detailed in Table F-2.

Table F-1. PGY2 Pediatric Residency Programs as of September 6, 2012

<table>
<thead>
<tr>
<th>Sponsoring Organization</th>
<th>Status</th>
<th>City</th>
<th>State</th>
<th>Program Director</th>
<th>Number of Residency Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Children's Hospital</td>
<td>Accredited</td>
<td>St. Petersburg</td>
<td>FL</td>
<td>Marla C. Tanski</td>
<td>1</td>
</tr>
<tr>
<td>Arnold Palmer Medical Center – Orlando Health</td>
<td>Accredited</td>
<td>Orlando</td>
<td>FL</td>
<td>Jennifer Shenk</td>
<td>1</td>
</tr>
<tr>
<td>Boston Children's Hospital</td>
<td>Accredited</td>
<td>Boston</td>
<td>MA</td>
<td>Crystal Tom</td>
<td>1</td>
</tr>
<tr>
<td>Children’s Hospital Colorado</td>
<td>Candidate</td>
<td>Aurora</td>
<td>CO</td>
<td>Jennifer Hamner</td>
<td>1</td>
</tr>
<tr>
<td>The Children's Hospital of Philadelphia</td>
<td>Accredited</td>
<td>Philadelphia</td>
<td>PA</td>
<td>Sarah C. Erush</td>
<td>3</td>
</tr>
<tr>
<td>Hospital Name</td>
<td>Accreditation Status</td>
<td>City</td>
<td>State</td>
<td>Candidate Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>------</td>
<td>-------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Children's Hospital of Wisconsin</td>
<td>Accredited</td>
<td>Milwaukee</td>
<td>WI</td>
<td>Thomas J. Nelson</td>
<td>1</td>
</tr>
<tr>
<td>Children's Memorial Hermann Hospital/ Memorial Hermann – Texas Medical Center</td>
<td>Candidate</td>
<td>Houston</td>
<td>TX</td>
<td>Shannan K. Eades</td>
<td>1</td>
</tr>
<tr>
<td>Children's National Medical Center</td>
<td>Candidate</td>
<td>Washington</td>
<td>DC</td>
<td>Katherine D. Pham</td>
<td>2</td>
</tr>
<tr>
<td>Duke University Hospital</td>
<td>Candidate</td>
<td>Durham</td>
<td>NC</td>
<td>Julia L. Lawrence</td>
<td>1</td>
</tr>
<tr>
<td>Elliot Health System</td>
<td>Pre-Candidate</td>
<td>Manchester</td>
<td>NH</td>
<td>Marianne Miscioscia</td>
<td>1</td>
</tr>
<tr>
<td>Fairview Health Services and the University of Minnesota Medical Center/University of Minnesota Amplatz Children's Hospital</td>
<td>Candidate</td>
<td>Minneapolis</td>
<td>MN</td>
<td>Melissa K. Carlson</td>
<td>1</td>
</tr>
<tr>
<td>Florida Hospital for Children</td>
<td>Candidate</td>
<td>Orlando</td>
<td>FL</td>
<td>Kristen M. Jones</td>
<td>1</td>
</tr>
<tr>
<td>Indiana University Health</td>
<td>Accredited</td>
<td>Indianapolis</td>
<td>IN</td>
<td>Jennifer L. Morris</td>
<td>1</td>
</tr>
<tr>
<td>The Johns Hopkins Hospital</td>
<td>Accredited</td>
<td>Baltimore</td>
<td>MD</td>
<td>Carlton K. Lee</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Le Bonheur Children's Hospital and The University of Tennessee Health Science Center</td>
<td>Accredited</td>
<td>Memphis</td>
<td>TN</td>
<td>Kelly S. Bobo</td>
<td>2</td>
</tr>
<tr>
<td>Medical University of South Carolina Medical Center/ College of Pharmacy</td>
<td>Accredited</td>
<td>Charleston</td>
<td>SC</td>
<td>Kathy H. Chessman</td>
<td>2</td>
</tr>
<tr>
<td>Monroe Carell Jr. Children's Hospital at Vanderbilt</td>
<td>Accredited</td>
<td>Nashville</td>
<td>TN</td>
<td>Alison Grisso</td>
<td>2</td>
</tr>
<tr>
<td>Nationwide Children's Hospital</td>
<td>Accredited</td>
<td>Columbus</td>
<td>OH</td>
<td>Kimberly J. Novak</td>
<td>2</td>
</tr>
<tr>
<td>OSF St. Francis Medical Center – Children’s Hospital of Illinois</td>
<td>Pre-Candidate</td>
<td>Peoria</td>
<td>IL</td>
<td>Margaret Heger</td>
<td>1</td>
</tr>
<tr>
<td>Palmetto Health Children's Hospital</td>
<td>Accredited</td>
<td>Columbia</td>
<td>SC</td>
<td>Jennifer D. Bair</td>
<td>1</td>
</tr>
<tr>
<td>Shands at the University of Florida</td>
<td>Accredited</td>
<td>Gainesville</td>
<td>FL</td>
<td>Lisa T. Thames</td>
<td>1</td>
</tr>
<tr>
<td>Spectrum Health</td>
<td>Candidate</td>
<td>Grand Rapids</td>
<td>MI</td>
<td>Morgan R. Cole</td>
<td>1</td>
</tr>
<tr>
<td>Hospital</td>
<td>Candidate</td>
<td>City</td>
<td>State</td>
<td>Pharmacy School</td>
<td>Person Name</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>---------------</td>
<td>-------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>St. Joseph’s Children’s Hospital</td>
<td>Candidate</td>
<td>Tampa</td>
<td>FL</td>
<td>Pamela L. DeLuna</td>
<td>1</td>
</tr>
<tr>
<td>St. Louis Children’s Hospital</td>
<td>Accredited</td>
<td>St. Louis</td>
<td>MO</td>
<td>Melissa K. Heigham</td>
<td>1</td>
</tr>
<tr>
<td>St. Vincent Indianapolis Hospital</td>
<td>Accredited</td>
<td>Indianapolis</td>
<td>IN</td>
<td>J. Maria Whitmore</td>
<td>1</td>
</tr>
<tr>
<td>Texas Children's Hospital</td>
<td>Accredited</td>
<td>Houston</td>
<td>TX</td>
<td>Sara J.D. Bork</td>
<td>2</td>
</tr>
<tr>
<td>Texas Tech University Health Sciences Center School of Pharmacy</td>
<td>Accredited</td>
<td>Amarillo</td>
<td>TX</td>
<td>Sherry A. Luedtke</td>
<td>1 or 2</td>
</tr>
<tr>
<td>University of Arizona University Medical Center/College of Pharmacy</td>
<td>Accredited</td>
<td>Tucson</td>
<td>AZ</td>
<td>Hanna Phan</td>
<td>1</td>
</tr>
<tr>
<td>University of California, San Francisco Medical Center, Children's Hospital</td>
<td>Accredited</td>
<td>San Francisco</td>
<td>CA</td>
<td>Sarah B. Scarpace</td>
<td>1</td>
</tr>
<tr>
<td>University of Chicago Medical Center</td>
<td>Accredited</td>
<td>Chicago</td>
<td>IL</td>
<td>Elisabeth M. Simmons</td>
<td>2</td>
</tr>
<tr>
<td>University of Georgia College of Pharmacy/ Medical College of Georgia</td>
<td>Candidate</td>
<td>Augusta</td>
<td>GA</td>
<td>Kalen B. Manasco</td>
<td>1</td>
</tr>
<tr>
<td>University of Illinois College of Pharmacy</td>
<td>Accredited</td>
<td>Chicago</td>
<td>IL</td>
<td>Donna M. Kraus</td>
<td>1</td>
</tr>
<tr>
<td>UK HealthCare and Kentucky Children’s Hospital</td>
<td>Accredited</td>
<td>Lexington</td>
<td>KY</td>
<td>Robert J. Kuhn</td>
<td>1 or 2</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>Accredited</td>
<td>Baltimore</td>
<td>MD</td>
<td>Jill A. Morgan</td>
<td>1</td>
</tr>
<tr>
<td>University of Michigan Hospitals and Health Centers</td>
<td>Accredited</td>
<td>Ann Arbor</td>
<td>MI</td>
<td>Regine L. Caruthers</td>
<td>1</td>
</tr>
<tr>
<td>University of North Carolina Hospitals and Clinics/ UNC School of Pharmacy</td>
<td>Accredited</td>
<td>Chapel Hill</td>
<td>NC</td>
<td>Leah M. Hatfield</td>
<td>1</td>
</tr>
<tr>
<td>University of Oklahoma College of Pharmacy and The Children’s Hospital</td>
<td>Accredited</td>
<td>Oklahoma City</td>
<td>OK</td>
<td>Tracy M. Hagemann</td>
<td>1</td>
</tr>
</tbody>
</table>

11/20/2012
<table>
<thead>
<tr>
<th>Sponsoring Organization</th>
<th>Status</th>
<th>City</th>
<th>State</th>
<th>Program Contact</th>
<th>Number of Fellowship Positions</th>
<th>Primary Specialty</th>
<th>Secondary Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ohio State University</td>
<td>ACCP-Accredited</td>
<td>Columbus</td>
<td>OH</td>
<td>Milap C. Nahata</td>
<td>2</td>
<td>Pediatrics</td>
<td></td>
</tr>
<tr>
<td>The University of Tennessee</td>
<td></td>
<td>Memphis</td>
<td>TN</td>
<td>Richard A. Helms</td>
<td>1</td>
<td>Pediatrics</td>
<td>Nutrition and Metabolic Support</td>
</tr>
</tbody>
</table>

CRITERION G: Transmission of Knowledge

The area of specialization shall be one in which there is an adequate transmission of specialized knowledge through professional, scientific and technical literature immediately related to the specialty area. *This criterion refers to the TRANSMISSION OF KNOWLEDGE.*

Transmission and dissemination of specialized knowledge in pediatric pharmacy practice occurs through formal networking groups within professional practice associations, peer-reviewed publications and periodicals, live educational programming, and enduring educational resources in print- and web-based vehicles.

Formal Networking Groups

Major pharmacy practice associations have formal networking sections and groups dedicated to pediatric pharmacists. These groups foster professional interaction and provide opportunities for practice advancement through educational programming, newsletters, research networks, and leadership. As an example, networking groups that currently exist within the structure of the four petitioning organizations are shown in Table G-1.

Table G-1. Pediatric Networking Groups within Pharmacy Practice Associations

<table>
<thead>
<tr>
<th>Association</th>
<th>Networking Groups</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>American College of Clinical Pharmacy</td>
<td>Pediatric Practice and Research Network (PRN)</td>
<td>Provides a national forum for professional interaction and networking that leads to opportunities for collaborative research, problem solving, and professional discussion of issues relevant to the practices of all members. The primary goal of the Pediatrics PRN is to support the development and promotion of excellent and innovative pediatric clinical pharmacy practice, research, and education that will positively influence the total pharmaceutical care of the patient. Activities of the Pediatrics PRN include collaborative research, organization of a business meeting and networking forum at the ACCP annual meeting to promote networking, and organizing continuing pharmacy education</td>
</tr>
<tr>
<td>Organization</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>American Pharmacists Association</td>
<td>APhA Academy of Pharmacy Practice and Management (APPM) Section on Clinical/Pharmacotherapeutic Practice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The APhA-APPM Section on Clinical/Pharmacotherapeutic Practice serves pharmacists whose primary practice responsibilities include the provision of professional non-dispensing services targeted at optimizing drug therapy for patients directly or indirectly through education of other clinicians. This national networking forum supports exploring methods for enhancing the provision and justification of clinical pharmacy services in all practice settings and providing the tools necessary to accomplish this goal. The APhA-APPM Section on Clinical/Pharmacotherapeutic Practice currently has almost 200 members who practice in pediatric pharmacy.</td>
<td></td>
</tr>
<tr>
<td>American Society of Health-System Pharmacists</td>
<td>Section of Clinical Specialists and Scientists</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Represents clinical experts and advocates for practice advancement and focuses on improving patient care by creating and translating scientific advances into practice. The section provides a formal mechanism for national networking among section members. This group has responsibility for planning and developing education programming, tracks, and workshops offered at ASHP meetings. The Section of Clinical Specialists and Scientists currently has nearly 700 members who practice in pediatric pharmacy.</td>
<td></td>
</tr>
<tr>
<td>Pediatric Pharmacy Advocacy Group</td>
<td>This international, nonprofit, professional association represents the interests of pediatric pharmacists and their patients. PPAG is dedicated to improving medication therapy</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Group</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cleveland Akron Area Pediatric Pharmacists</td>
<td>PPAG Regional Networking Group</td>
<td>Supports local pediatric practitioners by providing an avenue to exchange ideas and practices and provide additional educational opportunities for continuing pharmacy education in the Greater Cleveland and Akron/Canton area.</td>
</tr>
<tr>
<td>Gateway Pediatric Pharmacy Group (St. Louis)</td>
<td>PPAG Regional Networking Group</td>
<td>Supports the professional growth of pediatric pharmacists in the Greater St. Louis area.</td>
</tr>
<tr>
<td>PPAG at the University of Connecticut</td>
<td>PPAG Student Group</td>
<td>Promotes optimal medication therapy to pediatric patients. Offers students an opportunity to network with practicing pediatric pharmacists.</td>
</tr>
<tr>
<td>Duquesne University PPAG</td>
<td>PPAG Student Group</td>
<td>The mission of Duquesne University PPAG is to promote safe and effective medication use and healthy lifestyles in pediatric populations through the education of children, parents, and fellow pharmacy students.</td>
</tr>
<tr>
<td>Pediatric Pharmacy Student Group – Virginia Commonwealth University</td>
<td>PPAG Student Group</td>
<td>Represents the pediatric population by improving the health of children within the community and surrounding areas. Strives to advocate for pediatric health education and medication safety through various outreach and community events and the opportunity for members to interact with practicing pediatric pharmacists.</td>
</tr>
<tr>
<td>PediCats – University of Arizona</td>
<td>PPAG Student Group</td>
<td>Committed to improving the health of children by advocating for health education through philanthropic events. Unites students in a joint effort to improve the well-being of children in the community while emphasizing the nature of pediatrics as a specialty.</td>
</tr>
<tr>
<td>Wilkes University PPAG</td>
<td>PPAG Student Group</td>
<td>Raises awareness regarding pediatric pharmacy and encourages members to</td>
</tr>
</tbody>
</table>
promote the well-being of children at work, school, and in life. The overall goal is for students to become more familiar with pediatric pharmacy as a career opportunity and help students align their skills with their passion for helping children.

<table>
<thead>
<tr>
<th>Student Society of Pediatric Advocates – University of Georgia</th>
<th>PPAG Student Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brings awareness to the proper use of medication therapy in pediatric populations through various service and education-based initiatives.</td>
<td></td>
</tr>
</tbody>
</table>

GUIDELINE 1. Identify journals and other periodicals dealing specifically with the proposed specialty.

Journals

Issues of interest in pediatric pharmacy practice span many areas of pharmacy practice and topics in pediatric research, clinical care, and health promotion. Many pharmacy and primary care practice journals consistently publish articles highlighting evidence, outcomes, and contributions to patient care through pediatric pharmacy practice. Examples of such journals include:

- **Academic Pediatrics** – The official journal of the Academic Pediatric Association. A peer-reviewed publication that provides leadership in pediatric education, research, patient care, and advocacy. The journal emphasizes important research relating to the quality of child health care, health care policy, and the organization of child health services.

- **Archives of Pediatrics and Adolescent Medicine** – Monthly, peer-reviewed journal for physicians and other health care professionals who contribute to the health of children and adolescents. It is the oldest continuously published pediatric journal in the country and is a vehicle for increased attention to adolescent health, the education of pediatric health care professionals, and disease prevention and health promotion.

- **Clinical Pediatric Emergency Medicine** – Journal devoted to helping pediatricians and emergency physicians provide the best possible care for their young patients.

- **Clinical Pediatrics** – A peer-reviewed monthly journal containing information on practical, everyday child care topics involving clinical, scientific, behavioral, educational, and ethical issues.

- **Current Opinion in Pediatrics** – Reader-friendly resource that allows health care professionals to keep up-to-date with the most important advances in the pediatric field. Delivers diverse and comprehensive coverage of all key issues related to
pediatrics, including genetics, therapeutics and toxicology, adolescent medicine, neonatology and perinatology, and orthopedics.

- **Current Problems in Pediatric and Adolescent Health Care** – Recognized for its probing, comprehensive, and evidence-based reviews. The publication devotes each issue to a timely and practical topic in pediatric medicine, presented by leading authorities in the field. Offers readers easily accessible information that enhances professional experience and is pertinent to daily pediatric practice.

- **Fetal and Pediatric Pathology** – Established, bimonthly international journal that publishes data on diseases of the developing embryo, newborns, children, and adolescents. Publishes original and review articles and reportable case reports.

- **Journal of Pediatric Health Care** – Official journal of the National Association of Pediatric Nurse Practitioners, provides up-to-date clinical information and research findings regarding primary, acute, and specialty health care for children of newborn age through young adulthood within a family-centered context. The publication disseminates multidisciplinary perspectives on evidenced-based practice as well as emerging educational, policy, and advocacy issues of importance to all pediatric nurses and other health care professionals.

- **The Journal of Pediatric Pharmacology and Therapeutics** – Official journal of the Pediatric Pharmacy Advocacy Group. A peer-reviewed multidisciplinary journal devoted to promoting the safe and effective use of medications in infants and children. The journal publishes practical information for all practitioners who provide care to pediatric patients.

- **The Journal of Pediatrics** – International peer-reviewed journal that advances pediatric research and serves as a practical guide for pediatricians who manage health and diagnose and treat disorders in infants, children, and adolescents.

- **Neonatology** – Prime source of information on fetal and neonatal research. Original papers present research on all aspects of neonatology, fetal medicine, and developmental biology; these papers encompass both basic science and clinical research including randomized trials, observational studies, and epidemiology.

- **Pediatric Critical Care Medicine** – Official journal of the Society of Critical Care Medicine, the World Federation of Pediatric Intensive and Critical Care Societies, the Pediatric Intensive Care Society UK, the Latin American Society of Pediatric Intensive Care, and the Japanese Society of Pediatric Intensive and Critical Care. The journal is written for the entire critical care team: pediatricians, neonatologists, respiratory
therapists, nurses, pharmacists, and others who deal with pediatric patients who are critically ill or injured.

- **Pediatric Drugs** – Official journal of the International Alliance for Better Medicines for Children. The journal is dedicated to improving the effective and safe use of drugs in pediatrics, and covers all aspects of pharmacotherapy for health care professionals interested in pediatric drug therapy.

- **Pediatrics** – Official peer-reviewed journal of the American Academy of Pediatrics. Publishes original research, clinical observations, and special feature articles in the field of pediatrics, as broadly defined. Contributions pertinent to pediatrics are included from related fields such as nutrition, surgery, dentistry, public health, child health services, human genetics, basic sciences, psychology, psychiatry, education, sociology, and nursing.

Pediatric pharmacy columns and features are published in the *American Journal of Health System Pharmacy (AJHP)*, *The Annals of Pharmacotherapy*, *Journal of the American Pharmacists Association (JAPhA)*, *The Journal of Family Practice (JFP)*, and *Pharmacotherapy*.

- *AJHP* is the official publication of the American Society of Health-System Pharmacists. It publishes peer reviewed scientific papers on contemporary drug therapy and pharmacy practice innovations in hospitals and health systems.

- *The Annals of Pharmacotherapy* is an independent, peer-reviewed journal that publishes evidence-based articles on practice, research, and education. Four pediatric pharmacists are members of its Pediatric Editorial Board.

- *JAPhA* is an official publication of the American Pharmacists Association. It provides a peer-reviewed forum for original research, review, experience, and opinion articles that link science with contemporary pharmacy practice to improve patient care.

- *JFP* is a peer-reviewed journal that publishes primary and secondary research reports of relevant, valid, evidence-based research in a form useful to family medicine physicians and other clinicians in the provision of primary and pediatric care. *JFP* publishes original research that reports outcomes immediately applicable to clinical practice. In the past 3 years, pharmacists have contributed 38 articles on medication use.

- *Pharmacotherapy* publishes peer-reviewed, innovative scientific and professional information and knowledge that catalyze change to improve patient outcomes through optimal pharmacotherapy. The publication often focuses on advances in drug therapy for pediatric patients.

Newsletters and Online Periodicals
Professional pharmacy practice associations publish a variety of print and online media that disseminate pediatric practice information. *Pediatric Pharmacy Advocate* is the official
newsletter of PPAG. This electronic publication is distributed to PPAG members on a quarterly basis. It is also publically available on the organization’s web site at www.ppag.org.

The ACCP Pediatric PRN Listserv is a mechanism for sharing, obtaining, and reporting data among pediatric pharmacist members. The ASHP Section of Clinical Specialists and Scientists also hosts a listserv to facilitate communication and problem solving among members.

GUIDELINE 2. Provide a comprehensive bibliography of published abstracts, articles, position papers, and white papers in the professional literature dealing with the proposed specialty published during the three most recent calendar years.

As of June 30, 2012, 244 articles related to pediatric pharmacy practice had been published in the professional literature over the past 3 years. The prevalence of articles in pharmacy and medical journals focusing on pediatric pharmacy practice and patient care of complex patients by pediatric pharmacists in specialty practice provides further evidence of this emerging specialty. A bibliography of articles and resources published on specialized pediatric pharmacy practice and related issues is attached as Appendix G-1.

GUIDELINE 3. Include copies of selected experimental and quasi-experimental, peer-reviewed articles demonstrating the value of the proposed specialty.

Pediatric pharmacists in a variety of settings are demonstrating and publishing positive clinical and economic outcomes resulting from effective management of pediatric patients. Their collective work provides support for the validity of this proposed specialty. The following examples illustrate the scope and substance of specialized pediatric pharmacy practice information disseminated through such publications:

- Kaushal R, Bates DW, Abramson EL, et al. Unit-based clinical pharmacists' prevention of

The full text of these peer-reviewed articles are attached as Appendix G-2.

GUIDELINE 4. Describe methods of knowledge transmission through symposia, seminars, workshops, etc., and enclose representative programs concerning these activities.

The specialized knowledge required for pediatric pharmacy specialty practice is transmitted through a variety of methods, including symposia, live and web seminars, interactive workshops, and enduring resources. Each year, national and state pharmacy associations, schools and colleges of pharmacy, and for-profit educational companies offer live and enduring programming to disseminate the latest evidence for managing the unique needs of pediatric patients and share innovations in specialized pediatric pharmacy practice. Hundreds of hours of programs are available annually to pediatric pharmacists through local, regional, and national meetings and events; web-based programs; and online learning.

According to the ACPE Pharmacists’ Learning Assistance Network (PLAN) database, providers of ACPE-approved continuing pharmacy education have collectively offered more than 900 hours of pediatric programming over the past 3 years (June 30, 2009–July 1, 2012). This programming includes:

- 616 hours of live, knowledge-based programs. A complete listing of these ACPE-approved activities is provided as Appendix G-3.
- 138 hours of live, application-based programs. A complete listing of these ACPE-approved activities is provided as Appendix G-4.
- 113 hours of home study, knowledge-based programs. A complete listing of these ACPE-approved activities is provided as Appendix G-5.
- 41 hours of home study, application-based programs. A complete listing of these ACPE-approved activities is provided as Appendix G-6.
Sample program materials from select live educational activities are attached as Appendix G-7 and include programming from the following events:

- 2009 PPAG Annual Conference
- 2010 PPAG Annual Conference
- 2010 PPAG Specialty Conference
- 2011 PPAG Annual Conference

GUIDELINE 5. Provide the number of such events, included in Guideline 4 above, which occur on an annual basis, and estimate average and total attendance at such programs.

Live, national events are one mechanism for dissemination of knowledge to pediatric pharmacists. Over the last 3 years, the four petitioning organizations have collectively hosted 336 live educational events with 18,207 certificates of credit issued across all programs. Recognizing that pharmacists attend multiple programs, the total number of certificates does not equate to the number of unique participants. The total number of certificates of credit issued reflects the strong interest in programming for pediatric pharmacists. Table G-2 outlines these programs.

Table G-2. Pediatric Pharmacy Educational Programming and Attendance

<table>
<thead>
<tr>
<th>Sponsoring Organization</th>
<th>Pediatric Pharmacy Programming and Attendance</th>
</tr>
</thead>
</table>
| ACCP | 2009 – 10 programs; 424 certificates of credit issued
 | 2010 – 1 program; 39 certificates of credit issued
 | 2011 – 1 program; 49 certificates of credit issued |
| APhA | 2009 – 1 program; 434 certificates of credit issued
 | 2010 – 5 programs; 123 certificates of credit issued
 | 2011 – 1 program; 166 certificates of credit issued |
| ASHP | 2009 – 4 programs; 642 certificates of credit issued
 | 2010 – 6 programs; 1,020 certificates of credit issued
 | 2011 – 4 programs; 541 certificates of credit issued |
| PPAG | 2009 – 64 programs; 4,297 certificates of credit issued
 | 2010 – 99 programs; 3,467 certificates of credit issued
 | 2011 – 140 programs; 7,005 certificates of credit issued |
Other organizations, such as the Society for Critical Care Medicine and the American Academy of Pediatrics, also provide live, print, and online educational programs that are of interest to pediatric pharmacists practicing at a specialty level.

Additional Mechanisms for Dissemination of Knowledge
In addition to the methods discussed in each of the guidelines above, enduring publications and professional award programs serve an important function in the dissemination of knowledge in the proposed specialty.

Nonperiodical Publications
Many enduring publications and resources that have been published in recent years enhance the skills and knowledge of pediatric pharmacists. Examples of such publications include:

- *Antibiotic Basics for Clinicians*, 2nd edition (Hauser AR; 2012)
- *Application and Review of Pediatric Pharmacotherapy*, 2nd edition (Glover ML; 2011)
- *Pediatric Injectable Drugs*, 9th edition, (Phelps SJ, Hak EB, Crill CM; 2010)
- *Pediatric Medication Education Text* (Buck ML, Hendrick AE; 2009)
- *Pediatric Pharmacotherapy* (Benavides S, Nahata M; 2012)
- *PSAP-VII, Book 4, Pediatrics* (ACCP; 2010)

Professional Awards
Award programs in pharmacy practice serve to enhance and recognize accomplishments of pharmacists. Through PPAG, several awards specifically recognize the distinguished practice of pediatric pharmacists in specialty practice (Table G-3).
Table G-3. PPAG Awards for Recognition of Excellence in Pediatric Pharmacy

<table>
<thead>
<tr>
<th>Award</th>
<th>Description/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christensen Memorial Young Investigator Award</td>
<td>The Christensen Memorial Young Investigator Award is available to investigators who have been in practice 5 years or less. This award is granted to the investigator based on his or her written abstract and the quality of his or her poster presentation at the PPAG annual meeting each year.</td>
</tr>
<tr>
<td>Fellow in the Pediatric Pharmacy Advocacy Group</td>
<td>The Fellow in the Pediatric Pharmacy Advocacy Group (FPPAG) Recognition Program recognizes excellence in pediatric pharmacy practice and grants recognition that promotes public awareness of pharmacists who have distinguished themselves in pediatric pharmacy practice.</td>
</tr>
<tr>
<td>Lexi-Comp Best Practice Awards</td>
<td>The awards are given to innovative and creative pharmacy programs that advance the mission, vision, and goals of the organization. Awards are evaluated based upon innovation, creativity, cost effectiveness, improvement in practice, and leadership. Up to two awards are awarded annually.</td>
</tr>
<tr>
<td>Outstanding Original Paper</td>
<td>Investigators are evaluated on the basis of their written abstract and the quality of their presentation at the meeting. The winner receives complimentary registration to next year's annual meeting and a framed certificate.</td>
</tr>
<tr>
<td>Richard A. Helms Award of Excellence in Pharmacy Practice</td>
<td>Recognizes sustained and meritorious contributions to PPAG and to pediatric pharmacy practice, and contributions of importance to education, new knowledge, and outreach.</td>
</tr>
<tr>
<td>Sumner J. Yaffe Lifetime Achievement Award</td>
<td>Recognizes an individual who has made outstanding and sustained contributions to improving or expanding the health of children. This contribution may relate to the discipline of pediatric pharmacology and therapeutics, professional service, basic or clinical research, patient care, models of care, or patient advocacy. The award is not limited to pharmacists or to members of PPAG.</td>
</tr>
</tbody>
</table>

In addition, other professional awards, although not designated specifically for pharmacists in pediatric practice, have recognized pediatric pharmacists for their contributions to the profession and advancing clinical practice in pediatrics. These awards, and their recipients, are outlined in Table G-4.

Table G-4. Pediatric Pharmacist Recipients of National Professional Awards

<table>
<thead>
<tr>
<th>Organization/Award</th>
<th>Description</th>
<th>Year/Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCP: Clinical Practice Award</td>
<td>The Clinical Practice Award recognizes an ACCP member who has developed an innovative clinical pharmacy service, provided innovative documentation of the impact of clinical pharmacy services, provided leadership in the development of cost-effective clinical pharmacy services, or shown sustained excellence in providing clinical pharmacy services.</td>
<td>1990, Peter Gal</td>
</tr>
<tr>
<td>Award Name</td>
<td>Description</td>
<td>Recipient(s)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ACCP: Education Award</td>
<td>The Education Award recognizes an ACCP member who has shown excellence in the classroom or clinical training site, conducted innovative research in clinical pharmacy education, demonstrated exceptional dedication to continuous professional development, or shown leadership in the development of clinical pharmacy education programs.</td>
<td>1990, Milap Nahata 1995, Rosalie Sagraves 2011, Mary Ensom</td>
</tr>
<tr>
<td>ACCP: Paul F. Parker Medal</td>
<td>The Paul F. Parker Medal is awarded to an individual who has made outstanding and sustained contributions to improving or expanding the profession of pharmacy in an area of professional service, including but not limited to patient care, leadership, administration, financial, technological, information processing, service delivery, models of care, and advocacy.</td>
<td>2009, Milap Nahata</td>
</tr>
<tr>
<td>ACCP: Robert M. Elenbaas Service Award</td>
<td>The Robert M. Elenbaas Service Award is given only when a particularly noteworthy candidate is identified in recognition of outstanding contributions to the vitality of ACCP or to the advancement of its goals that are well above the usual devotion of time, energy, or material goods.</td>
<td>1998, John Rodman</td>
</tr>
<tr>
<td>ACCP: Russell R. Miller Award</td>
<td>The Russell R. Miller Award recognizes an ACCP member who has made substantial contributions to the literature of clinical pharmacy, either in the form of a single, especially noteworthy contribution or sustained contributions over time.</td>
<td>1987, Les Hendeles 1992, William Evans 1997, Milhap Nahata 2002, Mary Relling 2006, Mary Ensom</td>
</tr>
<tr>
<td>ACCP: Therapeutic Frontier Lecture Award</td>
<td>The Therapeutic Frontiers Lecture Award honors an internationally recognized scientist whose research is actively advancing the frontiers of pharmacotherapy. Recipients need not be ACCP members.</td>
<td>1989, William Evans 1995, Leslie Hendeles 2003, Mary Relling</td>
</tr>
<tr>
<td>APHA: Remington Honor Medal</td>
<td>The Remington Honor Medal was established in 1918 to recognize distinguished service on behalf of American pharmacy during the preceding years, culminating in the past year, or during a long period of outstanding activity or fruitful achievement.</td>
<td>2012, William Evans</td>
</tr>
<tr>
<td>APHA: Research Achievement Award in the Pharmaceutical Sciences</td>
<td>This award, administered by the APHA Academy of Pharmaceutical Research and Science, encourages and recognizes outstanding meritorious achievement in any of the pharmaceutical sciences. Contributions to be recognized are in the areas of basic pharmaceutical, clinical, and economic, social, and administrative sciences, which develop knowledge and integrate the process of science into the profession of pharmacy.</td>
<td>2002, Leslie Hendeles 1999, Milap Nahata 1996, William Evans</td>
</tr>
<tr>
<td>ASHP: Board of Directors’ Medal</td>
<td>The ASHP Board of Directors’ Award of Honor recognizes</td>
<td>2007, William Evans</td>
</tr>
<tr>
<td>Award of Honor</td>
<td>individuals outside the pharmacy discipline who have made extraordinary national or worldwide contributions to the health field.</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ASHP: Distinguished Service Award</td>
<td>The ASHP Pharmacy Practice Sections and New Practitioners Forum (NPF) Distinguished Service Award recognizes a member from each Section and NPF whose volunteer activities have supported the mission of their Section or NPF and helped advance the profession.</td>
<td>2010, Rita K. Jew</td>
</tr>
<tr>
<td>National Academies of Practice: Distinguished Practitioner</td>
<td>The National Academies of Practice was founded in 1981 to advise governmental bodies on our health care system. It is the only interdisciplinary group of health care practitioners dedicated to these issues. Elected members are distinguished practitioners, scholars, and public policy professionals who have achieved distinction while spending a significant portion or all of their careers in direct patient care. Only 150 Fellows may be elected to each Academy. Fellows are elected by their peers from 10 different health professions, including practice in pharmacy.</td>
<td>Robert Kuhn Milap Nahata Stephanie Phelps</td>
</tr>
</tbody>
</table>
Appendix B-1

Letters of Support
August 27, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmaceutical Specialties
2215 Constitution Ave, NW
Washington, DC 20037

Dear Mr. Ellis:

It is my pleasure to provide a letter of support for recognition of pediatric pharmacy practice as a specialty. I have worked with many pediatric pharmacists during my training and in my current clinical practice. I value the role of the pediatric pharmacist on an interprofessional team, not only in ensuring the appropriate use of drugs in our patients, but also in teaching medical and pharmacy students and residents. As an investigator conducting clinical research in infants and children, I am very familiar with the challenges in providing optimal drug therapy in this population and believe that it is necessary for pharmacists caring for children to have specialized training.

I am the Chair and Principle Investigator for the Pediatric Trials Network (PTN www.pediatrictrials.org). The PTN is an alliance of clinical research sites sponsored by the National Institutes of Child Health and Human Development. We are charged with designing and completing trials to determine the exposure and safety of all off-patent therapeutics in children. We initiate ~10 trials each year. I am therefore primarily responsible for $15,000,000/year pediatric clinical pharmacology and pediatric trials network of investigators who are working together to improve healthcare for children.

The PTN has a number of prominent pediatric pharmacists and pharmacologists in the fields of developmental pharmacology and pharmacogenomics. Drs. Greg Kearns and Steve Leeder serve as Co-chairs of the PTN Clinical Pharmacology Core, and Dr. Edmund Capparelli is the Chair, and Dr. Jeff Barrett is the co-Chair, of the PTN Pharmacometrics Core. The expertise that these investigators, along with many others at PTN sites throughout the United States, bring to our program has allowed us to make considerable progress in evaluating the safety and efficacy of drug in children.

Several studies have already led to changes in the regulatory labeling of medications commonly prescribed in the pediatric population. Growth in the number of pediatric pharmacists involved in research will help to ensure that we will have adequate numbers of investigators to continue expanding the work of the PTN in the future. Recognition of pediatric pharmacy as a specialty is a positive step towards supporting the work of these pharmacists and encouraging new practitioners to consider a career in pediatrics.

Sincerely,

Daniel K. Benjamin, Jr., MD, PhD, MPH
Professor, Duke University
Chair, Pediatric Trials Network (www.pediatrictrials.org)
Faculty Associate Director, Duke Clinical Research Institute (www.dcri.org)
From Robert W. Block, MD, FAAP, Professor Emeritus, Pediatrics, The University of Oklahoma School of Community Medicine, Tulsa

August 20, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmaceutical Specialties
2215 Constitution Ave, NW
Washington, DC 20037

Dear Sir:

I am writing this letter of support for recognition of pediatric pharmacy as a specialty. For the last several years, until my recent election as president of the American Academy of Pediatrics (AAP), I worked alongside pediatric pharmacists here at the University of Oklahoma in Tulsa.

As we all know, children are far more than little adults. Medications for children are often prescribed “off label,” as so many drugs are not studied in children. Although this is improving due to extensive work by many people, including the AAP working with the FDA, the fact remains that prescribing for children is a very special area indeed. Consequently, the demand for pharmacists with training and knowledge in pediatrics is essential for optimal child health.

Pediatric pharmacy is also important as pediatricians and family physicians need assistance with clinical prescribing for children. In the pediatric department I used to Chair, we had pediatric pharmacists on our faculty, as part-time instructors for our pediatric faculty and residents, in addition to their duties in their primary appointment within the College of Pharmacy. In short, they were essential for teaching, and for developing policy to reduce medical errors. Access to pediatric pharmacists has been an important component of clinical care and education in our department of pediatrics.

In my current role, I have visited private practices and academic centers across the country, and can relate that the needs and rewards described above are replicated wherever I visit. I am very much in favor of pediatric pharmacist specialists, and hope you and the Board will agree.

Robert W. Block, MD, FAAP
August 31, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Ave., NW
Washington, DC 20037

RE: Recognition of Pediatric Pharmacy Practice as a Specialty Certification

Dear Mr. Ellis,

I am writing in support of recent efforts to recognize Pediatric Pharmacy Practice as a specialty within the purview of the Board of Pharmacy Specialties.

There are several justifications behind the recognition of Pediatric Pharmacy Practice as a specialty certification. These include the fact that there is a specialized body of knowledge related to pharmacotherapy in pediatric patients, there are focused practice settings where relatively large numbers of pediatric patients are seen for inpatient and/or outpatient care, and there is a growing demand for specialty certification for the purpose of supporting advanced pharmacy roles in care of these patients.

Drug therapy for pediatric patients is becoming increasingly complex. Children of various ages are treated with drugs for which little data exists on how best to dose and monitor therapy to assure optimal patient outcomes. The ontogeny of development related to pharmacology requires deep understanding of the relationship between physical development over time and the development of drug metabolizing and transport enzymes. Complex combinations of drug therapy may present special issues related to drug interactions or adverse events that are unique in the pediatric population. All these and other factors argue strongly for the development of pharmacists who are expert in the knowledge and practice of pharmacotherapy in the pediatric population. Most of these complex patients are treated in inpatient or outpatient centers where a number of other similarly complex pediatric patients are seen. This concentration of patients in these centers creates a demand for placement of pharmacists to help manage their drug therapy, in collaboration with other caregivers.
Pediatric practitioners have long accepted pharmacists as collaborators in care of their patients. Increasingly, “advanced practice pharmacists” are being recognized by institutions in a formal manner. Some institutions are pursuing formal pathways of privileging and credentialing that are similar to those currently in place for other “mid level” practitioners. At St Jude Children’s Research Hospital, we have recently taken the steps to privilege our Clinical Pharmacy practitioners. This privileging process uses Board Certification (by BPS) as one of the “criteria” that must be fulfilled to be eligible for privileging. While Board Certification in Pharmacotherapy, Oncology, or even Nutritional Support seem to be adequate evidence of relevant competency, I would argue that Board Certification in Pediatric Pharmacotherapy will be a more relevant criterion that would apply effectively here.

At our institution, board certification is not, in itself, justification for increased pay. However, this certification does fulfill criteria for job advancement, and it also is viewed as tangible evidence of excellence. Hence, increased reimbursement does result. All of our Clinical Pharmacy Specialists (n=9) are or soon will be board certified in one or more of the following areas: Pharmacotherapy, Oncology, or Nutrition Support.

In my career as a clinical pharmacist and pharmacy administrator, I have found that medical staff, other hospital leaders, and the public in general recognize “board certification” as an important evidence of some degree of competency. Hence, I have long supported the efforts toward certification for those engaged in clinical practice. Further, I have found it interesting to note that US News and World Report survey questions oriented toward defining the “best hospitals” have asked us whether our pharmacy staff includes board certified pharmacists. In the pediatric care setting we need a credential which would provide evidence that the individual manifests expertise in managing pharmacotherapy in children. The Pediatric Pharmacy Specialist credential will provide this credential; I therefore strongly encourage pursuit of this petition.

Sincerely,

William L. Greene, PharmD, BCPS, FASHP
Chief Pharmaceutical Officer, and
Professor (Affiliated), Department of Clinical Pharmacy, UT College of Pharmacy
St Jude Children’s Research Hospital, MS150
901-595-3686
William.greene@stjude.org
To Whom It May Concern:

I wanted to take of brief moment to introduce myself. My name is Christopher Jerry and I am the father of Emily Jerry, as well as, the President & CEO of The Emily Jerry Foundation. My daughter Emily died as a result of a tragic medication error, here in Cleveland in 2006, after miraculously overcoming cancer. Shortly after Emily’s death, I decided to honor my beautiful little girl by changing careers and becoming a full-time patient safety advocate. I made this important decision in an effort to positively affect change in medicine in the United States and prevent similar errors from happening over and over again.

On behalf of The Emily Jerry Foundation, the primary reason for this letter is to show our support for the recognition of pediatric pharmacy practice as a specialty. Being the father of Emily, as well as, two other wonderful children, I truly believe that offering this type of recognition to pharmacists across the United States is absolutely imperative. The primary reason being, it would definitely help ensure the safe and effective use of medications on our nation’s smallest of patients. Most importantly, it would help significantly reduce the number of overall medication errors and subsequent deaths like my beautiful two year old daughter Emily’s that occur every year with our children, neonates, and adolescents. With that being said, I also believe there exists a very strong demand for this specialty, especially when you take into account the sheer number of children’s hospitals across the country who are really beginning to make patient safety and quality of care a number one priority at their facilities.

If you have any questions or concerns regarding this extremely important issue, or if you would like to speak with me directly, please do not hesitate to call me directly at 440-289-8662.

Very best regards,

Chris

Christopher S. Jerry
President & CEO
The Emily Jerry Foundation
September 14, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Ave., NW
Washington, DC 20037

Dear Mr. Ellis,

I am writing this letter in strong support of the petition to the Board of Pharmaceutical Specialties (BPS) to recognize Pediatric Pharmacy Practice as a specialty.

As a pediatric pharmacist for over 20 years and an Executive Director of Pharmacy at a Children’s Hospital for the past seven years, I can attest that Pediatric Pharmacy Practice is a very specialized field, where the delivery of patient care services to ensure the safe and effective use of medications for all pediatric patients, from neonates through adolescents, is critically dependent on specialized training and skills sets of pharmacists. At CHOC Children’s Hospital, through participation in interdisciplinary medical rounds and other activities, our clinical pharmacist specialists actively manage medication use of patients in the following areas:

- Neonatal Intensive Care Unit (NICU)
- Pediatric Intensive Care Unit (PICU)
- Cardiovascular Intensive Care Unit (CVICU)
- Oncology Unit
- Bone Marrow Transplant Unit

In addition, our specialists manage the Antimicrobial Stewardship Program, are actively involved in the care of patients on ketogenic diet, the Parenteral Nutrition Team and the Mobile Asthma Care Unit (Breathmobile). They are also essential members of the Institutional Review Board and important contributors to clinical research involving medications within the institution.

The extensive involvement of pharmacists in all aspects surrounding medication use in pediatric patients requires that these individuals have specialty level training and qualifications. For this reason, almost 80% of pharmacists employed at CHOC Children’s have completed a PGY1 residency. In addition, clinicians participating in clinical activities are required to have years of practice experience, undergone extensive months-long training at our institution or completed a PGY2 residency in Pediatrics. Currently, no BPS certification examination will help delineate the skills of pediatric specialists since the examination contains minimal questions relating to the care of pediatric patient. Once Pediatrics Pharmacy Practice becomes a specialty, we will require that all clinical pharmacist specialists participating in clinical activities or collaborative practice...
agreements obtain pediatric specialty certification. This will mean that approximately
more than 50% of our pharmacists will become Board Certified in Pediatrics.

The need for pediatric pharmacists has grown exponentially throughout the last decade. During my tenure here at CHOC Children’s Hospital, the number of inpatient pharmacists has grown 113% from 12.5 full time equivalent (FTE) (or 15 pharmacists) seven years ago to 26.65 FTE (or 29 pharmacists) today. This number is expected to reach 31.35 FTE (or 34 pharmacists) by July 2013. The same growth is experienced by most other stand-alone children’s hospital around the country. In addition, as a specialty, Pediatric Pharmacy Practice has just begun to venture out to the ambulatory care setting. There will be additional demands for pediatric pharmacist specialists to expand to the ambulatory care setting as we move forward with the health care reform, as well as the accountable care organizations (ACO) and medical home models. Therefore, the demand for specialty pediatrics services will continue to grow, as will the need for Board Certified Pediatric Specialists.

I am in full support of the mission of BPS to improve patient care through recognition and promotion of specialized training, knowledge and skills in pharmacy and specialty board certification of pharmacists. With the above outlined rationale, I urge BPS to strongly consider the cohort petition efforts of the American Society of Health-System Pharmacists (ASHP), American College of Clinical Pharmacy (ACCP) and Pediatric Pharmacy Advocacy Group (PPAG) to recognize Pediatric Pharmacy Practice as a specialty, in order to highlight the unique qualifications of this subset of pharmacists that have distinguished themselves in the care of pediatric patients by gaining specialized knowledge, skills and abilities and creating a unique practice beyond the scope of pharmacy practice defined by licensure examination. Please feel free to contact me if I can be of further help in the petition process.

Sincerely yours,

Rita K. Jew, Pharm.D., FASHP
Executive Director, Pharmacy and Clinical Nutrition Services
CHOC Children’s Hospital
29 August 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Ave., NW
Washington, D.C. 20037

Dear Mr. Ellis,

I am honored and privileged to provide this enthusiastic letter of support on behalf of the petition to recognize Pediatric Pharmacy Practice as a specialty of the profession of Pharmacy.

By way of introduction, I have practiced clinically as a specialist in the field of pediatric pharmacotherapy since completing my residency at the Cincinnati Children’s Hospital Medical Center in 1979. Throughout my academic career, the clinical practice facet of my position remains the most rewarding and important thing that I do. Thus, my perspective and recommendation emanate from a “first-hand” experience of being one of over 4000 professionals in the U.S. who collectively, represent the discipline of Pediatric Pharmacy Practice.

In both inpatient and outpatient pediatric medical settings, highly skilled, expertly trained clinical pharmacists serve the pharmaceutical needs of infants, children and adolescents. Their contributions range from direct patient care to the conduct of research which translates discoveries into effective therapeutic decisions which directly impact the lives of patients and their families. The ever changing physical and psychosocial makeup of pediatric patients requires that pharmacists who serve them have a highly specialized body of knowledge that is vastly different from those of their colleagues who provide care to adults. In the inpatient setting of a children’s hospital, I have observed that the translators of Translational Medicine are most often the clinical pharmacists, given their unique education and knowledge base which enables them to bridge science (e.g., pharmacogenomics, pharmacokinetics) to therapeutics of the diseases and conditions which in many instances, are unique to pediatric patients. In the clinical research setting, trained pediatric pharmacy practitioners are vital contributors, often serving as clinician scientist investigators who possess a unique knowledge base and skill set as compared to other health care professionals involved in the research process.

In closing, a specialist is defined as “a practitioner whose practice is limited to a particular class of patients or of diseases or of a technique (as surgery) and who is qualified by advanced training and certification by a specialty examining board to so limit his or her practice”. The current state pediatric pharmacy practice in the United States provides
irrefutable evidence that this group of individuals indeed represents a specialty. Accordingly, I provide my highest recommendation that the Board of Pharmaceutical Specialties grant approval to this particular petition; an act which will have profound importance for pediatric pharmacy practitioners and most importantly, the children who they dedicate their professional careers to.

Sincerely,

[Signature]

Gregory L. Kearns, B.S.(Pharm.), Pharm.D., Ph.D.
Marion Merrell Dow / Missouri Chair in Pediatric Medical Research
Professor of Pediatrics and Pharmacology, University of Missouri – Kansas City
Clinical Professor of Pediatrics, University of Kansas School of Medicine
Chief Scientific Officer and Chairman, Research Development and Clinical Trials
Associate Chairman, Department of Pediatrics
Co-Principal Investigator, Pediatric Trial Network
September 24, 2012

William M. Ellis, BPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Ave., NW
Washington, D.C. 20037

Dear Mr. Ellis,

I have been asked to write a letter of support for the petition to recognize Pediatric Pharmacy Practice as a specialty of the profession of Pharmacy.

My whole-hearted support of this specialty is based on my work as a medication safety specialist for the Institute for Safe Medication Practices (ISMP). I retired from ISMP at the end of May this year, but spent the last almost 18 years working as an outside consultant and then as a full time employee. My area of expertise was that of pediatric and neonatal medication safety. As part of that position, I was part of the consult team that regularly assessed medication safety in pediatric hospitals around the country. In addition, I participated in medication safety collaboratives with the Vermont Oxford Network, Child Health Corporation of America (CHCA) and The National Association of Children’s Hospitals and Related Institutions (NACHRI).

As part of our consults we evaluated the pediatric pharmacy clinical expertise available within both free-standing pediatric hospitals and those pediatric units that were part of primarily adult facilities. In many cases we were surprised to see a lack of pediatric pharmacy expertise. This might mean the lack of expertise in general or the lack of expertise on off-shifts such as evening, nights, weekends and holidays. It is very common in adult facilities that adult oriented pharmacists are responsible for reviewing orders and preparing medications for pediatric and neonatal patients. In some cases it has been years since they had an orientation to pediatric and neonatal pharmacology.

If a Pediatric Pharmacy Practice specialty were available, it could give organizations like ISMP an option to recommend to hospitals that there be at least one person on staff board certified in pediatrics and in the case of larger institutions perhaps a recommendation that a specialist be available on each shift, or on call, to support the pharmacy, nursing and medical staff. These specialists could be responsible for initial, as well as on-going orientation, for pharmacy staff. They could also be responsible for keeping up with the literature to assure the hospital remains aware of changes in pediatric and neonatal pharmacology. The availability of this expertise would improve the level of care for one of our most high risk patient populations.

Considering my experience in pediatric pharmaceutical care, I would offer my highest recommendation that the Board of Pharmaceutical Specialties grant approval to this particular petition. A specialty in pediatrics will have a profound effect on the quality and safety of care delivered to our children.

Sincerely,

Stuart Levine, PharmD

Retired member of the Institute for Safe Medication Practices consulting staff
September 11, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Avenue, NW
Washington, DC 20037

Dear Mr. Ellis,

I am honored to be asked to write a letter of support to the Board of Pharmacy Specialties on behalf of the petition to recognize Pediatric Pharmacy Practice as a specialty of the profession of Pharmacy.

Facets of my background highlight the intersection of a series of needs that were uniquely met by field of Pediatric Pharmacy and specifically by the organization known as the Pediatric Pharmacy Advocacy Group (PPAG).

First, I was a member of the first American Heart Association Pediatric Resuscitation committee. We were charged with creating the first Pediatric Advanced Life Support (PALS) course which included decisions regarding the dosing of medications for the critically ill child.

Secondly, I have been Medical Director for the Broselow tape since its inception and also what is known as Artemis; the complete web based pediatric acute care medication safety dosing system used in more than 250 hospitals nationwide.

Finally, I am co-founder of the Difficult Airway Course Emergency and have been solely responsible for pediatric content of that course including the dosing of medications used in the management of life threatening airway emergencies.

In all three areas there was a need for recommendations for specific doses of critical medications, including the specific area, rarely ever resolved or even addressed by organizational consensus, the transition from pediatric to adult doses. The significance of these decisions cannot be underestimated as in these instances the dosing guidelines generated were published and widely disseminated both nationally and internationally and have formed the standard upon which much of pediatric acute medicine is practiced today.

The final decisions reached in all these areas required the distillation of published literature and consensus expert opinion and represented a unique body of knowledge which did not exist before and which permitted clinicians to meet the unique needs of the critically ill child.

I am pleased and privileged to be in the unique position to testify to the importance of this area of expertise as someone who sought answers where none existed before to create standards where none existed before, and as someone who, as a practicing emergency physician has also witnessed firsthand the fruits of these labors measured in real lives saved.
Pediatric Pharmacy indeed addresses an area which is not addressed by other disciplines, namely the unique medication dosing issues of children whose metabolism differs depending on age and whose doses must be individualized, all of which must be reflected in recommended dosing guidelines.

I hope this letter gives a little insight into the importance of Pediatric Pharmacy as reflected in these examples from my own personal experience. Please feel free to contact me if further elucidation would be helpful.

Sincerely,

[Signature]

Robert Luten, MD
Professor
Department of Emergency Medicine, Division of Pediatric Emergency Medicine
The University of Florida- Shands Jacksonville Medical Center
September 12, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Ave, NW
Washington, DC 20037

Dear Bill:

It is a pleasure for me to write a letter concerning the demand for pediatric pharmacist specialists.

Attached is a brief biography about my pharmacy career for readers of this letter that may not be familiar with my background and experiences which have shaped my opinion on the need and demand for pharmacy specialties and, in particular, the need and demand for pediatric pharmacy to be recognized as a pharmacy specialty by the Board of Pharmacy Specialties.

I reviewed available pharmacy manpower data before preparing this letter. Unfortunately, I cannot find any definitive studies or forecasts related to the demand for pediatric pharmacy generalists or pediatric pharmacy specialists. Multiple factors will drive the demand for pediatric pharmacy specialists up in the future. The same trends that are driving the demand for clinical pharmacy specialists overall nationwide will drive up the demand for pediatric pharmacy specialists. These trends include the following:

• Increased recognition by government, accrediting bodies, hospitals and ambulatory care settings including community pharmacies of the need for pharmacists to provide medication therapy, management to improve the effectiveness and safety of drug therapy in all patient care settings.

• Increased recognition of drug therapy related risks of specialized patient populations (e.g., oncology, children, critical care, emergency, transplant, cardiovascular, infectious disease),

• Increased growth of interdisciplinary acute and ambulatory health care teams to improve the treatment of specialized patient care populations,

 o Increased consensus among physician and nursing leaders in hospitals and healthcare systems that specialized pharmacists are required as essential members of interdisciplinary teams (e.g., Neonatal Intensive Care and Pediatric Intensive Care patient care interdisciplinary teams),
 o Increased utilization of pharmacists to provide medication therapy management in ambulatory and community settings (e.g., in the case of pediatrics, patients with sickle cell, HIV, asthma, transplant, oncology and other diseases have been shown to benefit from managed medication therapy by pediatric pharmacists),
• Increased numbers of professional organizations or accrediting bodies that recognize pharmacists as essential members of interdisciplinary teams (e.g., Society of Critical Care Medicine manpower guidelines, NICU accrediting requirements for pharmacists to be on NICU teams), and;

• Growth in the number of pediatric pharmacy residency programs and pediatric pharmacy residents (now 38 PGY2 Pediatric Pharmacy Practice programs) will produce more qualified pediatric pharmacy specialists and demand for pediatric pharmacy specialists will increase as employers recognize that more qualified pharmacists are available for acute and ambulatory/community pediatric positions.

These general trends as well as those specific to pediatrics will continue to increase the demand for pharmacy specialists in most of the existing pharmacy specialties and emergency pharmacy specialty fields (e.g., critical care, geriatrics, pediatrics).

The need and demand for pediatric pharmacy specialists is amplified by two factors. One, Doctor of Pharmacy graduates have minimal knowledge, skills and abilities related to pediatric drug therapy management. Secondly, medication errors and adverse drug in events are more likely to cause patient harm in pediatric patients as noted by a paper published by Fortescue and others entitled “Prioritizing strategies for preventing medication errors and adverse drug events in pediatric inpatients” (Pediatrics 2003 April, 111 (4 Pt 1): 722-9). The authors of this paper state that medication errors in pediatric inpatients occur at similar rates as in adults but have three times the potential to cause harm. The high risk of significant medication errors in pediatric patients including wrong drug choice, wrong dose, drug interactions, etc. has led pediatric hospitals and organized ambulatory care settings to recruit pharmacists who have pediatric pharmacy practice experience or pediatric residency training at the PGY1 and/or PGY2 levels. The high risk of harm will continue to drive the demand for pediatric pharmacy specialists. In addition, advances in pharmacotherapy will require pediatric pharmacy specialists with more advanced practice skills than today.

Job descriptions for pediatric pharmacy positions frequently require or prefer that candidates have either prior pediatric practice experience or pediatric residency training at the PGY1 or PGY2 levels. In the future, Board Certification of Pediatric Pharmacy Specialists will be utilized as an additional criterion beyond residency training and/or experience to identify pharmacists qualified for pediatric pharmacy positions.

Growth in the membership of the Pediatric Pharmacy Advocacy Group (PPAG) is an indicator of the number of pharmacists who are practicing as pediatric pharmacists. This growth reflects the increase demand for pediatric pharmacists. The increasing number of papers published in The Journal of Pediatric Pharmacology and Therapeutics, the official journal of PPAG, also reflects the growth in the number of pharmacists practicing as pediatric pharmacy specialists which is also linked to demand.

Based upon my experience in serving as a lead surveyor for residency programs in children’s hospitals and hospitals with high risk pediatric patient populations (e.g., Pediatric Intensive Care Units (PICU), Neonatal Intensive Care Units (NICU), oncology, transplant, and general and other specialized pediatric patient care units or clinics), I can say with confidence that Chief Executive Officers, Chief Medical Officers and Directors of Pharmacy in these institutions recognize the high risks of drug therapy in pediatric patient populations. For this reason, it is uncommon to find a hospital with a PICU, NICU or
other specialized units that does not have pharmacists as members of specialized pediatric teams managing the care of these patient populations.

In summary, to improve pediatric drug therapy management our nation needs more pharmacists with the knowledge, skills and abilities necessary to provide pediatric medication therapy management. The demand for pediatric pharmacy specialists will continue to grow based upon the above described trends in pharmacy specialization. In closing, I urge the Board of Pharmacy Specialties to approve the petition to recognized pediatric pharmacy practice as a pharmacy specialty. Recognition of pediatric pharmacy as a specialty will benefit pharmacy and more importantly pediatric patients and their families throughout the nation.

Sincerely

William A. Miller, PharmD, FASHP, FCCP
Professor Emeritus, University of Iowa,
Lead Residency Surveyor, ASHP, and,
Chairman, Pharmacotherapy Board of Directors
304 Bounty Lane
Charleston, SC 29412
614-657-2373
william-a-miller@uiowa.edu
William A. Miller
Biographical Sketch

William A. Miller is a Professor Emeritus of Clinical and Administrative Pharmacy, College of Pharmacy, University of Iowa. He has held positions as a director of pharmacy (City Memphis Hospital in Memphis, Tennessee and Medical University of South Carolina Medical Center, Charleston, South Carolina), academic chairman (College of Pharmacy, University of Tennessee Center for the Health Sciences, Memphis, Tennessee; College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina; and College of Pharmacy, University of Iowa, Iowa City, IA), teacher and as student and resident preceptor. He is the author of over one hundred publications. His research interests consist of evaluative and outcome studies dealing with pharmaceutical education and pharmacy practice.

He is a Past-President of the American Association of Colleges of Pharmacy and the American College of Clinical Pharmacy. He served on the ASHP Commission on Credentialing for a six-year period and was chair for two-years. He currently serves as a lead surveyor for the accreditation of residency programs by the American Society of Health-System Pharmacists. As President-Elect of the Iowa Society of Health-System Pharmacists he helped merge the Iowa Pharmacists Association and the Society into a new organization, the Iowa Pharmacy Association. He is the current Chairman and President of the Board of Directors for the journal, Pharmacotherapy.
August 6, 2012

William M. Ellis, BSPharm, MS
Executive Director
Board of Pharmacy Specialties
2215 Constitution Ave., NW
Washington, DC 20037

Dear Mr. Ellis,

I am pleased to lend my personal, strong support for recognition of pediatric pharmacy practice as a specialty by the Board of Pharmacy Specialties (BPS).

As a practicing Neonatologist and a Program Officer at the Institute of Medicine, I am privileged to work daily with physicians, nurses, pharmacists, and other health professionals who are striving to improve the triple aim—better care for patients, better health for populations, and lower costs of health care—in institutions and communities around the US. My personal experiences in health care and health policy have demonstrated to me that achieving the triple aim hinges on high-quality teamwork in which health professionals work together with patients and families. Essential to implementing high-performing teams throughout health care is the top-notch preparation and demonstrated capability of each individual team member. The team is only as strong as its weakest link. And, quite frankly, despite extensive training in pharmacology, physicians are often not well enough equipped to handle the increasingly complex pharmacotherapy needs of their patients. This can be particularly true in Pediatrics where drugs are often used off-label, and the data are complex and ever-changing. Clinical pharmacists deeply skilled and experienced in pediatric pharmacy are invaluable members of the pediatric team and truly impact our ability to help achieve the triple aim for US children.

Ensuring rigor in the training and certification of pharmacists on the pediatric team is essential. Pharmacists who satisfy the requirements for the proposed pediatric pharmacy practice specialty will help guarantee the quality and safety of patients and will be valuable resources to individuals and organizations working to improve the value of drug therapy and the quality of health care. I am confident that clinicians and institutions alike will seek out pediatric pharmacy specialists who have documented expertise and demonstrated skill in working with others health professionals, patients, and families to promote quality, safety, and value.

As the country moves toward achieving the triple aim, I hope BPS will take this opportunity to ensure that children are not left behind by recognizing pediatric pharmacy practice as a recognized specialty in pharmacy practice.

Sincerely,

Isabelle Von Kohorn, MD PhD
Appendix C-1

Pediatric Pharmacist Survey
Survey of Pediatric Pharmacists Interested in Board Certification

Dear Pediatric Pharmacist:

Thank you for taking the time to provide background information to assist in the consideration of a proposed specialty certification of pharmacists who have distinguished themselves in the care of pediatric patients by gaining specialized knowledge, skills, and abilities.

The American College of Clinical Pharmacy (ACCP), the American Pharmacists Association (APhA), the American Society of Health-System Pharmacists (ASHP), and the Pediatric Pharmacy Advocacy Group (PPAG) have partnered to develop and submit a petition to the Board of Pharmacy Specialties (BPS) to recognize pediatric pharmacy practice as a specialty. For purposes of this petition, the definition of pediatric pharmacy practice is:

Pediatric pharmacy practice specializes in the delivery of patient care services by pharmacists that ensures the safe and effective use of medications for all children from neonates through adolescents. The practice includes direct patient care for children, often provided through interprofessional health care teams, as well as advocacy and education for children and their families, wellness and health promotion, and activities that advance knowledge and skills in pediatric pharmacy.

Please complete this 5-10 minute survey by Friday, August 27, 2012 that will provide the petitioning organizations with supplemental data to support the petition to BPS. Your individual responses will be kept confidential. Collectively, all pharmacist responses will compiled to further document the unique elements of this specialty and provide support for this specialty in a petition to the Board of Pharmacy Specialties.

At the end of the survey, you will have an opportunity to enter information to add your signature to the petition. If questions arise, contact jskelton@silverpennies.com. Thank you for your time and assistance in this effort.

Marcia L. Buck, PharmD, FCCP, FPPAG; Representing the American College of Clinical Pharmacy
Lea S. Eiland, PharmD, BCPS, FASHP; Representing the American Society of Health-System Pharmacists
Peter N. Johnson, PharmD, BCPS; Representing the Pediatric Pharmacy Advocacy Group
Chasity M. Shelton, PharmD, BCPS, BCNSP; Representing the American Pharmacists Association

Practicing Pediatric Pharmacists

* Indicates response required

* How many years have you been a licensed pharmacist?
 ○ < 5 years
 ○ 5–9 years
 ○ 10–14 years
 ○ 15–19 years
 ○ > 20 years

* How many years have you been in pediatric pharmacy practice?
 ○ < 5 years
 ○ 5–9 years
 ○ 10–14 years
 ○ 15–19 years
 ○ > 20 years

* On average, how many HOURS per week do you practice in your pediatric practice site?
 ○ Full-time: 40 or more hours per week
 ○ 31 – 39 hours per week
 ○ 25 – 30 hours per week
 ○ 21 – 24 hours per week
 ○ 15 – 20 hours per week
 ○ 10 – 14 hours per week
 ○ 1 – 9 hours per week
 ○ I do not practice in pediatric pharmacy.
* Do you believe that you currently practice in the area of pediatric specialization as defined by the Task Group?
 ○ Yes
 ○ No

* If yes, in an average week, what PERCENTAGE of your time do you estimate is devoted exclusively to providing direct patient care and services according to this definition?
 ○ 90% - 100%
 ○ 80% - 89%
 ○ 70% - 79%
 ○ 60% - 69%
 ○ 50% - 59%
 ○ 40% - 49%
 ○ 30% - 39%
 ○ 20% - 29%
 ○ 10% - 19%
 ○ 1% - 9%

* Please check all types of residencies/fellowships completed.
 ○ PGY1 Pharmacy Practice Residency
 ○ PGY2 Pediatric Residency
 ○ Other PGY2 Residency
 ○ Fellowship
 ○ No residency or fellowship
 ○ Other (please specify) []

* If the petition to recognize pediatric pharmacy practice as a specialty is approved, how likely would you be to pursue this specialty recognition within the next 5 years?
 ○ Highly likely
 ○ Likely
 ○ Somewhat likely
 ○ Unlikely
 ○ Highly unlikely

* Are you directly responsible for hiring pediatric pharmacists within your organization?
 ○ Yes
 ○ No

Pediatric Pharmacist Employers

What is the total number of FTEs allocated to serving pediatric patients within your organization? []

What percentage of these pharmacists do you believe are currently practicing in the area of specialization as defined above? []

What percentage of these pharmacists practicing in the area of specialization are currently required to have advanced clinical training (e.g., residency training)? []

What percentage of these pediatric pharmacist positions currently require BPS specialty certification or other earned credentials? []

How many pediatric pharmacist positions within your institution are currently vacant/unfilled? []

Please rank, in preferred order, the current desired level of training for pharmacists practicing in
your pediatric pharmacy. 1 = most desired; 6 = least desired

- PGY-1 Residency - Pharmacy Practice
- PGY-1 Residency with pediatric emphasis
- PGY-2 Residency - Pediatric
- PGY-2 Residency - Other
- Employer-provided training program
- None required or desired

If BPS recognizes pediatric pharmacy as a specialty, what is the likelihood that you would require this new specialty credential for newly hired pharmacists within your institution?

- Highly likely
- Likely
- Somewhat likely
- Unlikely
- Highly unlikely

If BPS recognizes pediatric pharmacy as a specialty, what is the likelihood that you would require this new specialty credential for currently employed pharmacists within your institution?

- Highly likely
- Likely
- Somewhat likely
- Unlikely
- Highly unlikely

Which of the following ranges best describes your organization's anticipated growth in the number of pediatric pharmacy specialists (as described above) over the next 5 years?

- Projected decrease
- 0%-5%
- 5%-10%
- 10%-20%
- >20%

How many positions for pediatric pharmacy specialists (as defined above) has your organization recruited over the past 3 years, from July 1, 2009 to June 30, 2012?

What percentage of these positions were filled?

How many positions for pediatric pharmacy specialists (as defined below) do you estimate you will hire from July 1, 2012 through June 30, 2015?

Please add any additional comments that would help us understand the demand for specialists in pediatric practice within your organization.

OPTIONAL: If you would like to support this recognition effort by signing onto the petition to BPS, please add your signature in support of this proposed specialty by completing the following information:

First Name
Last Name
Credentials
Title
Pediatric pharmacy practice specializes in the delivery of patient care services by pharmacists that ensures the safe and effective use of medications for all children from neonates through adolescents. The practice includes direct patient care for children, often provided through interprofessional health care teams, as well as advocacy and education for children and their families, wellness and health promotion, and activities that advance knowledge and skills in pediatric pharmacy.
Appendix D-1

Report of the Role Delineation Study of Pediatric Pharmacy
Contents

Table of Tables ... ii
Table of Appendices ... iii
Introduction ... 4
Methodology .. 4

PHASE 1 – DEVELOPMENT OF THE DESCRIPTION OF SPECIALTY PRACTICE ... 4
 Appointment of the Role Delineation Task Force .. 4
 Pre-Meeting Data Collection Activity .. 5
 Meeting 1 of the Task Force .. 5
 Conduct of Independent Review .. 6
 Meeting 2 of the Task Force .. 6

PHASE 2 – CONDUCT OF SURVEY TO VALIDATE THE DELINEATION OF PRACTICE 7
 Development of Survey Instrument .. 7
 Conduct of Survey Pilot Test .. 8
 Sampling Plan and Dissemination of Survey ... 9

Results of the Survey of Pediatric Pharmacy Practice ... 9

 RETURN RATE ... 9
 PROFESSIONAL BACKGROUND AND DEMOGRAPHIC INFORMATION ... 10
 RATINGS FOR DOMAINS .. 14
 Percentage of Pediatric Work Time per Domain ... 14
 Domain Importance Ratings ... 17
 RATINGS FOR TASKS .. 17
 Task Frequency Ratings .. 18
 Task Importance Ratings ... 23
 Missing Tasks ... 26
 Task Validation Decisions .. 26
 RATINGS FOR KNOWLEDGE ... 28
 Knowledge Frequency Ratings ... 28
 Knowledge Importance Ratings ... 35
 Missing Knowledge .. 39
 Knowledge Validation Decisions ... 39

Development of Examination Specifications .. 41

 DEVELOPMENT OF DOMAIN WEIGHTS .. 41
 RECOMMENDED EXAMINATION SPECIFICATIONS ... 42

Summary and Recommendations ... 43

References .. 44
Table of Tables

Table 1 Structure of Pediatric Pharmacy Role Delineation ... 7
Table 2 Survey Return Rate.. 10
Table 3 What percentage of your overall work time do you spend providing pharmacy services for pediatric patients? ... 10
Table 4 Percentage of work time providing pharmacy services for pediatric patients 10
Table 5 Of this time, what percent is spent providing direct patient care? .. 11
Table 6 How many years have you worked as a licensed pharmacist? ... 11
Table 7 Years as a licensed pharmacist ... 11
Table 8 How many years (since licensure) have you worked with pediatric patients? 11
Table 9 Years in the pediatric specialty since licensure? .. 11
Table 10 In what setting does the majority of your practice take place? .. 12
Table 11 Which of the following most closely describes your primary role? 12
Table 12 What percentage of your patients falls into each of the following age ranges? 13
Table 13 What is the highest pharmacy-related degree you have earned? 13
Table 14 Which of the following have you completed? (Select all that apply.) 14
Table 15 What BPS specialty certifications do you hold? (Select all that apply.) 14
Table 16 Of the time you spent in pediatric pharmacy during the past year, what percentage did you spend performing the tasks in each domain? ... 15
Table 17 Percentage of work time per domain ... 16
Table 18 How important is the domain for providing effective care to pediatric patients? 17
Table 19 Task Frequency Ratings.. 19
Table 20 Task Importance Ratings .. 23
Table 21 Task Validation Decisions and Rationale ... 27
Table 22 Knowledge Frequency Ratings .. 29
Table 23 Knowledge Importance Ratings ... 35
Table 24 Knowledge Validation Decisions and Rationale ... 40
Table 25 Hypothetical Test Specifications ... 42
Table 26 Final Recommendations for Examination Specifications .. 42
Table of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>SME Nomination Form</td>
<td>45</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Pre-meeting Data Collection Activity Screen Captures</td>
<td>49</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Pediatric Pharmacy Task Force Meeting #1 Attendees</td>
<td>53</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Instructions for Independent Review</td>
<td>55</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Survey Screen Captures</td>
<td>57</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Pilot Test Invitation</td>
<td>69</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Survey Invitation and Reminder</td>
<td>71</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>Subgroup Analysis for Domain Ratings</td>
<td>74</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Subgroup Analysis for Task Ratings</td>
<td>77</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Final Pediatric Pharmacy Role Delineation</td>
<td>90</td>
</tr>
</tbody>
</table>
Introduction

In 2011, the Board of Pharmacy Specialties (BPS) contracted with Professional Examination Service (PES) to conduct a role delineation study (RDS) of pediatric pharmacy practice. This area of pharmacy practice had been identified as a potential new BPS specialty certification. In an RDS, the domains of practice and associated tasks are defined for the professional role under consideration, and the knowledge bases required to perform the defined tasks of the specialty are articulated.

The primary purpose of the study reported herein was to define the role of the pediatric pharmacist, in the format used to define existing BPS specialties. In particular, the RDS was conducted in order to delineate the tasks performed by the pharmacists specializing in pediatrics within broad domains of practice, and to identify the specialized (i.e., beyond licensure) knowledge bases needed to perform the delineated tasks.

If pediatric pharmacy were to become a specialty examination, the RDS also provides a valid basis on which examinations can be developed. According to standards established by the testing industry, the mechanism for establishing the content to be assessed in a certification examination is the conduct of a RDS of the profession. Conduct of RDSs is required in order to meet the certification program accreditation requirements of the American National Standards Institute (ANSI). The overall process of role delineation is described in the 1999 revision of the Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education) and in the PES Guidelines for the Development, Use, and Evaluation of Licensure and Certification Programs (1995).

The RDS of pediatric pharmacists was undertaken in two phases: (1) development of the role delineation by subject-matter experts, and (2) conduct of a survey to validate the description of specialty practice and develop the hypothetical examination content outline.

Methodology

Phase 1 – Development of the Description of Specialty Practice

Appointment of the Role Delineation Task Force

To assemble a diverse nominee pool from which to assemble the role delineation task force and appoint subject-matter experts to participate in other aspects of the study, BPS put out a call for nominations in May 2011.

An online questionnaire was created to capture information about volunteers needed to fill various roles in the RDS process. In addition to identifying the activities for which the nominee was willing to participate, BPS collected professional background information about each nominee, including percentage of time spent in the specialty of pediatric pharmacy, work setting, and years of experience. For additional description of the online data collection instrument and the activities for which nominees could volunteer, see Appendix 1.
BPS received 158 nominations, and reviewed the CVs of all nominees prior to the selection of the task force.

In selecting the members of the role delineation task force, BPS took into consideration critical demographic and professional background variables to be represented in the group. The task force was comprised of 11 subject-matter experts representing a range of practice settings and years of experience.

Pre-Meeting Data Collection Activity

Prior to the first meeting of the task force, PES conducted a data collection activity with the task force members. In order to begin the process of delineating pediatric-specific tasks and knowledge statements, PES created a brief web-based form to collect initial data regarding potential content for the pediatric pharmacy specialty role delineation. Task force members were asked to describe specific tasks performed by a pharmacist specializing in pediatrics as well as the specialized knowledge that a pharmacist practicing in pediatrics must have in order to be effective.

PES provided the task force members with a resource manual describing role delineation terminology and procedures. Task force members were instructed to review the resource manual prior to completing the data collection activity. Additional guidance was also provided throughout the online data collection form. See Appendix 2 for screen captures of this data collection form.

PES reviewed and synthesized the results of the pre-meeting data collection activity for use at the first meeting of the task force. The domains, tasks, and knowledge statements produced during the pre-meeting data collection activity served as a starting point for the development of the pediatric pharmacy role delineation.

Meeting 1 of the Task Force

In order to define the tasks and knowledge specific to the practice of pediatric pharmacy, the role delineation task force met in Washington, DC in August 2011 for a 2-day meeting. See Appendix 3 for a list of meeting attendees.

At the meeting, PES facilitated a discussion regarding the most useful structure for the delineation, and the process for developing the tasks and knowledge to be included in the pediatric pharmacy role delineation. The task force adopted a four domain organizing structure for the delineation. The domains were *Patient Management, Practice Management, Information Management and Education,* and *Public Health and Patient Advocacy.* Tasks performed and knowledge necessary for competent practice within each of these four domains were developed over the course of the meeting.

Immediately following this meeting, the role delineation was sent to all task force members for critical review. Task force members were asked to (1) provide solutions for any outstanding issues, (2) ensure that all tasks and knowledge required for effective practice were included in
the delineation, (3) confirm that each statement was delineated as accurately and concisely as possible, and (4) ensure that each knowledge statement could be matched to at least one task statement and that a complete set of required knowledge had been identified for each task statement. Task force members then met for a series of virtual meetings in order to reconcile the comments and prepare a revised draft of the role delineation. This document was then disseminated to additional pediatric pharmacists for review and comment.

Conduct of Independent Review

To support and supplement the work of the task force, an independent review procedure was implemented. Independent review is a process by which persons not involved in the initial development of the role delineation are given the opportunity to review the work in progress. This review ensures that a fresh perspective is brought to bear on the ongoing work of the task force.

A total of 14 participants were selected from the pool of nominees assembled at the outset of the study. Selections were made so as to represent a range of areas of practice settings and experience. Reviewers were asked to evaluate the delineation for comprehensiveness, redundancy, clarity, consistency, and sequence. Appendix 4 contains a copy of the detailed instructions provided for performing the review.

A reminder e-mail was sent to reviewers prior to the submission deadline in order to encourage participation. A total of 12 independent reviewers responded, for an 86% return rate, which is an above-average response rate for this type of activity.

All reviewer comments were documented for the task force and reviewed during a series of task force WebEx conference calls.

Meeting 2 of the Task Force

Meeting 2 of the task force was scheduled as a series of two virtual meetings. One week prior to the first of these meetings, PES sent the members of the task force the results of the independent review of the pediatric role delineation.

Task force members, after thoughtful discussion, were able to make decisions regarding all suggested edits to the tasks and knowledge statements, and finalized the delineation of practice in preparation for a validation survey of pharmacists practicing in the pediatric specialty. The role delineation finalized during meeting 2 of the task force consisted of 4 domains, 32 tasks, and 60 knowledge statements. The number of tasks and knowledge statements in each domain is displayed in Table 1.
Table 1
Structure of Pediatric Pharmacy Role Delineation

<table>
<thead>
<tr>
<th>Domain</th>
<th>Task Statements</th>
<th>Knowledge Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Patient Management</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data; and designing, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the healthcare team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Tasks related to advancing pediatric pharmacy practice; and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 3: Information Management and Education</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of healthcare providers, trainees, patients and caregivers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 4: Public Health and Patient Advocacy</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population healthcare policy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>60</td>
</tr>
</tbody>
</table>

Phase 2 – Conduct of Survey to Validate the Delineation of Practice

Development of Survey Instrument

The pediatric pharmacy role delineation was validated through implementation of a web-based survey of pharmacists practicing in the specialty. The delineation of practice was assessed by using quantitative and qualitative data collection procedures. From a quantitative standpoint, rating scales were designed to measure the frequency of use and importance of the tasks; the percentage of time spent in each domain and the importance of each domain; and how important the knowledge is to providing effective care to pediatric patients, as well as the frequency of use of the knowledge. From a qualitative standpoint, open-ended questions were developed to assess any tasks or knowledge missing from the delineation.

The specific rating scales used in the survey follow.
Tasks

Frequency How frequently did you perform the task during the past 12 months?

1=Never, 2=Quarterly or less, 3=Monthly, 4=Weekly, 5=Daily

Importance How important is the task to providing effective care to pediatric patients?

1=Not important, 2=Minimally important, 3=Moderately important, or 4=Very important

Domains

% of Time Of the time you spent in pediatric pharmacy during the past year, what percentage did you spend performing the tasks in each domain?

Importance How important is the domain to providing effective care to pediatric patients?

1=Not important, 2=Minimally important, 3=Moderately important, 4=Highly important

Knowledge

Frequency How frequently did you use the knowledge during the past 12 months?

1=Never, 2=Quarterly or less, 3=Monthly, 4=Weekly, 5=Daily

Importance How important is the knowledge to providing effective care to pediatric patients?

1=Not important, 2=Minimally important, 3=Moderately important, or 4=Very important

Screen captures of the validation survey can be found in Appendix 5.

Conduct of Survey Pilot Test

After the role delineation was incorporated into the online survey instrument, a pilot test was conducted. The purpose of the pilot test was to ensure that all content and technical aspects of the survey instrument were of the highest quality and that the survey was as clear and user-friendly as possible.
An additional 10 volunteers who had volunteered or been nominated to participate at the outset of the study but had not yet participated as task force members or independent reviewers were asked to participate in the pilot test of the survey. All task force members were also asked to participate. Therefore, a total of 21 pilot testers were sent invitations and personalized, password-protected links to the beta test version of the survey. Pilot testers were asked to provide feedback regarding clarity of instructions, utility of rating scales, technical difficulties, and time to complete, as well as make any additional suggestions or comments to improve the survey experience. For a copy of the invitation sent to pilot testers, see Appendix 6.

Feedback was received from 10 participants for a return rate of about 67% — an above average response rate for this type of activity. PES reviewed the results of the pilot test and, based on the pilot feedback, made minor adjustments to the survey in advance of the large-scale administration.

Sampling Plan and Dissemination of Survey

BPS obtained the Pediatric Pharmacy survey sample from the following sources: APhA, PPAG, ASHP, and ACCP. After eliminating duplicates from across the sources, the final sample was comprised of 1552 pharmacists identified as pediatric pharmacy specialists.

In collaboration with BPS, PES developed survey invitation letters and reminders to be sent to the sample of specialty pharmacists selected for the survey. These e-mail communications were designed to inform potential participants of the purpose of the validation survey and to encourage them to respond.

Invitations to participate in the survey were disseminated in January 2012. Each invitation e-mail included an embedded, customized link containing a unique password to the survey. The use of the password permitted recipients to start and stop the survey without loss of data; that is, the survey could be completed only one time, but across multiple sessions.

In order to encourage participation, a reminder was sent to all non-respondents one week after the initial invitation, and a final e-mail communication was sent one week prior to the deadline. Copies of all e-mail communications with the sample can be found in Appendix 7.

As incentive to participate, all survey participants could elect to be entered into a prize drawing to win one of four $50 Amazon.com gift cards.

Results of the Survey of Pediatric Pharmacy Practice

Return Rate

A total of 1552 survey invitations were disseminated, and of these 77 could not be delivered due to invalid email addresses, leaving a valid sample size of 1475. As seen in Table 2, a total of 463 pharmacists completed the survey for a return rate of about 31%. This is an excellent return rate for not yet established credentialing programs.
Table 2
Survey Return Rate

<table>
<thead>
<tr>
<th>Number of Invitations</th>
<th>Unable to Deliver</th>
<th>Valid Sample Size</th>
<th>Number of Responses</th>
<th>Return Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1552</td>
<td>77</td>
<td>1475</td>
<td>463</td>
<td>31.4%</td>
</tr>
</tbody>
</table>

Professional Background and Demographic Information

The following section provides background and demographic information regarding the pediatric pharmacists who responded to the survey.

As seen in Table 3, respondents were highly engaged in the specialty of pediatric pharmacy with an average of 87% of their work time spent providing pharmacy services to pediatric patients.

Table 3
What percentage of your overall work time do you spend providing pharmacy services for pediatric patients?

<table>
<thead>
<tr>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mode</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>87%</td>
<td>100%</td>
<td>1%</td>
<td>100%</td>
<td>100%</td>
<td>(22.9)</td>
</tr>
</tbody>
</table>

Table 4 shows the percentage of work time spent providing pharmacy services to pediatric patients in another way. This presentation expands upon Table 3. Here we see that only 3 respondents (6%) spent 10% or less of their time, 16 respondents (3.5%) spent 11-25% of their time, 47 respondents (10.2%) spent 26-50% of their time, 30 respondents (6.5%) spent 51-75% of their time, and 367 respondents (79.3%) spent 76-100% of their time providing pharmacy services for pediatric patients.

Table 4
Percentage of work time providing pharmacy services for pediatric patients

<table>
<thead>
<tr>
<th>0%</th>
<th>1-10%</th>
<th>11-25%</th>
<th>26-50%</th>
<th>51-75%</th>
<th>76-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>3</td>
<td>.6%</td>
<td>16</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Of the time spent providing pharmacy services to pediatric patients, an average of 54% was spent providing direct patient care (Table 5).
Of this time, what percent is spent providing direct patient care?

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mode</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54%</td>
<td>50%</td>
<td>0%</td>
<td>100%</td>
<td>50%</td>
<td>(30.4)</td>
</tr>
</tbody>
</table>

Survey respondents had an average of 12 years of experience as a licensed pharmacist with the least being 1 year and most 51 years (Table 6). There was a good distribution of respondents across the spectrum of years of experience from 1 to more than 20 years as a licensed pharmacist (Table 7).

How many years have you worked as a licensed pharmacist?

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mode</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>51</td>
<td>4</td>
<td>(9.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>< 1 year</th>
<th>1-5 years</th>
<th>6-10 years</th>
<th>11 - 20 years</th>
<th>More than 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0</td>
<td>146</td>
<td>111</td>
<td>120</td>
<td>84</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
<td>31.7%</td>
<td>24.1%</td>
<td>26.0%</td>
<td>18.2%</td>
</tr>
</tbody>
</table>

How many years (since licensure) have you worked with pediatric patients?

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mode</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>34</td>
<td>4</td>
<td>(7.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>< 1 year</th>
<th>1-5 years</th>
<th>6-10 years</th>
<th>11 - 20 years</th>
<th>More than 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0</td>
<td>184</td>
<td>124</td>
<td>116</td>
<td>36</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
<td>40.0%</td>
<td>27.0%</td>
<td>25.2%</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

Tables 8 and 9 show the results for years working in the pediatric pharmacy specialty. Respondents had an average of 9 years, with 40% of respondents having 1-5 years of experience, 27% having 6-10 years of experience, 25% having 11-20 years of experience, and about 8% having more than 20 years of experience in the specialty.
Table 10 shows the setting in which respondents provided the majority of their patient care. The settings that were most represented in this survey were freestanding pediatric hospital (about 44%), adult hospital with children’s hospital within it (33%), and adult hospital with pediatric wing/services (18%). No other setting was represented by more than 10% of survey respondents.

Table 10

<table>
<thead>
<tr>
<th>Setting</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult hospital with pediatric wing/services</td>
<td>81</td>
<td>17.6%</td>
</tr>
<tr>
<td>Adult hospital with children’s hospital within it</td>
<td>153</td>
<td>33.2%</td>
</tr>
<tr>
<td>Pediatric hospital freestanding</td>
<td>202</td>
<td>43.8%</td>
</tr>
<tr>
<td>Pediatric ambulatory care clinic - freestanding</td>
<td>5</td>
<td>1.1%</td>
</tr>
<tr>
<td>Home care</td>
<td>2</td>
<td>.4%</td>
</tr>
<tr>
<td>Other (Please specify.)</td>
<td>18</td>
<td>3.9%</td>
</tr>
<tr>
<td>Total</td>
<td>461</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 11 shows that over 50% of respondents were practicing in the role of clinical specialist. Of those respondents selecting other, the most frequent write-in response was Pediatric Pharmacy Resident (14).

Table 11

<table>
<thead>
<tr>
<th>Role</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of pharmacy</td>
<td>13</td>
<td>2.8%</td>
</tr>
<tr>
<td>Clinical manager</td>
<td>23</td>
<td>5.0%</td>
</tr>
<tr>
<td>Operational manager</td>
<td>6</td>
<td>1.3%</td>
</tr>
<tr>
<td>Clinical specialist</td>
<td>233</td>
<td>50.5%</td>
</tr>
<tr>
<td>Generalist pharmacist/decentralized pharmacist</td>
<td>63</td>
<td>13.7%</td>
</tr>
<tr>
<td>Staff pharmacist</td>
<td>43</td>
<td>9.3%</td>
</tr>
<tr>
<td>Academia</td>
<td>36</td>
<td>7.8%</td>
</tr>
<tr>
<td>Researcher</td>
<td>1</td>
<td>.2%</td>
</tr>
<tr>
<td>Medication safety officer</td>
<td>3</td>
<td>.7%</td>
</tr>
<tr>
<td>Other (Please specify.)</td>
<td>40</td>
<td>8.7%</td>
</tr>
<tr>
<td>Total</td>
<td>461</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 12 illustrates the average percentage of time respondents spent providing care to patients within each of five specified pediatric age ranges and with adults.
Table 12

What percentage of your patients falls into each of the following age ranges?

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-term neonates (Neonate born at <38 weeks gestational age)</td>
<td>19.6%</td>
<td>(21.6)</td>
</tr>
<tr>
<td>Full-term neonates (Neonate born at 38-42 weeks [average 40 weeks] gestational age)</td>
<td>13.0%</td>
<td>(10.4)</td>
</tr>
<tr>
<td>Infants (1 month [≥28 days] to 1 year of age)</td>
<td>17.9%</td>
<td>(9.2)</td>
</tr>
<tr>
<td>Children (1-12 years of age)</td>
<td>29.1%</td>
<td>(16.3)</td>
</tr>
<tr>
<td>Adolescents (13-18 years of age)</td>
<td>17.8%</td>
<td>(11.0)</td>
</tr>
<tr>
<td>Adults (>18 years of age)</td>
<td>7.7%</td>
<td>(13.9)</td>
</tr>
</tbody>
</table>

Table 13 shows the highest pharmacy-related degree earned. About 84% of respondents earned a Pharm D. degree.

Table 13

What is the highest pharmacy-related degree you have earned?

<table>
<thead>
<tr>
<th>Degree</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's degree</td>
<td>49</td>
<td>10.9%</td>
</tr>
<tr>
<td>Master's degree</td>
<td>16</td>
<td>3.6%</td>
</tr>
<tr>
<td>Pharm.D.</td>
<td>376</td>
<td>83.6%</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>4</td>
<td>.9%</td>
</tr>
<tr>
<td>Other (Please specify.)</td>
<td>5</td>
<td>1.1%</td>
</tr>
<tr>
<td>Total</td>
<td>450</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 14 illustrates which residency program(s) and/or fellowships respondents had completed. Thirty percent of respondents indicated they did not complete a residency. About 50% indicated they completed a PGY1 residency and another 30% completed a PGY2 Pediatric Residency. Twenty-five of the respondents who selected other indicated that they completed a PGY1 pediatric residency.
Table 14
Which of the following have you completed? (Select all that apply.)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGY1 Residency</td>
<td>229</td>
<td>50.4%</td>
</tr>
<tr>
<td>PGY2 Pediatric Residency</td>
<td>134</td>
<td>29.5%</td>
</tr>
<tr>
<td>PGY2 Residency (not in pediatrics)</td>
<td>9</td>
<td>2.0%</td>
</tr>
<tr>
<td>Pediatric Research Fellowship</td>
<td>16</td>
<td>3.5%</td>
</tr>
<tr>
<td>No residency</td>
<td>136</td>
<td>30.0%</td>
</tr>
<tr>
<td>Other (Please specify.)</td>
<td>60</td>
<td>13.2%</td>
</tr>
</tbody>
</table>

*Multiple responses permitted – percentages may not total 100%

As seen in Table 15, most respondents (66%) did not hold any BPS specialty certifications, and about 28% held the pharmacotherapy specialty certification.

Table 15
What BPS specialty certifications do you hold? (Select all that apply.)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulatory Care Pharmacy</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Nuclear Pharmacy</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Nutrition Support Pharmacy</td>
<td>8</td>
<td>1.9%</td>
</tr>
<tr>
<td>Oncology</td>
<td>11</td>
<td>2.6%</td>
</tr>
<tr>
<td>Psychiatric Pharmacy</td>
<td>6</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pharmacotherapy</td>
<td>119</td>
<td>27.7%</td>
</tr>
<tr>
<td>Added Qualification in Cardiology</td>
<td>4</td>
<td>.9%</td>
</tr>
<tr>
<td>Added Qualification in Infectious Diseases</td>
<td>1</td>
<td>.2%</td>
</tr>
<tr>
<td>None</td>
<td>285</td>
<td>66.3%</td>
</tr>
</tbody>
</table>

*Multiple responses permitted – percentages may not total 100%

Ratings for Domains

This section presents the results of the ratings made for percentage of work time spent performing tasks in each domain, and the importance of each domain.

Two sets of subgroup analyses were performed to explore how consistent the ratings were for respondents (1) spending differing percentages of time providing pharmacy services to pediatric patients and (2) with different levels of experience in the specialty. Subgroup analyses for domain ratings appear in Appendix 8. Differences in mean percentage of time ratings of 5% or more are illustrated through the use of **bolding**.

Percentage of Pediatric Work Time per Domain

The mean percentages of time participants spent in each domain are presented in Table 16. Respondents spent the most time in *Patient Management* (56%) and the least time in *Public*.
Health and Advocacy (4%). The standard deviations around each mean indicate that there was some individual variation in the time spent by respondents in each of the four domains.

Table 16
Of the time you spent in pediatric pharmacy during the past year, what percentage did you spend performing the tasks in each domain?

<table>
<thead>
<tr>
<th>Domain</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Patient Management – Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data; and designing, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the healthcare team.</td>
<td>463</td>
<td>56%</td>
<td>(21.0)</td>
</tr>
<tr>
<td>Domain 2: Practice Management – Tasks related to advancing pediatric pharmacy practice; and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.</td>
<td>463</td>
<td>20%</td>
<td>(15.9)</td>
</tr>
<tr>
<td>Domain 3: Information Management and Education – Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of healthcare providers, trainees, patients and caregivers.</td>
<td>463</td>
<td>19%</td>
<td>(12.5)</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy – Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population healthcare policy.</td>
<td>463</td>
<td>4%</td>
<td>(4.4)</td>
</tr>
</tbody>
</table>
Table 17 presents the percentage of respondents spending 0%, 1-25%, 26-50%, 51-75% and more than 75% of their work time in each domain. From this presentation of the results, we can see that Domain 1 is the only domain wherein more than 5% of respondents reported spending over 50% of their work time – 16% of respondents spent over 75% of their work time in Domain 1 alone.

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>0%</th>
<th>1-25%</th>
<th>26-50%</th>
<th>51-75%</th>
<th>76-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>.0%</td>
<td>56</td>
<td>12.1%</td>
<td>150</td>
<td>32.4%</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>12</td>
<td>2.6%</td>
<td>343</td>
<td>74.1%</td>
<td>88</td>
</tr>
<tr>
<td>Domain 3: Information Management and Education</td>
<td>5</td>
<td>1.1%</td>
<td>369</td>
<td>79.7%</td>
<td>81</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>130</td>
<td>28.1%</td>
<td>333</td>
<td>71.9%</td>
<td>0</td>
</tr>
</tbody>
</table>
Domain Importance Ratings

Results related to the importance ratings for domains are shown in Table 18. The results are displayed in two ways. First, the percentage of respondents selecting Not important, Minimally important, Moderately important, or Highly important for each domain are displayed. Second, under the Total column, mean values were generated for by assigning numerical values to each for response option as follows: 1 = Not important, 2 = Minimally important, 3 = Moderately important, and 4 = Highly important.

Table 18
How important is the domain for providing effective care to pediatric patients?

<table>
<thead>
<tr>
<th>Domain</th>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Domain 1: Patient Management</td>
<td>.2%</td>
<td>.4%</td>
<td>1.3%</td>
<td>98.1%</td>
<td>463</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>.4%</td>
<td>1.9%</td>
<td>26.3%</td>
<td>71.3%</td>
<td>463</td>
</tr>
<tr>
<td>Domain 3: Information Management and Education</td>
<td>.4%</td>
<td>3.2%</td>
<td>36.3%</td>
<td>60.0%</td>
<td>463</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>2.8%</td>
<td>21.2%</td>
<td>46.2%</td>
<td>29.8%</td>
<td>463</td>
</tr>
</tbody>
</table>

Overall, the mean domain importance ratings were very high. A total of 98% of respondents selected highly important for Domain 1, and the mean rating for this domain was 4.0 on a 4-point scale. The second highest importance rating was 3.7 for Domain 2, with about 71% of respondents selecting highly important. The lowest rating was for Domain 4 (3.0 indicating moderately important). There were no differences in subgroup ratings in the mean importance ratings for domains that were greater than half a scale point (0.5).

Ratings for Tasks

This section presents the results related to the frequency of performance and importance ratings made for the task statements.

Subgroup analyses were also performed at the task level to explore how consistent the ratings were for respondents spending differing percentages of time providing pharmacy services to pediatric patients and for respondents with different levels of experience in the specialty. Subgroup analyses for task ratings appear in Appendix 9. Differences of greater than 0.5 are highlighted through the use of bolding.
Task Frequency Ratings

The percentage of respondents selecting each response option with respect to frequency of task performance is shown in Table 19, along with the mean, standard deviation, and number of respondents. The means were calculated after assigning numerical values to each response option as follows: 1=Never, 2=Quarterly or less, 3=Monthly, 4=Weekly, 5=Daily.

Of the 12 task statements in Domain 1, 8 received mean frequency ratings above 3.5, 1 received a mean frequency rating of 3.0, and 3 received a mean frequency rating below 3.0. For the 8 tasks included in Domain 2, 3 received a mean frequency rating between 3.0 and 3.5, and the other 5 had mean ratings below 3.0. Of the 6 statements included in Domain 3, 2 received a mean frequency ratings above 3.5, 2 received a mean frequency rating between 3.0 and 3.5, and 2 received a mean frequency rating below 3.0. Finally, all 6 statements in Domain 4 received mean frequency ratings below 3.0.

The five tasks performed least frequently were:

1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]). (Mean rating = 1.4)

2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population. (Mean rating = 2.0)

4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents. (Mean rating = 2.0)

4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients. (Mean rating = 2.1)

4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse). (Mean rating = 1.9)
Table 19
Task Frequency Ratings

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>Never</th>
<th>Quarterly or less</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>Total</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the Pediatric Patient:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.</td>
<td>.9%</td>
<td>2.2%</td>
<td>1.7%</td>
<td>9.1%</td>
<td>86.1%</td>
<td>460</td>
<td>4.8</td>
<td>.7</td>
<td></td>
</tr>
<tr>
<td>1.2 Obtain relevant clinical and laboratory data and results of diagnostic procedures.</td>
<td>.4%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>9.8%</td>
<td>87.6%</td>
<td>460</td>
<td>4.8</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.</td>
<td>45.1%</td>
<td>20.1%</td>
<td>8.3%</td>
<td>13.1%</td>
<td>13.3%</td>
<td>457</td>
<td>2.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).</td>
<td>82.7%</td>
<td>7.9%</td>
<td>2.4%</td>
<td>3.1%</td>
<td>3.9%</td>
<td>457</td>
<td>1.4</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.5 Analyze and interpret collected patient information.</td>
<td>.4%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>7.4%</td>
<td>89.6%</td>
<td>460</td>
<td>4.8</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>1.6 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.</td>
<td>.7%</td>
<td>1.5%</td>
<td>1.5%</td>
<td>10.5%</td>
<td>85.8%</td>
<td>459</td>
<td>4.8</td>
<td>.6</td>
<td></td>
</tr>
<tr>
<td>1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers.</td>
<td>1.5%</td>
<td>4.4%</td>
<td>2.8%</td>
<td>19.4%</td>
<td>71.9%</td>
<td>459</td>
<td>4.6</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.</td>
<td>1.8%</td>
<td>4.6%</td>
<td>2.8%</td>
<td>14.7%</td>
<td>76.1%</td>
<td>457</td>
<td>4.6</td>
<td>.9</td>
<td></td>
</tr>
</tbody>
</table>
Domain 2: Practice Management

<table>
<thead>
<tr>
<th>2.1 Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3%</td>
<td>22.8%</td>
<td>26.9%</td>
<td>24.1%</td>
<td>21.9%</td>
<td>461</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2 Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g. infusion pumps, CPOE, bar coding).</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1%</td>
<td>36.0%</td>
<td>24.9%</td>
<td>15.8%</td>
<td>11.1%</td>
<td>461</td>
<td>2.8</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3 Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8%</td>
<td>30.5%</td>
<td>37.5%</td>
<td>12.9%</td>
<td>7.4%</td>
<td>459</td>
<td>2.7</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.4 Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2%</td>
<td>35.5%</td>
<td>34.9%</td>
<td>11.3%</td>
<td>11.1%</td>
<td>459</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Never</td>
<td>Quarterly or less</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>2.5 Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).</td>
<td>14.4%</td>
<td>34.9%</td>
<td>27.9%</td>
<td>13.3%</td>
<td>9.4%</td>
<td>458</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>2.6 Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.</td>
<td>4.6%</td>
<td>29.5%</td>
<td>27.5%</td>
<td>18.6%</td>
<td>19.9%</td>
<td>458</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td>2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.</td>
<td>39.1%</td>
<td>38.2%</td>
<td>14.4%</td>
<td>5.0%</td>
<td>3.3%</td>
<td>458</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.8 Justify and document the clinical and financial value of pediatric pharmacy services:</td>
<td>18.3%</td>
<td>27.6%</td>
<td>13.0%</td>
<td>12.2%</td>
<td>28.9%</td>
<td>460</td>
<td>3.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Domain 3: Information Management and Education

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Quarterly or less</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.</td>
<td>.7%</td>
<td>16.9%</td>
<td>26.7%</td>
<td>23.9%</td>
<td>31.9%</td>
<td>461</td>
<td>3.7</td>
<td>1.1</td>
</tr>
<tr>
<td>3.2 Educate healthcare professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.</td>
<td>2.4%</td>
<td>20.0%</td>
<td>22.3%</td>
<td>21.5%</td>
<td>33.8%</td>
<td>461</td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td>3.3 Educate and provide counseling to patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.</td>
<td>7.2%</td>
<td>19.5%</td>
<td>21.3%</td>
<td>33.0%</td>
<td>19.1%</td>
<td>461</td>
<td>3.4</td>
<td>1.2</td>
</tr>
<tr>
<td>3.4 Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).</td>
<td>14.8%</td>
<td>52.0%</td>
<td>22.2%</td>
<td>7.0%</td>
<td>4.1%</td>
<td>460</td>
<td>2.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Task Description</td>
<td>Never</td>
<td>Quarterly or less</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------------------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>3.5 Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice.</td>
<td>5.0%</td>
<td>18.3%</td>
<td>22.6%</td>
<td>38.5%</td>
<td>15.7%</td>
<td>460</td>
<td>3.4</td>
<td>1.1</td>
</tr>
<tr>
<td>3.6 Develop and maintain a pediatric-specific medical reference library (electronic or print).</td>
<td>18.9%</td>
<td>26.3%</td>
<td>19.8%</td>
<td>16.5%</td>
<td>18.5%</td>
<td>460</td>
<td>2.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Domain 4: Public Health and Patient Advocacy

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Never</th>
<th>Quarterly or less</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
<td>30.7%</td>
<td>48.8%</td>
<td>11.9%</td>
<td>3.5%</td>
<td>5.2%</td>
<td>463</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
<td>31.6%</td>
<td>47.2%</td>
<td>11.0%</td>
<td>4.5%</td>
<td>5.6%</td>
<td>462</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
<td>33.2%</td>
<td>53.1%</td>
<td>10.4%</td>
<td>1.7%</td>
<td>1.5%</td>
<td>461</td>
<td>1.9</td>
<td>.8</td>
</tr>
<tr>
<td>4.4 Participate in professional organizations related to pharmacy and pediatric practice.</td>
<td>3.0%</td>
<td>45.9%</td>
<td>33.9%</td>
<td>11.1%</td>
<td>6.1%</td>
<td>460</td>
<td>2.7</td>
<td>.9</td>
</tr>
<tr>
<td>4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
<td>33.3%</td>
<td>29.9%</td>
<td>16.5%</td>
<td>11.9%</td>
<td>8.4%</td>
<td>462</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).</td>
<td>27.8%</td>
<td>39.1%</td>
<td>16.7%</td>
<td>4.6%</td>
<td>11.7%</td>
<td>460</td>
<td>2.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

How frequently did you perform the task during the past 12 months? 1=Never, 2=Quarterly or less, 3=Monthly, 4=Weekly, 5=Daily
Task Importance Ratings

The percentage of respondents selecting each response option with respect to importance to providing effective care to pediatric patients is shown in Table 20 along with the mean, standard deviation, and number of respondents. The means were calculated after assigning numerical values to each response option as follows: 1 = Not important, 2 = Minimally important, 3 = Moderately important, and 4 = Very important.

Twenty tasks received mean importance ratings above 3.5. 10 received mean importance ratings between 3.1 and 3.5, and 2 received mean importance ratings below 3.0. These latter two tasks were:

1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management. (Mean rating = 2.7)

1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]). (Mean rating = 2.5)

Table 20
Task Importance Ratings

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>For the Pediatric Patient:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.</td>
<td>.0%</td>
<td>.7%</td>
<td>2.4%</td>
<td>96.9%</td>
<td>459</td>
</tr>
<tr>
<td>1.2 Obtain relevant clinical and laboratory data and results of diagnostic procedures.</td>
<td>.0%</td>
<td>.2%</td>
<td>3.5%</td>
<td>96.3%</td>
<td>457</td>
</tr>
<tr>
<td>1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.</td>
<td>11.0%</td>
<td>33.5%</td>
<td>27.1%</td>
<td>28.4%</td>
<td>454</td>
</tr>
<tr>
<td>1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).</td>
<td>22.3%</td>
<td>28.7%</td>
<td>22.7%</td>
<td>26.3%</td>
<td>449</td>
</tr>
<tr>
<td>1.5 Analyze and interpret collected patient information.</td>
<td>.0%</td>
<td>.2%</td>
<td>4.6%</td>
<td>95.2%</td>
<td>456</td>
</tr>
<tr>
<td>1.6 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.</td>
<td>.0%</td>
<td>.2%</td>
<td>5.9%</td>
<td>93.8%</td>
<td>455</td>
</tr>
<tr>
<td>1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers.</td>
<td>.0%</td>
<td>.4%</td>
<td>8.6%</td>
<td>91.0%</td>
<td>454</td>
</tr>
</tbody>
</table>
1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2%</td>
<td>.2%</td>
<td>5.3%</td>
<td>94.3%</td>
<td>453</td>
</tr>
</tbody>
</table>

1.9 Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0%</td>
<td>.2%</td>
<td>7.7%</td>
<td>92.0%</td>
<td>452</td>
</tr>
</tbody>
</table>

1.10 Participate in the management of pediatric emergencies.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1%</td>
<td>6.0%</td>
<td>22.3%</td>
<td>70.6%</td>
<td>452</td>
</tr>
</tbody>
</table>

1.11 Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.4%</td>
<td>3.3%</td>
<td>15.6%</td>
<td>80.7%</td>
<td>456</td>
</tr>
</tbody>
</table>

1.12 Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to an appropriate alternative level of care.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5%</td>
<td>21.1%</td>
<td>33.0%</td>
<td>38.3%</td>
<td>454</td>
</tr>
</tbody>
</table>

Domain 2: Practice Management

2.1 Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2%</td>
<td>.9%</td>
<td>18.3%</td>
<td>80.6%</td>
<td>459</td>
</tr>
</tbody>
</table>

2.2 Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g., infusion pumps, CPOE, bar coding).

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9%</td>
<td>4.6%</td>
<td>29.9%</td>
<td>64.6%</td>
<td>458</td>
</tr>
</tbody>
</table>

2.3 Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2%</td>
<td>4.8%</td>
<td>26.9%</td>
<td>68.1%</td>
<td>458</td>
</tr>
</tbody>
</table>

2.4 Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0%</td>
<td>2.6%</td>
<td>22.6%</td>
<td>74.8%</td>
<td>456</td>
</tr>
</tbody>
</table>

2.5 Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.4%</td>
<td>3.3%</td>
<td>31.0%</td>
<td>65.3%</td>
<td>455</td>
</tr>
</tbody>
</table>

2.6 Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0%</td>
<td>2.4%</td>
<td>24.6%</td>
<td>73.0%</td>
<td>455</td>
</tr>
</tbody>
</table>

2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4%</td>
<td>16.5%</td>
<td>39.3%</td>
<td>41.8%</td>
<td>455</td>
</tr>
</tbody>
</table>

2.8 Justify and document the clinical and financial value of pediatric pharmacy services.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4%</td>
<td>12.0%</td>
<td>32.8%</td>
<td>52.7%</td>
<td>457</td>
</tr>
</tbody>
</table>

Domain 3: Information Management and Education

3.1 Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.

<table>
<thead>
<tr>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2%</td>
<td>2.6%</td>
<td>25.9%</td>
<td>71.3%</td>
<td>456</td>
</tr>
<tr>
<td>Domain 4: Public Health and Patient Advocacy</td>
<td>Not %</td>
<td>Min %</td>
<td>Mod %</td>
<td>High %</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
<td>1.3%</td>
<td>13.8%</td>
<td>44.2%</td>
<td>40.7%</td>
</tr>
<tr>
<td>4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
<td>.4%</td>
<td>8.1%</td>
<td>37.2%</td>
<td>54.2%</td>
</tr>
<tr>
<td>4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
<td>.9%</td>
<td>9.9%</td>
<td>41.8%</td>
<td>47.5%</td>
</tr>
<tr>
<td>4.4 Participate in professional organizations related to pharmacy and pediatric practice.</td>
<td>.9%</td>
<td>10.4%</td>
<td>44.9%</td>
<td>43.8%</td>
</tr>
<tr>
<td>4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
<td>.9%</td>
<td>12.3%</td>
<td>38.5%</td>
<td>48.2%</td>
</tr>
<tr>
<td>4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).</td>
<td>2.0%</td>
<td>9.7%</td>
<td>37.1%</td>
<td>51.2%</td>
</tr>
</tbody>
</table>

How important is the task for providing effective care to pediatric patients?
1=Not important, 2=Minimally important, 3=Moderately important, or 4=Highly important
Missing Tasks

After rating all of the tasks, participants were asked to indicate any additional tasks they perform as a pediatric pharmacy specialist that may have been omitted from the survey. There were 40 write-in responses to this question. Prior to a task force meeting to review the survey results, these verbatim suggested additions were sent to members of the task force for review. Task force members were asked to determine whether any suggestions represented concepts truly missing from the task list. Write-in responses were deemed to be either more general or more specific instances of statements already contained in the delineation, content not suitable for testing, or outside the scope of specialty practice. Thus, the delineation of tasks was validated as comprehensive.

Task Validation Decisions

The task force met virtually to review the validation evidence collected in the role delineation survey. Task force members were asked to consider if the ratings for the tasks were sufficiently high to suggest that they be included in the final, validated description of pediatric specialty practice. During the meeting, the task force reviewed all results of the survey, and discussed in detail those task statements that did not receive clear validation evidence. These were defined as instances where 30% or more of the respondents reported never performing the task, and/or the mean frequency rating fell below a 2.5. There was sufficient validation evidence to support inclusion of 24 of the 32 task statements in the description of pediatric specialty practice. The remaining 8 tasks were discussed in greater detail. These tasks were Task 1.13, Task 1.14, Task 2.7, Task 4.1, Task 4.2, Task 4.3, Task 4.5, and Task 4.6. The validation discussion regarding these 8 tasks was informed by the frequency ratings, importance ratings, considerations regarding the nature of the tasks, and the subgroup ratings. Table 21 documents the validation decisions for these 8 tasks and the rationale for the decisions.
Table 21
Task Validation Decisions and Rationale

<table>
<thead>
<tr>
<th>Task</th>
<th>Validation Decision (Retain or Remove)</th>
<th>Rationale for Validation Decision, if Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.</td>
<td>Remove</td>
<td></td>
</tr>
<tr>
<td>1.14 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).</td>
<td>Remove</td>
<td></td>
</tr>
<tr>
<td>2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.</td>
<td>Retain</td>
<td>Retained based on moderate mean importance rating of 3.2 and the nature of the task – by its nature, this task would typically be performed quarterly or less, and therefore have a low mean frequency rating.</td>
</tr>
<tr>
<td>4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
<td>Retain</td>
<td>Task retained based on mean importance rating of 3.2.</td>
</tr>
<tr>
<td>4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
<td>Retain</td>
<td>Task retained based on mean importance rating of 3.5.</td>
</tr>
<tr>
<td>4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
<td>Retain</td>
<td>Task retained based on mean importance rating of 3.4.</td>
</tr>
<tr>
<td>4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
<td>Retain</td>
<td>Task retained based on mean importance rating of 3.3.</td>
</tr>
<tr>
<td>4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).</td>
<td>Retain</td>
<td>Task retained based on mean importance rating of 3.4.</td>
</tr>
</tbody>
</table>
Ratings for Knowledge

This section presents the results of the ratings for the knowledge statements. Participants rated the knowledge statements on frequency of use and importance of the knowledge to providing effective care to pediatric patients.

Knowledge Frequency Ratings

The percentage of respondents selecting each response option with respect to frequency of use of knowledge is shown in Table 22, along with the mean, standard deviation, and number of respondents. The means were calculated after assigning numerical values to each response option as follows: 1=Never, 2=Quarterly or less, 3=Monthly, 4=Weekly, 5=Daily.

Of the 32 knowledge statements in Domain 1, 21 received mean frequency ratings above 3.5, 6 received mean frequency ratings between 3.0 and 3.5, and 5 received mean frequency ratings below 3.0. For the 9 knowledge statements included in Domain 2, 7 tasks received mean frequency ratings above 3.5, and the other 2 had mean ratings below 3.0. Of the 10 knowledge statements included in Domain 3, 3 received mean frequency ratings above 3.5, 3 received mean frequency ratings between 3.0 and 3.5, and 4 received mean frequency ratings below 3.0. Finally, all 9 knowledge statements included in Domain 4 received mean frequency ratings below 3.0.

The five knowledge bases used least frequently were:

k1.3 Legal considerations for dependent and emancipated patients (Mean rating = 1.9)

k3.7 Regulatory/IRB/human subjects safety requirements and concerns for conducting research in the pediatric population (Mean rating = 2.4)

k4.3 Emergency preparedness resources for pediatric patients (Mean rating = 2.3)

k4.4 Public health resources for pediatric patients (e.g., childhood immunizations, sexually transmitted disease [STD] treatment, free health clinics) (Mean rating = 2.4)

k4.5 Public health initiatives and legislation to improve the overall well-being of children (e.g., smoking cessation, child proof caps, poison prevention, Best Pharmaceuticals for Children Act) (Mean rating = 2.1)
Table 22
Knowledge Frequency Ratings

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>Never</th>
<th>Quarterly or less</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of:</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>k1.1 Normal growth and development of the pediatric population</td>
<td>1.1%</td>
<td>5.4%</td>
<td>6.7%</td>
<td>25.6%</td>
<td>61.2%</td>
<td>461</td>
</tr>
<tr>
<td>k1.2 Age-appropriate interviewing techniques for patients, parents, and caregivers</td>
<td>10.4%</td>
<td>24.5%</td>
<td>15.6%</td>
<td>31.9%</td>
<td>17.6%</td>
<td>461</td>
</tr>
<tr>
<td>k1.3 Legal considerations for dependent and emancipated patients</td>
<td>36.5%</td>
<td>38.9%</td>
<td>12.0%</td>
<td>9.4%</td>
<td>3.3%</td>
<td>458</td>
</tr>
<tr>
<td>k1.4 Essential components of a medical history including maternal and birth history and childhood immunization status, if appropriate</td>
<td>3.3%</td>
<td>9.2%</td>
<td>8.7%</td>
<td>22.9%</td>
<td>56.0%</td>
<td>459</td>
</tr>
<tr>
<td>k1.5 Essential components of a social history, including day care attendance, siblings, smoke exposure, home environment</td>
<td>6.3%</td>
<td>15.3%</td>
<td>12.4%</td>
<td>31.4%</td>
<td>34.5%</td>
<td>458</td>
</tr>
<tr>
<td>k1.6 Pathophysiology, epidemiology, risk factors, diagnosis, prevention, and evidence-based treatment of common diseases and conditions in pediatric patients</td>
<td>.9%</td>
<td>1.1%</td>
<td>3.5%</td>
<td>12.2%</td>
<td>82.4%</td>
<td>459</td>
</tr>
<tr>
<td>k1.7 Equations to calculate body surface area, creatinine clearance, fluid requirements, and ideal body weight from birth to adult</td>
<td>.2%</td>
<td>2.2%</td>
<td>5.4%</td>
<td>17.4%</td>
<td>74.7%</td>
<td>459</td>
</tr>
<tr>
<td>k1.8 Age-specific physical assessment techniques</td>
<td>30.3%</td>
<td>27.3%</td>
<td>15.1%</td>
<td>16.6%</td>
<td>10.7%</td>
<td>458</td>
</tr>
<tr>
<td>k1.9 Pediatric populations for which standard calculated methods of assessment of renal impairment are not reliable</td>
<td>5.2%</td>
<td>10.7%</td>
<td>14.6%</td>
<td>29.8%</td>
<td>39.7%</td>
<td>459</td>
</tr>
<tr>
<td>k1.10 Urine output calculation for body weight and appropriate output per age</td>
<td>7.4%</td>
<td>8.5%</td>
<td>8.7%</td>
<td>19.2%</td>
<td>56.2%</td>
<td>459</td>
</tr>
<tr>
<td>k1.11 Methods for assessment of hepatic function in pediatric populations</td>
<td>5.9%</td>
<td>16.6%</td>
<td>19.5%</td>
<td>31.1%</td>
<td>26.9%</td>
<td>457</td>
</tr>
<tr>
<td>k1.12 Normal laboratory values and vital signs from birth to adult</td>
<td>Quarterly or less</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>k1.13 Age-associated differences in pathophysiology and clinical manifestations of disease across patient populations</td>
<td>1.3%</td>
<td>2.6%</td>
<td>6.4%</td>
<td>28.9%</td>
<td>456</td>
<td></td>
</tr>
<tr>
<td>k1.14 Age-specific pharmacokinetic differences in neonates, infants, children, and adolescents:</td>
<td>.7%</td>
<td>2.4%</td>
<td>3.7%</td>
<td>16.2%</td>
<td>77.1%</td>
<td></td>
</tr>
<tr>
<td>k1.15 Age-specific pharmacodynamic differences in neonates, infants, children, and adolescents:</td>
<td>.9%</td>
<td>2.0%</td>
<td>5.7%</td>
<td>18.6%</td>
<td>72.8%</td>
<td></td>
</tr>
<tr>
<td>k1.16 Pharmacogenomic considerations in pediatric patients</td>
<td>16.8%</td>
<td>31.7%</td>
<td>25.5%</td>
<td>17.5%</td>
<td>8.5%</td>
<td></td>
</tr>
<tr>
<td>k1.17 Appropriate use of off-label medications to treat pediatric patients</td>
<td>.9%</td>
<td>4.6%</td>
<td>9.6%</td>
<td>29.0%</td>
<td>55.9%</td>
<td></td>
</tr>
<tr>
<td>k1.18 Pediatric-specific drug interactions (e.g., ceftriaxone and calcium-containing products in the neonate, calcium and phosphorous in parenteral nutrition)</td>
<td>.2%</td>
<td>2.6%</td>
<td>8.6%</td>
<td>28.1%</td>
<td>60.5%</td>
<td></td>
</tr>
<tr>
<td>k1.19 Clinical or therapeutic implications in the fetus and neonate of placental transfer of medications or other substances (e.g., antenatal steroids, neonatal abstinence syndrome [NAS], anticonvulsant withdrawal)</td>
<td>5.9%</td>
<td>23.0%</td>
<td>21.9%</td>
<td>24.1%</td>
<td>25.0%</td>
<td></td>
</tr>
<tr>
<td>k1.20 Influence of medications on the production of breast milk</td>
<td>12.7%</td>
<td>31.7%</td>
<td>24.3%</td>
<td>19.3%</td>
<td>12.0%</td>
<td></td>
</tr>
<tr>
<td>k1.21 Excretion of medications and other substances in breast milk</td>
<td>4.3%</td>
<td>34.3%</td>
<td>26.2%</td>
<td>26.5%</td>
<td>8.7%</td>
<td></td>
</tr>
<tr>
<td>k1.22 Appropriate dosing based on age and body size (e.g., body surface area, post-menstrual age, gestational age, dosing weight)</td>
<td>.2%</td>
<td>.7%</td>
<td>2.0%</td>
<td>7.9%</td>
<td>89.3%</td>
<td></td>
</tr>
<tr>
<td>Knowledge of:</td>
<td>Never</td>
<td>Quarterly or less</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
<td>N</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>k1.23 Medication dosing in extracorporeal membrane oxygenation (ECMO) and in renal replacement therapy (e.g., continuous renal replacement therapy [CRRT], PD, HD)</td>
<td>23.0%</td>
<td>26.5%</td>
<td>26.1%</td>
<td>13.5%</td>
<td>10.9%</td>
<td>460</td>
</tr>
<tr>
<td>k1.24 Medication dose adjustment in pediatric patients with renal and hepatic impairment</td>
<td>2.2%</td>
<td>7.4%</td>
<td>16.4%</td>
<td>32.4%</td>
<td>41.6%</td>
<td>457</td>
</tr>
<tr>
<td>k1.25 Essential components of medication reconciliation in pediatric patients (e.g., concentration, dose in mg, palatability)</td>
<td>2.0%</td>
<td>5.5%</td>
<td>10.3%</td>
<td>22.3%</td>
<td>60.0%</td>
<td>457</td>
</tr>
<tr>
<td>k1.26 Pediatric-specific adverse effects (e.g., liver failure with valproate, tetracycline and tooth discoloration):</td>
<td>2.2%</td>
<td>8.1%</td>
<td>19.7%</td>
<td>34.1%</td>
<td>35.9%</td>
<td>457</td>
</tr>
<tr>
<td>k1.27 Differences in laboratory sampling for pediatric patients (e.g., blood volume; method, frequency and timing of sampling)</td>
<td>12.0%</td>
<td>17.2%</td>
<td>18.0%</td>
<td>27.2%</td>
<td>25.7%</td>
<td>460</td>
</tr>
<tr>
<td>k1.28 Differences in the management of pediatric emergencies (e.g., respiratory distress, neonatal seizures, cardiopulmonary arrest)</td>
<td>8.1%</td>
<td>21.1%</td>
<td>23.7%</td>
<td>27.0%</td>
<td>20.0%</td>
<td>459</td>
</tr>
<tr>
<td>k1.29 Nutritional and fluid requirements for infants and children for normal growth and disease</td>
<td>2.6%</td>
<td>5.2%</td>
<td>8.9%</td>
<td>24.0%</td>
<td>59.3%</td>
<td>459</td>
</tr>
<tr>
<td>k1.30 Childhood immunization schedules</td>
<td>1.1%</td>
<td>9.4%</td>
<td>28.3%</td>
<td>34.6%</td>
<td>26.6%</td>
<td>459</td>
</tr>
<tr>
<td>k1.31 Factors affecting adherence to the treatment regimen</td>
<td>2.6%</td>
<td>12.2%</td>
<td>21.6%</td>
<td>31.2%</td>
<td>32.3%</td>
<td>458</td>
</tr>
<tr>
<td>k1.32 Specialty needs of pediatric patients requiring referral to other providers (e.g., infant with signs of dehydration, patient needs compounded oral formulation)</td>
<td>10.0%</td>
<td>14.8%</td>
<td>22.7%</td>
<td>27.7%</td>
<td>24.8%</td>
<td>459</td>
</tr>
</tbody>
</table>

Domain 2: Practice Management

Knowledge of:
<table>
<thead>
<tr>
<th>K2.1 Medication Safety Considerations (e.g., Institute for Safe Medication Practices [ISMP] and Joint Commission recommendations, Food and Drug Administration [FDA] alerts)</th>
<th>Never</th>
<th>Quarterly or less</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>0.9%</td>
<td>8.5%</td>
<td>28.8%</td>
<td>33.1%</td>
<td>28.8%</td>
<td>459</td>
<td>3.8</td>
</tr>
<tr>
<td>K2.2 Position Statements, White Papers, and National Guidelines as an Aid to the Development of Health-System Policies and Procedures</td>
<td>7.8%</td>
<td>31.1%</td>
<td>30.4%</td>
<td>22.4%</td>
<td>8.3%</td>
<td>460</td>
</tr>
<tr>
<td>K2.3 Pediatric-Specific Considerations (e.g., Age and Body Size) in the Design or Improvement of Medication Use Processes (e.g., Computerized Physician Order Entry [CPOE], Infusion Pumps, Electronic Medical Record [EMR])</td>
<td>5.7%</td>
<td>18.7%</td>
<td>27.0%</td>
<td>22.0%</td>
<td>26.6%</td>
<td>459</td>
</tr>
<tr>
<td>K2.4 Routes of Administration (e.g., Intraosseous, Oral/Enteral, Parenteral, IM, Transdermal, Intranasal, Intraventricular)</td>
<td>0.2%</td>
<td>6.1%</td>
<td>10.8%</td>
<td>22.3%</td>
<td>60.5%</td>
<td>461</td>
</tr>
<tr>
<td>K2.5 Impact of Medication Administration Techniques on Drug Delivery in Pediatric Patients (e.g., Inhalers, Dead Space in IV Tubing, Overfill, J-Tip Device)</td>
<td>2.0%</td>
<td>7.4%</td>
<td>19.8%</td>
<td>31.5%</td>
<td>39.3%</td>
<td>460</td>
</tr>
<tr>
<td>K2.6 Medication Administration Technology (e.g., Infusion Pumps, Subcutaneous Needle Devices, Intranasal Administration Devices, Aerosols)</td>
<td>3.3%</td>
<td>14.2%</td>
<td>21.4%</td>
<td>31.0%</td>
<td>30.1%</td>
<td>458</td>
</tr>
<tr>
<td>K2.7 Appropriate References to Support the Preparation of Pediatric Formulations (e.g., IV Dilutions, Extemporaneously Compounded Preparations)</td>
<td>1.3%</td>
<td>4.6%</td>
<td>15.9%</td>
<td>28.4%</td>
<td>49.8%</td>
<td>458</td>
</tr>
<tr>
<td>K2.8 Considerations When Selecting Pediatric-Appropriate Dosage Formulations</td>
<td>0.7%</td>
<td>2.0%</td>
<td>9.1%</td>
<td>23.4%</td>
<td>64.9%</td>
<td>461</td>
</tr>
<tr>
<td>K2.9 Metrics for Evaluating Quality of Pediatric Pharmacy Services (e.g., Patient/Parent/Caregiver Satisfaction, Length of Stay, Readmission, Medication Errors)</td>
<td>17.0%</td>
<td>31.6%</td>
<td>25.9%</td>
<td>14.2%</td>
<td>11.3%</td>
<td>459</td>
</tr>
<tr>
<td>Knowledge of:</td>
<td>Never</td>
<td>Quarterly or less</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily</td>
<td>Total</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>k3.1 Principles and methods of educating pharmacy staff, fellows, residents, student pharmacists and/or other healthcare professionals regarding pediatric health-related issues</td>
<td>3.1%</td>
<td>12.5%</td>
<td>26.9%</td>
<td>28.4%</td>
<td>29.1%</td>
<td>457</td>
</tr>
<tr>
<td>k3.2 Age-appropriate patient education principles and methods</td>
<td>7.4%</td>
<td>22.5%</td>
<td>22.5%</td>
<td>29.0%</td>
<td>18.6%</td>
<td>458</td>
</tr>
<tr>
<td>k3.3 Health literacy and cultural considerations in educating patients/parents/caregivers:</td>
<td>9.7%</td>
<td>27.0%</td>
<td>26.6%</td>
<td>26.2%</td>
<td>10.5%</td>
<td>455</td>
</tr>
<tr>
<td>k3.4 Tools, methods and counseling techniques to increase adherence to the treatment regimen :</td>
<td>10.1%</td>
<td>24.9%</td>
<td>25.6%</td>
<td>26.0%</td>
<td>13.4%</td>
<td>454</td>
</tr>
<tr>
<td>k3.5 Research design, methodology, and statistical analysis:</td>
<td>16.2%</td>
<td>35.1%</td>
<td>26.5%</td>
<td>15.8%</td>
<td>6.4%</td>
<td>456</td>
</tr>
<tr>
<td>k3.6 Clinical application and limitations of published data and reports</td>
<td>2.4%</td>
<td>9.8%</td>
<td>27.3%</td>
<td>37.8%</td>
<td>22.7%</td>
<td>458</td>
</tr>
<tr>
<td>k3.7 Regulatory/IRB/human subjects safety requirements and concerns for conducting research in the pediatric population</td>
<td>14.8%</td>
<td>47.3%</td>
<td>24.4%</td>
<td>8.3%</td>
<td>5.2%</td>
<td>459</td>
</tr>
<tr>
<td>k3.8 Medical literature publication and review process</td>
<td>14.0%</td>
<td>38.6%</td>
<td>23.1%</td>
<td>15.1%</td>
<td>9.2%</td>
<td>458</td>
</tr>
<tr>
<td>k3.9 Opportunities for disseminating pediatric knowledge and scholarly activity (e.g., presentations, manuscripts, newsletters, abstracts, posters)</td>
<td>10.3%</td>
<td>47.3%</td>
<td>30.2%</td>
<td>7.0%</td>
<td>5.3%</td>
<td>457</td>
</tr>
<tr>
<td>k3.10 Appropriate pediatric-specific references</td>
<td>1.5%</td>
<td>4.4%</td>
<td>9.9%</td>
<td>17.9%</td>
<td>66.2%</td>
<td>453</td>
</tr>
</tbody>
</table>

Domain 4: Public Health and Patient Advocacy

<table>
<thead>
<tr>
<th>Knowledge of:</th>
<th>Never</th>
<th>Quarterly or less</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>k4.1 Healthcare disparities in pediatric patients</td>
<td>19.5%</td>
<td>32.3%</td>
<td>22.6%</td>
<td>17.8%</td>
<td>7.8%</td>
<td>461</td>
</tr>
<tr>
<td>k4.2 Access to care disparities in pediatric patients</td>
<td>22.6%</td>
<td>35.0%</td>
<td>21.3%</td>
<td>15.2%</td>
<td>5.9%</td>
<td>460</td>
</tr>
<tr>
<td>k4.3 Emergency preparedness resources for pediatric patients</td>
<td>21.0%</td>
<td>45.0%</td>
<td>20.5%</td>
<td>7.6%</td>
<td>5.9%</td>
<td>458</td>
</tr>
</tbody>
</table>
| k4.4 Public health resources for pediatric patients (e.g., childhood immunizations, sexually transmitted disease [STD] treatment, free health clinics) | \(\begin{array}{ccccccc}
\% & \% & \% & \% & \% & N & \text{Mean} & \text{SD} \\
21.7 & 40.8 & 22.1 & 9.6 & 5.7 & 456 & 2.4 & 1.1 \\
\end{array} \) |
| k4.5 Public health initiatives and legislation to improve the overall well-being of children (e.g., smoking cessation, child proof caps, poison prevention, Best Pharmaceuticals for Children Act) | \(\begin{array}{ccccccc}
\% & \% & \% & \% & \% & N & \text{Mean} & \text{SD} \\
27.7 & 48.7 & 14.8 & 5.9 & 2.8 & 458 & 2.1 & 1.0 \\
\end{array} \) |
| k4.6 Resources that improve access to medications and other therapies necessary for the care of pediatric patients (e.g., WIC, patient assistance programs, specialty pharmacies, compounding pharmacies) | \(\begin{array}{ccccccc}
\% & \% & \% & \% & \% & N & \text{Mean} & \text{SD} \\
19.0 & 35.6 & 22.1 & 17.0 & 6.3 & 458 & 2.6 & 1.2 \\
\end{array} \) |
| k4.7 Professional organizations and their roles and resources related to advocacy | \(\begin{array}{ccccccc}
\% & \% & \% & \% & \% & N & \text{Mean} & \text{SD} \\
8.8 & 36.4 & 39.7 & 11.2 & 3.9 & 456 & 2.7 & .9 \\
\end{array} \) |
| k4.8 Appropriate avenues to advocate for safe and effective use of medications in the pediatric populations (e.g., pediatric-specific formulations, removal of dangerous substances from the market, pediatric-specific product labeling) | \(\begin{array}{ccccccc}
\% & \% & \% & \% & \% & N & \text{Mean} & \text{SD} \\
18.1 & 40.0 & 24.9 & 9.2 & 7.9 & 458 & 2.5 & 1.1 \\
\end{array} \) |
| k4.9 Evidence demonstrating value of post doctoral pediatric training and the pediatric pharmacy specialist (e.g., decreasing medication errors, decreased cost, decreased length of stay, improved outcomes) | \(\begin{array}{ccccccc}
\% & \% & \% & \% & \% & N & \text{Mean} & \text{SD} \\
22.3 & 37.1 & 18.0 & 10.2 & 12.4 & 461 & 2.5 & 1.3 \\
\end{array} \) |
Knowledge Importance Ratings

The percentage of respondents selecting each response option with respect to knowledge importance is shown in Table 23 along with the mean, standard deviation, and number of respondents. The means were calculated after assigning numerical values to each response option as follows: 1 = Not important, 2 = Minimally important, 3 = Moderately important, and 4 = Very important.

There were only four knowledge statements that received a mean importance rating below 3.0 (moderately important). These were:

- *k1.3* Legal considerations for dependent and emancipated patients (Mean rating = 2.6)
- *k1.8* Age-specific physical assessment techniques (Mean rating = 2.7)
- *k4.1* Healthcare disparities in pediatric patients (Mean rating = 2.9)
- *k4.2* Access to care disparities in pediatric patients (Mean rating = 2.9)

Of the other 56 knowledge statements, 24 received mean importance ratings between 3.0 and 3.5, and 32 received mean importance ratings above 3.5 on the 4-point scale.

Table 23
Knowledge Importance Ratings

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>Not %</th>
<th>Min %</th>
<th>Mod %</th>
<th>High %</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k1.1 Normal growth and development of the pediatric population</td>
<td>.2%</td>
<td>3.5%</td>
<td>25.7%</td>
<td>70.7%</td>
<td>460</td>
<td>3.7</td>
<td>.6</td>
</tr>
<tr>
<td>k1.2 Age-appropriate interviewing techniques for patients, parents, and caregivers</td>
<td>1.1%</td>
<td>10.3%</td>
<td>41.4%</td>
<td>47.3%</td>
<td>457</td>
<td>3.3</td>
<td>.7</td>
</tr>
<tr>
<td>k1.3 Legal considerations for dependent and emancipated patients</td>
<td>7.7%</td>
<td>40.5%</td>
<td>35.4%</td>
<td>16.4%</td>
<td>457</td>
<td>2.6</td>
<td>.8</td>
</tr>
<tr>
<td>k1.4 Essential components of a medical history including maternal and birth history and childhood immunization status, if appropriate</td>
<td>.2%</td>
<td>6.1%</td>
<td>28.2%</td>
<td>65.5%</td>
<td>458</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>k1.5 Essential components of a social history, including day care attendance, siblings, smoke exposure, home environment</td>
<td>.7%</td>
<td>13.5%</td>
<td>43.4%</td>
<td>42.4%</td>
<td>458</td>
<td>3.3</td>
<td>.7</td>
</tr>
<tr>
<td>k1.6 Pathophysiology, epidemiology, risk factors, diagnosis, prevention, and evidence-based treatment of common diseases and conditions in pediatric patients</td>
<td>.0%</td>
<td>.4%</td>
<td>6.6%</td>
<td>93.0%</td>
<td>457</td>
<td>3.9</td>
<td>.3</td>
</tr>
<tr>
<td>k1.7 Equations to calculate body surface area, creatinine clearance, fluid requirements, and ideal body weight from birth to adult</td>
<td>.0%</td>
<td>1.7%</td>
<td>9.4%</td>
<td>88.9%</td>
<td>458</td>
<td>3.9</td>
<td>.4</td>
</tr>
<tr>
<td>k1.8 Age-specific physical assessment techniques</td>
<td>7.3%</td>
<td>36.7%</td>
<td>29.9%</td>
<td>26.2%</td>
<td>455</td>
<td>2.7</td>
<td>.9</td>
</tr>
<tr>
<td>k1.9 Pediatric populations for which standard calculated methods of assessment of renal impairment are not reliable</td>
<td>.7%</td>
<td>6.1%</td>
<td>27.6%</td>
<td>65.6%</td>
<td>456</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>k1.10 Urine output calculation for body weight and appropriate output per age</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>.2%</td>
<td>7.0%</td>
<td>22.9%</td>
<td>69.9%</td>
<td>458</td>
<td>3.6</td>
<td>.6</td>
<td></td>
</tr>
<tr>
<td>k1.11 Methods for assessment of hepatic function in pediatric populations</td>
<td>.2%</td>
<td>8.1%</td>
<td>37.8%</td>
<td>53.8%</td>
<td>455</td>
<td>3.5</td>
<td>.7</td>
</tr>
<tr>
<td>k1.12 Normal laboratory values and vital signs from birth to adult</td>
<td>.2%</td>
<td>1.1%</td>
<td>13.8%</td>
<td>84.8%</td>
<td>455</td>
<td>3.8</td>
<td>.4</td>
</tr>
<tr>
<td>k1.13 Age-associated differences in pathophysiology and clinical manifestations of disease across patient populations</td>
<td>.0%</td>
<td>1.8%</td>
<td>18.5%</td>
<td>79.8%</td>
<td>455</td>
<td>3.8</td>
<td>.5</td>
</tr>
<tr>
<td>k1.14 Age-specific pharmacokinetic differences in neonates, infants, children, and adolescents:</td>
<td>.0%</td>
<td>.2%</td>
<td>8.6%</td>
<td>91.2%</td>
<td>454</td>
<td>3.9</td>
<td>.3</td>
</tr>
<tr>
<td>k1.15 Age-specific pharmacodynamic differences in neonates, infants, children, and adolescents:</td>
<td>.0%</td>
<td>1.1%</td>
<td>12.1%</td>
<td>86.8%</td>
<td>455</td>
<td>3.9</td>
<td>.4</td>
</tr>
<tr>
<td>k1.16 Pharmacogenomic considerations in pediatric patients</td>
<td>2.6%</td>
<td>22.1%</td>
<td>42.5%</td>
<td>32.7%</td>
<td>456</td>
<td>3.1</td>
<td>.8</td>
</tr>
<tr>
<td>k1.17 Appropriate use of off-label medications to treat pediatric patients</td>
<td>.0%</td>
<td>2.0%</td>
<td>24.8%</td>
<td>73.2%</td>
<td>455</td>
<td>3.7</td>
<td>.5</td>
</tr>
<tr>
<td>k1.18 Pediatric-specific drug interactions (e.g., ceftriaxone and calcium-containing products in the neonate, calcium and phosphorous in parenteral nutrition)</td>
<td>.0%</td>
<td>.4%</td>
<td>16.0%</td>
<td>83.6%</td>
<td>456</td>
<td>3.8</td>
<td>.4</td>
</tr>
<tr>
<td>k1.19 Clinical or therapeutic implications in the fetus and neonate of placental transfer of medications or other substances (e.g., antenatal steroids, neonatal abstinence syndrome [NAS], anticonvulsant withdrawal)</td>
<td>.2%</td>
<td>6.6%</td>
<td>28.4%</td>
<td>64.8%</td>
<td>454</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>k1.20 Influence of medications on the production of breast milk</td>
<td>1.3%</td>
<td>19.7%</td>
<td>34.0%</td>
<td>45.0%</td>
<td>456</td>
<td>3.2</td>
<td>.8</td>
</tr>
<tr>
<td>k1.21 Excretion of medications and other substances in breast milk</td>
<td>.2%</td>
<td>11.6%</td>
<td>41.3%</td>
<td>46.9%</td>
<td>458</td>
<td>3.3</td>
<td>.7</td>
</tr>
<tr>
<td>k1.22 Appropriate dosing based on age and body size (e.g., body surface area, post-menstrual age, gestational age, dosing weight)</td>
<td>.0%</td>
<td>.4%</td>
<td>6.4%</td>
<td>93.2%</td>
<td>455</td>
<td>3.9</td>
<td>.3</td>
</tr>
<tr>
<td>k1.23 Medication dosing in extracorporeal membrane oxygenation (ECMO) and in renal replacement therapy (e.g., continuous renal replacement therapy [CRRT], PD, HD)</td>
<td>.9%</td>
<td>6.8%</td>
<td>29.2%</td>
<td>63.1%</td>
<td>455</td>
<td>3.5</td>
<td>.7</td>
</tr>
<tr>
<td>k1.24 Medication dose adjustment in pediatric patients with renal and hepatic impairment</td>
<td>.0%</td>
<td>.7%</td>
<td>15.8%</td>
<td>83.6%</td>
<td>456</td>
<td>3.8</td>
<td>.4</td>
</tr>
<tr>
<td>k1.25 Essential components of medication reconciliation in pediatric patients (e.g., concentration, dose in mg, palatability)</td>
<td>.0%</td>
<td>2.6%</td>
<td>22.1%</td>
<td>75.3%</td>
<td>453</td>
<td>3.7</td>
<td>.5</td>
</tr>
<tr>
<td>k1.26 Pediatric-specific adverse effects (e.g., liver failure with valproate, tetracycline and tooth discoloration):</td>
<td>.2%</td>
<td>1.1%</td>
<td>23.2%</td>
<td>75.4%</td>
<td>456</td>
<td>3.7</td>
<td>.5</td>
</tr>
<tr>
<td>k1.27 Differences in laboratory sampling for pediatric patients (e.g., blood volume; method, frequency and timing of sampling)</td>
<td>1.8%</td>
<td>21.2%</td>
<td>38.1%</td>
<td>38.9%</td>
<td>452</td>
<td>3.1</td>
<td>.8</td>
</tr>
<tr>
<td>k1.28 Differences in the management of pediatric emergencies (e.g., respiratory distress, neonatal seizures, cardiopulmonary arrest)</td>
<td>.2%</td>
<td>4.0%</td>
<td>25.9%</td>
<td>69.9%</td>
<td>452</td>
<td>3.7</td>
<td>.6</td>
</tr>
<tr>
<td>k1.29 Nutritional and fluid requirements for infants and children for normal growth and disease</td>
<td>.2%</td>
<td>4.6%</td>
<td>19.8%</td>
<td>75.4%</td>
<td>455</td>
<td>3.7</td>
<td>.6</td>
</tr>
<tr>
<td>k1.30 Childhood immunization schedules</td>
<td>.0%</td>
<td>4.4%</td>
<td>35.3%</td>
<td>60.3%</td>
<td>451</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>k1.31 Factors affecting adherence to the treatment regimen</td>
<td>.4%</td>
<td>7.1%</td>
<td>36.8%</td>
<td>55.7%</td>
<td>451</td>
<td>3.5</td>
<td>.6</td>
</tr>
<tr>
<td>k1.32 Specialty needs of pediatric patients requiring referral to other providers (e.g., infant with signs of dehydration, patient needs compounded oral formulation)</td>
<td>.9%</td>
<td>14.8%</td>
<td>35.9%</td>
<td>48.5%</td>
<td>454</td>
<td>3.3</td>
<td>.8</td>
</tr>
</tbody>
</table>
Domain 2: Practice Management

Knowledge of:

<table>
<thead>
<tr>
<th>k2.1 Medication safety considerations (e.g., Institute for Safe Medication Practices [ISMP] and Joint Commission recommendations, Food and Drug Administration [FDA] alerts)</th>
<th>.2%</th>
<th>7.6%</th>
<th>34.5%</th>
<th>57.6%</th>
<th>458</th>
<th>3.5</th>
<th>.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k2.2 Position statements, white papers, and national guidelines as an aid to the development of health-system policies and procedures</td>
<td>.7%</td>
<td>17.9%</td>
<td>40.9%</td>
<td>40.5%</td>
<td>457</td>
<td>3.2</td>
<td>.8</td>
</tr>
<tr>
<td>k2.3 Pediatric-specific considerations (e.g., age and body size) in the design or improvement of medication use processes (e.g., computerized physician order entry [CPOE], infusion pumps, electronic medical record [EMR])</td>
<td>.2%</td>
<td>5.0%</td>
<td>33.8%</td>
<td>60.9%</td>
<td>458</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>k2.4 Routes of administration (e.g., intraosseous, oral/enteral, parenteral, IM, transdermal, intranasal, intraventricular)</td>
<td>.0%</td>
<td>3.3%</td>
<td>26.2%</td>
<td>70.5%</td>
<td>454</td>
<td>3.7</td>
<td>.5</td>
</tr>
<tr>
<td>k2.5 Impact of medication administration techniques on drug delivery in pediatric patients (e.g., inhalers, dead space in IV tubing, overfill, j-tip device)</td>
<td>.0%</td>
<td>5.2%</td>
<td>33.4%</td>
<td>61.4%</td>
<td>458</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>k2.6 Medication administration technology (e.g., infusion pumps, subcutaneous needle devices, intranasal administration devices, aerosols)</td>
<td>.2%</td>
<td>9.6%</td>
<td>36.5%</td>
<td>53.6%</td>
<td>457</td>
<td>3.4</td>
<td>.7</td>
</tr>
<tr>
<td>k2.7 Appropriate references to support the preparation of pediatric formulations (e.g., IV dilutions, extemporaneously compounded preparations)</td>
<td>.0%</td>
<td>2.6%</td>
<td>23.6%</td>
<td>73.8%</td>
<td>454</td>
<td>3.7</td>
<td>.5</td>
</tr>
<tr>
<td>k2.8 Considerations when selecting pediatric-appropriate dosage formulations</td>
<td>.0%</td>
<td>2.0%</td>
<td>20.1%</td>
<td>77.9%</td>
<td>452</td>
<td>3.8</td>
<td>.5</td>
</tr>
<tr>
<td>k2.9 Metrics for evaluating quality of pediatric pharmacy services (e.g., patient/parent/caregiver satisfaction, length of stay, readmission, medication errors)</td>
<td>3.3%</td>
<td>16.7%</td>
<td>45.1%</td>
<td>34.9%</td>
<td>455</td>
<td>3.1</td>
<td>.8</td>
</tr>
</tbody>
</table>

Domain 3: Information Management and Education

Knowledge of:

<table>
<thead>
<tr>
<th>k3.1 Principles and methods of educating pharmacy staff, fellows, residents, student pharmacists and/or other healthcare professionals regarding pediatric health-related issues</th>
<th>.7%</th>
<th>6.2%</th>
<th>39.5%</th>
<th>53.6%</th>
<th>453</th>
<th>3.5</th>
<th>.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k3.2 Age-appropriate patient education principles and methods</td>
<td>.9%</td>
<td>7.7%</td>
<td>41.3%</td>
<td>50.1%</td>
<td>455</td>
<td>3.4</td>
<td>.7</td>
</tr>
<tr>
<td>k3.3 Health literacy and cultural considerations in educating patients/parents/caregivers:</td>
<td>.7%</td>
<td>15.6%</td>
<td>42.7%</td>
<td>41.0%</td>
<td>454</td>
<td>3.2</td>
<td>.7</td>
</tr>
<tr>
<td>k3.4 Tools, methods and counseling techniques to increase adherence to the treatment regimen:</td>
<td>.2%</td>
<td>12.8%</td>
<td>42.6%</td>
<td>44.4%</td>
<td>453</td>
<td>3.3</td>
<td>.7</td>
</tr>
<tr>
<td>k3.5 Research design, methodology, and statistical analysis:</td>
<td>2.4%</td>
<td>22.7%</td>
<td>46.6%</td>
<td>28.3%</td>
<td>453</td>
<td>3.0</td>
<td>.8</td>
</tr>
<tr>
<td>k3.6 Clinical application and limitations of published data and reports</td>
<td>.2%</td>
<td>6.2%</td>
<td>41.1%</td>
<td>52.5%</td>
<td>453</td>
<td>3.5</td>
<td>.6</td>
</tr>
<tr>
<td>k3.7 Regulatory/IRB/human subjects safety requirements and concerns for conducting research in the pediatric population</td>
<td>4.0%</td>
<td>20.3%</td>
<td>44.4%</td>
<td>31.3%</td>
<td>453</td>
<td>3.0</td>
<td>.8</td>
</tr>
<tr>
<td>k3.8 Medical literature publication and review process</td>
<td>4.0%</td>
<td>21.6%</td>
<td>43.0%</td>
<td>31.3%</td>
<td>453</td>
<td>3.0</td>
<td>.8</td>
</tr>
</tbody>
</table>
Domain 4: Public Health and Patient Advocacy

Knowledge of:

<table>
<thead>
<tr>
<th>Knowledge of</th>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>k4.1 Healthcare disparities in pediatric patients</td>
<td>4.4%</td>
<td>27.3%</td>
<td>43.5%</td>
<td>24.8%</td>
<td>451</td>
<td>2.9</td>
<td>.8</td>
</tr>
<tr>
<td>k4.2 Access to care disparities in pediatric patients</td>
<td>4.7%</td>
<td>29.9%</td>
<td>40.6%</td>
<td>24.8%</td>
<td>451</td>
<td>2.9</td>
<td>.8</td>
</tr>
<tr>
<td>k4.3 Emergency preparedness resources for pediatric patients</td>
<td>2.7%</td>
<td>24.3%</td>
<td>40.3%</td>
<td>32.7%</td>
<td>449</td>
<td>3.0</td>
<td>.8</td>
</tr>
<tr>
<td>k4.4 Public health resources for pediatric patients (e.g., childhood</td>
<td>3.1%</td>
<td>21.4%</td>
<td>44.1%</td>
<td>31.4%</td>
<td>449</td>
<td>3.0</td>
<td>.8</td>
</tr>
<tr>
<td>immunizations, sexually transmitted disease [STD] treatment, free health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinics)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k4.5 Public health initiatives and legislation to improve the overall</td>
<td>3.8%</td>
<td>24.1%</td>
<td>44.2%</td>
<td>27.9%</td>
<td>452</td>
<td>3.0</td>
<td>.8</td>
</tr>
<tr>
<td>well-being of children (e.g., smoking cessation, child proof caps,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poison prevention, Best Pharmaceuticals for Children Act)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k4.6 Resources that improve access to medications and other therapies</td>
<td>3.8%</td>
<td>20.1%</td>
<td>43.0%</td>
<td>33.1%</td>
<td>453</td>
<td>3.1</td>
<td>.8</td>
</tr>
<tr>
<td>necessary for the care of pediatric patients (e.g., WIC, patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assistance programs, specialty pharmacies, compounding pharmacies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k4.7 Professional organizations and their roles and resources related to</td>
<td>3.8%</td>
<td>21.3%</td>
<td>44.2%</td>
<td>30.7%</td>
<td>450</td>
<td>3.0</td>
<td>.8</td>
</tr>
<tr>
<td>advocacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k4.8 Appropriate avenues to advocate for safe and effective use of</td>
<td>2.2%</td>
<td>16.0%</td>
<td>43.0%</td>
<td>38.8%</td>
<td>451</td>
<td>3.2</td>
<td>.8</td>
</tr>
<tr>
<td>medications in the pediatric populations (e.g., pediatric-specific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formulations, removal of dangerous substances from the market, pediatric-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>specific product labeling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k4.9 Evidence demonstrating value of post doctoral pediatric training and</td>
<td>4.7%</td>
<td>16.6%</td>
<td>35.0%</td>
<td>43.7%</td>
<td>451</td>
<td>3.2</td>
<td>.9</td>
</tr>
<tr>
<td>the pediatric pharmacy specialist (e.g., decreasing medication errors,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decreased cost, decreased length of stay, improved outcomes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Missing Knowledge

After participants rated the knowledge statements, they were asked to indicate any additional knowledge they use as a pediatric pharmacy specialist that may have been omitted from the survey. There were only 5 write-in responses to this question. These verbatim suggested additions were reviewed by the task force, and the knowledge list was deemed to be comprehensive.

Knowledge Validation Decisions

Task force members were also asked to consider if the ratings for the knowledge statements were sufficiently high to suggest that they be included in the final, validated description of pediatric specialty practice. During the web-based meeting to review the survey results, the task force discussed those knowledge statements that did not receive clear validation evidence; that is, those instances where 30% or more of the respondents reported *never* using the knowledge and/or the mean frequency rating fell below a 2.5. There was sufficient validation evidence to support inclusion of 54 of the 60 knowledge statements in the description of pediatric specialty practice. The remaining 6 knowledge statements were discussed in greater detail. These knowledge statements were k1.3, k1.8, k1.19, k3.7, k4.3, k4.4, and k4.5. The validation discussion was informed by the frequency ratings, importance ratings, considerations regarding the nature of the knowledge, and the relationship between the knowledge and task statements. Table 24 captures the validation decisions and rationale for each of these 16 knowledge statements. For the final version of the updated and validated description of pediatric pharmacy practice, see Appendix 10.
<table>
<thead>
<tr>
<th>Knowledge Statement</th>
<th>Validation Decision (Retain or Remove)</th>
<th>Rationale for Validation Decision, if Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1.3 Legal considerations for dependent and emancipated patients</td>
<td>Remove</td>
<td></td>
</tr>
<tr>
<td>k1.8 Age-specific physical assessment techniques</td>
<td>Remove</td>
<td></td>
</tr>
<tr>
<td>k3.7 Regulatory/IRB/human subjects safety requirements and concerns for conducting research in the pediatric population</td>
<td>Retain</td>
<td>Retained based on the regulatory nature of the knowledge and moderate mean importance rating of 3.0.</td>
</tr>
<tr>
<td>k4.3 Emergency preparedness resources for pediatric patients</td>
<td>Retain</td>
<td>Task 4.5 for which this knowledge is needed was retained; therefore knowledge statement must also be retained.</td>
</tr>
<tr>
<td>k4.4 Public health resources for pediatric patients (e.g., childhood immunizations, sexually transmitted disease [STD] treatment, free health clinics)</td>
<td>Retain</td>
<td>Task 4.3 for which this knowledge is needed was retained; therefore knowledge statement must also be retained.</td>
</tr>
<tr>
<td>k4.5 Public health initiatives and legislation to improve the overall well-being of children (e.g., smoking cessation, child proof caps, poison prevention, Best Pharmaceuticals for Children Act)</td>
<td>Retain</td>
<td>Task 4.1 for which this knowledge is needed was retained; therefore knowledge statement must also be retained.</td>
</tr>
</tbody>
</table>
Development of Examination Specifications

Development of Domain Weights
PES calculated hypothetical specifications for a potential new certification examination in pediatric pharmacy.

While there are many variations in methodology, there are two main methods of developing examination specifications from validation survey ratings. The first is the “top-down” approach. In this approach, weights representing percentages of an examination devoted to each domain are calculated using respondents’ domain-level Percentage of Work Time and Importance ratings. The second approach is the “bottom-up” approach. This approach involves calculating weights using the respondents’ task Frequency and Importance ratings, and summing those weights within each domain. In the “top-down” approach, the weights are based on the ratings for domains. In the “bottom-up” approach, the weights are based on the ratings for tasks.

PES used the “top-down” method to develop the weights for the domains. This approach is preferred over the “bottom-up” approach when domains contain different numbers of tasks (Spray & Huang, 2000), as is the case in the current delineation.

PES calculated the domain weights as follows:

First, domain sums (D) were derived using the formula:

\[D_i = \sum_{k=1}^{n} (P_k * I_k) \]

where

\(i \) = a single domain
\(k \) = a single respondent
\(n \) = the number of respondents
\(P \) = a respondent’s Percentage of time rating for a domain
\(I \) = a respondent’s Importance rating for a domain

Domain weights (DWs) were calculated by dividing each domain sum by the sum of all domain sums (\(\sum D \)):

\[DW_i = \frac{D_i}{\sum_{i=1}^{4} D} \]

Hypothetical examination specifications are presented for the total sample, and for those respondents spending less (< 50%) or more (≥ 50%) time providing pharmacy services to pediatric patients (Table 25).
Table 25
Hypothetical Test Specifications

<table>
<thead>
<tr>
<th>Domain</th>
<th>Total Sample</th>
<th>< 50% specialty work time</th>
<th>≥ 50% specialty work time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Patient Management</td>
<td>58%</td>
<td>51%</td>
<td>58%</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>20%</td>
<td>19%</td>
<td>20%</td>
</tr>
<tr>
<td>Domain 3: Information Management and Education</td>
<td>18%</td>
<td>26%</td>
<td>18%</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Recommended Examination Specifications
After examining the hypothetical, empirically-derived test specifications, the task force deemed the percentages derived from the total survey respondent group to be the best representation of specialty practice. After discussion of testability of concepts included in each of the four domains of practice, a small adjustment was made to the recommended test specifications. Two percentage points were moved from the Public Health and Advocacy domain to the Patient Management domain. This adjustment was made based on the known difficulty in creating multiple choice test questions on the topic of advocacy for existing BPS specialties content. Thus, the recommended examination specifications for a potential new specialty certification found in Table 26 reflect this slight adjustment to the empirically derived test specifications.

Table 26
Final Recommendations for Examination Specifications

<table>
<thead>
<tr>
<th>Domain</th>
<th>% of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Patient Management</td>
<td>60%</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>20%</td>
</tr>
<tr>
<td>Domain 3: Information Management and Education</td>
<td>18%</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Summary and Recommendations

The conduct of the role delineation study of pediatric pharmacy specialists yielded a structured description of specialty practice in terms of major domains and tasks, as well as the specialized knowledge base that supports task performance.

The results of this study provide the validity foundation for future credentialing initiatives. Should BPS decide to develop a new specialty certification in pediatric pharmacy, PES recommends that:

- examination items be developed to assess the specialty knowledge and tasks contained in Appendix 10,
- items be classified in terms of domain, task, and specialty knowledge base assessed by the item, and
- examinations be constructed to match the percentage weight examination specifications recommended by the task force.

By following this guidance, BPS will create a chain of validity evidence that ties examination content to the role delineation study. By so doing, BPS will meet best practice recommendations and accreditation requirements for credentialing programs.
References

Appendix 1
SME Nomination Form
Nomination Form for Board of Pharmacy Specialties Pediatric Pharmacy Job Analysis

*1. Name of Nominator

*2. Nominator's e-mail

*3. Name of Nominee

*4. Nominee's Job Title

*5. Nominee's Employer

*6. Employer's Address

*7. Employer's City, State, Zip

*8. Nominee's Work Phone

*9. Nominee's e-mail address

*10. Select the box next to each activity in which the nominee is willing to participate. Self-nominations are welcome. In addition to supplying the information below, please send a copy of the nominee's resume or CV to info@bpsweb.org, and include the phrase Pediatric Pharmacy in the subject line.

(Please note that nomination does not guarantee participation. Participants in each activity will be selected to achieve the best balance of professional background and experience.)

☐ Task Force Member: (May 2011 to March 2012)
Serve on committee that creates domains, tasks, and knowledge statements comprising the pediatric pharmacy delineation of practice. Attend a face-to-face meeting in Washington, DC on August 2 - 3, 2011. Participate in a pre-meeting data collection activity and a post-meeting homework assignment. Participate in virtual meetings from August 2011 to March 2012 to refine and finalize the delineation of pediatric pharmacy specialty practice.

☐ Independent Review: (August/September 2011)
Participate in a 1-hour email review of the domains, tasks, and knowledge statements comprising the pediatric pharmacy delineation of practice.

☐ Survey Pilot Test: (November 2011)
Participate in a 1-hour critical review of an e-survey of pediatric pharmacy practice.
11. In what setting does the MAJORİTY of the nominee’s practice take place?

- Children's Specialty Hospital
- University Affiliated Hospital
- Community Hospital, For Profit
- Community Hospital, Not-For-Profit
- Federal Hospital/Institution
- Academic Institution
- Ambulatory Care
- Cancer Center
- Chain Community Pharmacy
- Drug Information Center
- Home Health Care
- Independent Community Pharmacy
- Managed Health Care
- Pharmaceutical Industry
- Physician's Office
- University Affiliated Hospital
- Other (Please specify.)

12. What is the focus of the nominee's pediatric pharmacy practice?

- Ambulatory Care
- General Peds
- Neonatal Pharmacy
- Critical Care
- Hematology/Oncology
- Nutrition/GI
- Administration
- Other (please specify)
*14. What was the nominee’s ENTRY LEVEL pharmacy-related degree?

- Bachelor’s degree
- Pharm.D.
- Other
- Other (Please specify)

*15. What is the HIGHEST pharmacy-related degree the nominee has earned?

- Bachelor’s degree
- Master’s degree
- Pharm.D.
- Ph.D.
- Other (Please specify)

*16. How many years has the nominee worked as a licensed pharmacist?

[]

*17. How many years has the nominee worked in pediatric pharmacy?

[]

*18. What BPS specialty certifications does the nominee hold? (Check all that apply)

- Nuclear Pharmacy
- Nutrition Support Pharmacy
- Oncology
- Pharmacotherapy
- Psychiatric Pharmacy
- None

Next >>
Appendix 2
Pre-meeting Data Collection Activity Screen Captures
BPS Pediatric Pharmacy Data Collection Activity

To make our work more efficient at our in-person meeting, we are asking you each to contribute your initial thoughts regarding the format and content of the Pediatric Pharmacy role delineation. Please provide your answers to these questions no later than Monday, July 18, 2011, so that we may review and compile the results into a summary report in advance of our August 1-2 meeting.

Please use the Resource Manual provided on pages 3 - 8 of the Task Force pre-meeting memo to help you effectively respond to the questions below.

Name: ___________________________

Domains are the major areas that make up practice in a profession. Domains are mutually exclusive and encompass all work activities performed across all work settings in which practitioners may be located.

What major categories of practice might serve as a possible domain structure describing the role of the pediatric pharmacist? See page 5 of the pre-meeting mailing for examples of domain structures for other BPS specialty certification areas.
Tasks are discrete work elements within each domain, and represent actions taken or activities performed in the domain of practice. Tasks describe distinct, observable, and specific practice-related activities.

What specific tasks are performed by a pharmacist specializing in pediatrics that are NOT performed by a non-specialist? For more information on delineating task statements, see pages 6 - 7 of the pre-meeting mailing.
Knowledge is factual or procedural information which, when applied, makes successful performance of a task possible (i.e., what a practitioner needs to know).

What specialized knowledge must a pharmacist specializing in pediatrics have in order to be effective? Be as specific as possible. See pages 7 - 8 of the pre-meeting mailing for additional information on delineating knowledge areas.

Please provide any additional information here that you feel would be important for BPS to consider when creating the pediatric specialty certification program.
BOARD OF PHARMACY SPECIALTIES

Pediatric Pharmacy Role Delineation Study
Task Force Meeting 1
August 2 – 3, 2011

Washington, DC

ATTENDEES

Task Force Members

Sabrina Boehme
Michelle Caruso
Elizabeth Farrington
Cyrine Haidar
Jennifer Hamner
Kristin Klein
Robert Kuhn
Sean O’Neill
Kathy Pham
Stephanie Phelps
Michael Reed

Board of Pharmacy Specialties

William Ellis, Executive Director
Jacquelyn Kelly Marshall, Associate Director for Certification

Professional Examination Service

Patricia Muenzen, Director of Research Programs
Jacqueline Siano, Research Director
Appendix 4
Instructions for Independent Review
Pediatric Pharmacy

Thank you again for taking the time to participate in this important independent review of the description of the specialty practice of Pediatric Pharmacy. This review is an important step in the role delineation study (RDS) process. The purpose of an RDS is to analyze the knowledge and unique tasks that comprise a proposed specialty. The results of this role delineation study will be incorporated into the official petition to BPS to recognize Pediatric Pharmacy as a specialty.

RDS Task Force meetings have been conducted to develop an initial description of the proposed pharmacy specialty area. The description consists of domains of practice and specific tasks performed by Pediatric pharmacists, as well as the specialized knowledge base required to perform the tasks. We are now circulating the work product to subject matter experts (SMEs), like yourself, for further review.

A draft role delineation document is attached for your review. Please review this document for completeness and clarity, and make your suggestions (additions, deletions, new wording, etc.) directly in the document. The tracking feature has been enabled.

The tasks and knowledge in the role delineation are organized into four domains: Patient Management, Practice Management, Information Management and Education, Public Health and Advocacy. Please think about the following when you review the outline:

- Have all required tasks and knowledge bases specific to specialty practice been included?
- Are there redundancies?
- Is each statement delineated as accurately and concisely as possible? Have examples been provided if necessary?

Once we have collected your comments, the RDS Task Force will meet via a series of virtual meetings to finalize the delineation based on your feedback. Subsequently, a survey will be developed and sent to a large sample of Pediatric pharmacists who will be asked to rate the tasks and the knowledge for validation purposes.

Please email your edited copies WITH THE TRACKING LEFT ON (to show your changes) to jsiano@proexam.org by Wednesday October 5, 2011.

Thank you very much.
Appendix 5
Survey Screen Captures
What percentage of your overall work time do you spend providing pharmacy services for pediatric patients?

[] %

Of this time, what percent is spent providing direct patient care?

[] %
Structure of Survey

In this survey, you will be rating tasks performed by Pediatric Pharmacy Specialists and the specialized knowledge needed in order to perform these tasks.

Tasks and knowledge are grouped together within four broad domains of practice:

- Domain 1: Patient Management
- Domain 2: Practice Management
- Domain 3: Information Management and Education
- Domain 4: Public Health and Patient Advocacy

The survey is organized into the following four sections:

1. Task Ratings - In this section, you will rate tasks performed by Pediatric Pharmacy Specialists on two rating scales.
2. Domain Ratings - In this section, you will rate each of the four domains.
3. Knowledge Ratings - In this section, you will rate knowledge used by Pediatric Pharmacy Specialists on two rating scales.
4. Demographic Questionnaire - In this section, you will answer questions about your professional background.

[Next]
Section 1 — Tasks

For each task, please make the following two ratings:

Frequency How frequently did you perform the task during the past 12 months?
- Never
- Quarterly or less
- Monthly
- Weekly
- Daily

Importance How important is the task to providing effective care to pediatric patients?
- Not Important
- Minimally Important
- Moderately Important
- Highly Important

When you rate Frequency, think about how frequently you personally performed the task in the past 12 months. When you rate Importance, think about the contribution of the task to providing effective care to pediatric patients, whether or not you personally performed the task.

Domain 1: Patient Management

For the Pediatric Patient:

- Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.

- Obtain relevant clinical and laboratory data and results of diagnostic procedures.

- Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.

- Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).
If any tasks you perform as a pediatric pharmacy specialist were not included in this survey, please describe them here.

Click here to view the task list.

© 2013 Board of Pharmacy Specialties

Need help? Send an email to BPSHelpDesk@wupa.org
Section 2 — Domain Ratings

Please make the following overall ratings for each of the four domains of specialty practice:

- **% of Time**: Of the time you spent in pediatric pharmacy during the past year, what percentage did you spend performing the tasks in each domain?
 - **Overall percentages must total 100%**.

- **Importance**: How important is the domain for providing effective care to pediatric patients?
 - Not important, Minimally important, Moderately important, or Highly important
 - [Click here to view the tasks included in each domain.](#)

<table>
<thead>
<tr>
<th>Domain</th>
<th>% of Time</th>
<th>Not</th>
<th>Min</th>
<th>Mod</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Patient Management – Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data; and designing, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the healthcare team.</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 2: Practice Management – Tasks related to advancing pediatric pharmacy practice; and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 3: Information Management and Education – Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of healthcare providers, trainees, patients and caregivers.</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 4: Public Health and Patient Advocacy – Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population.</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 3 — Knowledge Ratings

For each knowledge area, please make the following two ratings:

Frequency: How frequently did you use the knowledge during the past 12 months?
- Never, Quarterly or less, Monthly, Weekly, Daily

Importance: How important is the knowledge to providing effective care to pediatric patients?
- Not important, Minimaly important, Moderately important, Highly important

When you rate **Frequency**, think about how frequently you personally used the knowledge in the past 12 months. When you rate **Importance**, think about the contribution of the knowledge area to providing effective care to pediatric patients, in general.

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>How frequently did you use the knowledge during the past 12 months?</th>
<th>How important is the knowledge to providing effective care to pediatric patients?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of:</td>
<td>Never</td>
<td>Quarterly or less</td>
</tr>
<tr>
<td>Normal growth and development of the pediatric population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-appropriate interviewing techniques for patients, parents, and caregivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal considerations for dependent and emancipated patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential components of a medical history including maternal and birth history and childhood immunization status, if appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential components of a social history, including day care attendance, siblings, smoke exposure, home environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How frequently did you use the knowledge: Never, Quarterly or less, Monthly, Weekly, Daily. How important is the knowledge to providing effective care: Not important, Minimaly important, Moderately important, Highly important.
If any knowledge you use as a pediatric pharmacy specialist was not included in this survey, please describe it here.

Click here to view the knowledge list.

© 2013 Board of Pharmacy Specialties

Need help? Send an email to BPSHelp@oetxexam.org
Section 4 — Demographic Questionnaire

How many years have you worked as a licensed pharmacist?

[] Years

How many years (since licensure) have you worked with pediatric patients?

[] Years

In what setting does the majority of your practice take place? (Select one best answer.)

- Adult hospital with pediatric wing/services
- Adult hospital with children’s hospital within it
- Pediatric hospital freestanding
- Pediatric ambulatory care clinic - freestanding
- Home care
- Other (Please specify)

Which of the following most closely describes your primary role? (Select one best answer.)

- Director of pharmacy
- Clinical manager
- Operational manager
- Clinical specialist
- Generalist pharmacist/decentralized pharmacist
- Staff pharmacist
- Academia
- Researcher
- Medication safety officer
- Other (Please specify)

What percentage of your patients falls into each of the following age ranges? (Estimate the percentage of your patients in each age range. Your percentages should total 100%.)
Which of the following most closely describes your primary role? (Select one best answer.)

- Director of pharmacy
- Clinical manager
- Operations manager
- Manager
- Generalist pharmacist/decentralized pharmacist
- Staff pharmacist
- Academia
- Researcher
- Medication safety officer
- Other (Please specify)

What percentage of your patients falls into each of the following age ranges?
(Estimate the percentage of your patients in each age range. Your percentages should total 100%)

<table>
<thead>
<tr>
<th>Age Range</th>
<th>% of Your Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-term neonates (Neonate born <38 weeks gestational age)</td>
<td>0%</td>
</tr>
<tr>
<td>Full-term neonates (Neonate born 38-42 weeks (average 40 weeks) gestational age)</td>
<td>0%</td>
</tr>
<tr>
<td>Infants (1 month to 1 year of age)</td>
<td>0%</td>
</tr>
<tr>
<td>Toddlers (1-12 years of age)</td>
<td>0%</td>
</tr>
<tr>
<td>Adolescents (13-18 years of age)</td>
<td>0%</td>
</tr>
<tr>
<td>Adults (18 years of age and older)</td>
<td>0%</td>
</tr>
<tr>
<td>Sum</td>
<td>0%</td>
</tr>
</tbody>
</table>

What is the highest pharmacy-related degree you have earned?

- Bachelor's degree
- Master's degree
- Pharm.D.
- Ph.D.
- Other (Please specify)

Which of the following have you completed? (Select all that apply)

- PGY1 Residency
- PGY2 Pediatric Residency
- PGY2 Residency (not in pediatrics)
To show our appreciation for your time and effort, your name will be entered into a random drawing for one of four $50 Amazon.com gift cards.

Enter your information below to be entered in the drawing.

<table>
<thead>
<tr>
<th></th>
<th>Enter in the Boxes Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Name</td>
<td></td>
</tr>
<tr>
<td>Email Address</td>
<td></td>
</tr>
</tbody>
</table>

The information provided here will not be used for any other purpose other than this drawing.

Next

© 2013 Board of Pharmacy Specialties
Need help? Send an email to BPSHelpdesk@psnexam.org
Appendix 6
Pilot Test Invitation
Dear <<First>>:

The role delineation for the proposed new specialty of Pediatric Pharmacy has been developed and reviewed by several subject-matter experts currently practicing in the Pediatric Pharmacy specialty. The role delineation, including specialized tasks and knowledge areas, has been translated into a web-based Survey of Pediatric Pharmacy Practice.

We now need you to participate in a pilot test of this online survey in advance of the survey’s administration to a large sample of pharmacists practicing in this specialty.

You will be asked to respond to the following questions throughout the survey:

1. Did you experience any difficulties using the ratings scales?
2. Are the questions in the demographic and background questionnaire clear and accurate?
3. Were the directions for taking the survey clear?
4. Did you experience any technical difficulties?
5. How many minutes did it take you to complete the survey?
6. Please provide additional suggestions or comments to improve the survey experience.

To access the survey, copy and paste the entire link below into your browser:

<<URL>>

If you are unable to complete the entire survey in one sitting, you may exit and return later using the above URL.

We ask you to complete the pilot test of the survey no later than November 28, 2011.

If you experience any difficulties while pilot testing the survey, please contact me at BPSPediatric@proexam.org.

Thank you in advance for taking the time to perform this critical review.

Jacqueline Siano
Research Director
Professional Examination Service
475 Riverside Drive
New York, NY 10115
Appendix 7
Survey Invitation and Reminder
Dear <<First>>:

The Board of Pharmacy Specialties (BPS) is currently conducting a study to analyze the knowledge and unique tasks that comprise the proposed new specialty of Pediatric Pharmacy. The results of this study will be incorporated into the official petition to BPS to recognize Pediatric Pharmacy as a specialty.

If you are currently practicing in the specialty of pediatric pharmacy, we are asking you to complete an online role delineation survey. We anticipate the survey taking about 25 minutes to complete. Your responses to the survey questions will be entirely confidential and only aggregated results will be reported.

We understand how valuable your time is. To show our appreciation, after you complete the survey you will be entered into a random drawing for one of four $50 Amazon.com gift cards.

The link below will take you to the survey:

<<URL>>

If you are unable to complete the entire survey in one sitting, you may exit and return later using the above URL.

Thank you in advance for contributing to the advancement of the Pediatric Pharmacy specialty in this way.

Board of Pharmacy Specialties
Pediatric Pharmacy Task Force
Dear <<First>>:

This is a reminder that if you are currently practicing in the specialty of pediatric pharmacy, we are asking you to complete an online role delineation survey.

The Board of Pharmacy Specialties (BPS) is currently conducting a study to analyze the knowledge and unique tasks that comprise the proposed new specialty of Pediatric Pharmacy. The results of this study will be incorporated into the official petition to BPS to recognize Pediatric Pharmacy as a specialty.

We anticipate the survey taking about 25 minutes to complete. Your responses to the survey questions will be entirely confidential and only aggregated results will be reported.

We understand how valuable your time is. To show our appreciation, after you complete the survey you will be entered into a random drawing for one of four $50 Amazon.com gift cards.

The link below will take you to the survey:

<<URL>>

If you are unable to complete the entire survey in one sitting, you may exit and return later using the above URL.

Please complete this survey by January 25, 2012.

Thank you in advance for contributing to the advancement of the Pediatric Pharmacy specialty in this way.

Board of Pharmacy Specialties
Pediatric Pharmacy Task Force
Appendix 8
Subgroup Analysis for Domain Ratings
Percentage of Time Ratings for Domains by Subgroups

Domain Percentage of Time Ratings by Percentage of Time Providing Pharmacy Services for Pediatric Patients

<table>
<thead>
<tr>
<th>Domain</th>
<th>< 50% Pediatric Time</th>
<th>≥ 50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Domain 1: Patient Management</td>
<td>49.5%</td>
<td>24.8</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>19.5%</td>
<td>19.1</td>
</tr>
<tr>
<td>Domain 3: Education and Information Management</td>
<td>26.9%</td>
<td>22.0</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>4.1%</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Domain Percentage of Time Ratings by Years of Experience Working with Pediatric Patients

<table>
<thead>
<tr>
<th>Domain</th>
<th>1-5 yrs</th>
<th>6-10 yrs</th>
<th>11-20 yrs</th>
<th>20+ yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Domain 1: Patient Management</td>
<td>59.8%</td>
<td>18.8</td>
<td>55.5%</td>
<td>20.1</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>18.3%</td>
<td>14.2</td>
<td>20.0%</td>
<td>14.1</td>
</tr>
<tr>
<td>Domain 3: Education and Information Management</td>
<td>18.1%</td>
<td>11.1</td>
<td>20.3%</td>
<td>12.8</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>3.9%</td>
<td>4.2</td>
<td>4.2%</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Importance Ratings for Domains by Subgroups

Domain Importance Ratings by Percentage of Time Providing Pharmacy Services for Pediatric Patients

<table>
<thead>
<tr>
<th>Domain</th>
<th>< 50% Pediatric Time</th>
<th>≥ 50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Domain 1: Patient Management</td>
<td>3.9</td>
<td>.4</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>3.6</td>
<td>.7</td>
</tr>
<tr>
<td>Domain 3: Education and Information Management</td>
<td>3.6</td>
<td>.5</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>3.1</td>
<td>.8</td>
</tr>
</tbody>
</table>

Domain Importance by Years of Experience Working with Pediatric Patients

<table>
<thead>
<tr>
<th>Domain</th>
<th>1-5 yrs</th>
<th>6-10 yrs</th>
<th>11-20 yrs</th>
<th>20+ yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Domain 1: Patient Management</td>
<td>4.0</td>
<td>.1</td>
<td>3.9</td>
<td>.3</td>
</tr>
<tr>
<td>Domain 2: Practice Management</td>
<td>3.7</td>
<td>.5</td>
<td>3.6</td>
<td>.6</td>
</tr>
<tr>
<td>Domain 3: Education and Information Management</td>
<td>3.6</td>
<td>.6</td>
<td>3.5</td>
<td>.7</td>
</tr>
<tr>
<td>Domain 4: Public Health and Advocacy</td>
<td>3.1</td>
<td>.8</td>
<td>2.8</td>
<td>.8</td>
</tr>
</tbody>
</table>
Appendix 9
Subgroup Analysis for Task Ratings
Task Frequency Ratings by Percentage of Time Providing Pharmacy Services for Pediatric Patients

Domain 1: Patient Management

For the Pediatric Patient:

1.1 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.

1.2 Obtain relevant clinical and laboratory data and results of diagnostic procedures.

1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.

1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).

1.5 Analyze and interpret collected patient information.

1.6 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.

1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers.

1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.

1.9 Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.

1.10 Participate in the management of pediatric emergencies.

1.11 Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.

1.12 Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to an appropriate alternative level of care.

Domain 2: Practice Management

<table>
<thead>
<tr>
<th>Task Description</th>
<th>< 50% Pediatric Time</th>
<th>≥ 50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Obtain pertinent patient information</td>
<td>M 4.4</td>
<td>M 4.8</td>
</tr>
<tr>
<td>1.2 Obtain relevant clinical and laboratory data</td>
<td>M 4.5</td>
<td>M 4.9</td>
</tr>
<tr>
<td>1.3 Perform pertinent physical assessments</td>
<td>M 2.1</td>
<td>M 2.3</td>
</tr>
<tr>
<td>1.4 Perform point of care testing</td>
<td>M 1.5</td>
<td>M 1.4</td>
</tr>
<tr>
<td>1.5 Analyze and interpret collected patient information</td>
<td>M 4.5</td>
<td>M 4.9</td>
</tr>
<tr>
<td>1.6 Identify and prioritize current or potential patient-specific medical,</td>
<td>M 4.3</td>
<td>M 4.8</td>
</tr>
<tr>
<td>medication, and nutrition related problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers</td>
<td>M 3.9</td>
<td>M 4.6</td>
</tr>
<tr>
<td>1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen</td>
<td>M 3.8</td>
<td>M 4.7</td>
</tr>
<tr>
<td>with healthcare team and patient/parents/caregivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9 Design and implement a plan to monitor the safety and efficacy of a</td>
<td>M 3.9</td>
<td>M 4.6</td>
</tr>
<tr>
<td>therapeutic regimen, and adjust as necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10 Participate in the management of pediatric emergencies</td>
<td>M 2.1</td>
<td>M 3.0</td>
</tr>
<tr>
<td>1.11 Reconcile medications as necessary across the continuum of care including</td>
<td>M 3.3</td>
<td>M 4.2</td>
</tr>
<tr>
<td>on admission, transfer, discharge, and during outpatient encounters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12 Identify and refer patients with needs beyond the scope of the pediatric</td>
<td>M 2.2</td>
<td>M 2.6</td>
</tr>
<tr>
<td>pharmacy specialist to an appropriate alternative level of care</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Domain 3: Information Management and Education

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>< 50% Pediatric Time</th>
<th>≥ 50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>3.2</td>
<td>Educate healthcare professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.</td>
<td>3.4</td>
<td>3.7</td>
</tr>
<tr>
<td>3.3</td>
<td>Educate and provide counseling to patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>3.4</td>
<td>Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>3.5</td>
<td>Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice.</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.6</td>
<td>Develop and maintain a pediatric-specific medical reference library (electronic or print).</td>
<td>2.8</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Domain 4: Public Health and Patient Advocacy

<table>
<thead>
<tr>
<th>Description</th>
<th>< 50% Pediatric Time</th>
<th>≥ 50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>4.4 Participate in professional organizations related to pharmacy and pediatric practice.</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
<td>1.7</td>
<td>2.4</td>
</tr>
<tr>
<td>4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).</td>
<td>2.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Task Frequency Ratings by
Years of Experience Working with Pediatric Patients

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>1-5 yrs</th>
<th>6-10 yrs</th>
<th>11-20 yrs</th>
<th>20+ yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the Pediatric Patient:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.</td>
<td>4.9</td>
<td>4.7</td>
<td>4.7</td>
<td>4.6</td>
</tr>
<tr>
<td>1.2 Obtain relevant clinical and laboratory data and results of diagnostic procedures.</td>
<td>4.9</td>
<td>4.9</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5 Analyze and interpret collected patient information.</td>
<td>4.9</td>
<td>4.8</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>1.6 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.</td>
<td>4.8</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers.</td>
<td>4.6</td>
<td>4.6</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.</td>
<td>4.6</td>
<td>4.7</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>1.9 Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.</td>
<td>4.6</td>
<td>4.6</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>1.10 Participate in the management of pediatric emergencies.</td>
<td>3.1</td>
<td>3.0</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>1.11 Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.</td>
<td>4.3</td>
<td>4.1</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.12 Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to an appropriate alternative level of care.</td>
<td>2.8</td>
<td>2.5</td>
<td>2.3</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Domain 2: Practice Management

<table>
<thead>
<tr>
<th>Objective</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.</td>
<td>3.3</td>
<td>3.3</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>2.2 Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g., infusion pumps, CPOE, bar coding).</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>2.3 Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.</td>
<td>2.7</td>
<td>2.7</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>2.4 Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.</td>
<td>2.8</td>
<td>2.8</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>2.5 Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).</td>
<td>2.6</td>
<td>2.6</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>2.6 Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.</td>
<td>3.2</td>
<td>3.1</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.</td>
<td>1.9</td>
<td>1.9</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>2.8 Justify and document the clinical and financial value of pediatric pharmacy services:</td>
<td>3.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Domain 3: Information Management and Education

<table>
<thead>
<tr>
<th>Objective</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.</td>
<td>3.5</td>
<td>3.8</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>3.2 Educate healthcare professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.</td>
<td>3.7</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>3.3 Educate and provide counseling to patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.</td>
<td>3.4</td>
<td>3.4</td>
<td>3.2</td>
<td>3.7</td>
</tr>
<tr>
<td>3.4 Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>
3.5 Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice.

3.6 Develop and maintain a pediatric-specific medical reference library (electronic or print).

<table>
<thead>
<tr>
<th>Domain 4: Public Health and Patient Advocacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
</tr>
<tr>
<td>4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
</tr>
<tr>
<td>4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
</tr>
<tr>
<td>4.4 Participate in professional organizations related to pharmacy and pediatric practice.</td>
</tr>
<tr>
<td>4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
</tr>
<tr>
<td>4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).</td>
</tr>
</tbody>
</table>
Task Importance Ratings by Percentage of Time Providing Pharmacy Services for Pediatric Patients

<table>
<thead>
<tr>
<th>Domain 1: Patient Management</th>
<th>< 50% Pediatric Time</th>
<th>≥ 50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the Pediatric Patient:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.2 Obtain relevant clinical and laboratory data and results of diagnostic procedures.</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).</td>
<td>3.1</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5 Analyze and interpret collected patient information.</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.6 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers.</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>1.9 Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>1.10 Participate in the management of pediatric emergencies.</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>1.11 Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.</td>
<td>3.9</td>
<td>3.8</td>
</tr>
<tr>
<td>1.12 Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to an appropriate alternative level of care.</td>
<td>3.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Domain 2: Practice Management
Domain 2: Practice and Service Delivery

<table>
<thead>
<tr>
<th>2.1 Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.</th>
<th><50% Pediatric Time</th>
<th>≥50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>2.2 Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g. infusion pumps, CPOE, bar coding).</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>2.3 Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>2.4 Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>2.5 Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).</td>
<td>3.8</td>
<td>3.6</td>
</tr>
<tr>
<td>2.6 Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>2.8 Justify and document the clinical and financial value of pediatric pharmacy services:</td>
<td>3.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Domain 3: Information Management and Education

<table>
<thead>
<tr>
<th>3.1 Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.</th>
<th><50% Pediatric Time</th>
<th>≥50% Pediatric Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3.2 Educate healthcare professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>3.3 Educate and provide counseling to patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.</td>
<td>3.9</td>
<td>3.8</td>
</tr>
<tr>
<td>3.4 Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>3.5 Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice.</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>3.6 Develop and maintain a pediatric-specific medical reference library (electronic or print).</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Domain 4: Public Health and Patient Advocacy</td>
<td>< 50% Pediatric Time</td>
<td>≥ 50% Pediatric Time</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>4.4 Participate in professional organizations related to pharmacy and pediatric practice.</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).</td>
<td>3.3</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Task Importance Ratings by Years of Experience Working with Pediatric Patients

Domain 1: Patient Management

<table>
<thead>
<tr>
<th>Task Description</th>
<th>1-5 yrs</th>
<th>6-10 yrs</th>
<th>11-20 yrs</th>
<th>20+ yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.</td>
<td>4.0</td>
<td>3.9</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.2 Obtain relevant clinical and laboratory data and results of diagnostic procedures.</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.3 Perform pertinent physical assessments to evaluate patient condition and guide patient medication management.</td>
<td>2.8</td>
<td>2.8</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>1.4 Perform point of care testing (e.g., blood glucose, international normalized ratio [INR]).</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5 Analyze and interpret collected patient information.</td>
<td>4.0</td>
<td>4.0</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.6 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.</td>
<td>3.9</td>
<td>4.0</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.7 Establish therapeutic goals with healthcare team and patient/parents/caregivers.</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>1.8 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.9 Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.</td>
<td>4.0</td>
<td>3.9</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>1.10 Participate in the management of pediatric emergencies.</td>
<td>3.7</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>1.11 Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.</td>
<td>3.8</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>1.12 Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to an appropriate alternative level of care.</td>
<td>3.1</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Domain 2: Practice Management

<table>
<thead>
<tr>
<th>2.1 Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.</th>
<th>3.8</th>
<th>3.8</th>
<th>3.8</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g., infusion pumps, CPOE, bar coding).</td>
<td>3.6</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>2.3 Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.</td>
<td>3.6</td>
<td>3.6</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>2.4 Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.</td>
<td>3.7</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>2.5 Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>2.6 Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.</td>
<td>3.8</td>
<td>3.6</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>2.7 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.</td>
<td>3.2</td>
<td>3.1</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>2.8 Justify and document the clinical and financial value of pediatric pharmacy services:</td>
<td>3.5</td>
<td>3.3</td>
<td>3.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Domain 3: Information Management and Education

3.1 Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.	3.7	3.7	3.6	3.6
3.2 Educate healthcare professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.	3.7	3.7	3.6	3.6
3.3 Educate and provide counseling to patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.	3.8	3.8	3.7	3.8
3.4 Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).	3.4	3.2	3.1	3.3
3.5 Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice. | 3.6 | 3.4 | 3.4 | 3.7 |

3.6 Develop and maintain a pediatric-specific medical reference library (electronic or print). | 3.5 | 3.4 | 3.3 | 3.4 |

Domain 4: Public Health and Patient Advocacy

4.1 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.	3.3	3.1	3.2	3.3
4.2 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.	3.5	3.4	3.5	3.6
4.3 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).	3.4	3.3	3.3	3.3
4.4 Participate in professional organizations related to pharmacy and pediatric practice.	3.4	3.3	3.2	3.4
4.5 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.	3.4	3.3	3.3	3.4
4.6 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).	3.4	3.2	3.3	3.6
Appendix 10
Final Pediatric Pharmacy Role Delineation
Domain 1: Patient Management
Tasks related to the comprehensive management of a pediatric patient including collecting, interpreting, and integrating pertinent clinical data; and designating, implementing, monitoring, and modifying patient-specific plans of care for pediatric patients in collaboration with the healthcare team.

For the Pediatric Patient:

1.15 Obtain pertinent patient information (e.g., weight, height and/or body surface area, age, allergies, disease states, medication history including herbal and dietary supplements, current medications, dose form preference, immunization status, nutritional status, and social/family history) via medical record, discussion with healthcare colleagues and/or patient/parent/caregiver interview.

1.16 Obtain relevant clinical and laboratory data and results of diagnostic procedures.

1.17 Analyze and interpret collected patient information.

1.18 Identify and prioritize current or potential patient-specific medical, medication, and nutrition related problems.

1.19 Establish therapeutic goals with healthcare team and patient/parents/caregivers.

1.20 Design, recommend and/or implement an age-appropriate therapeutic regimen with healthcare team and patient/parents/caregivers.

1.21 Design and implement a plan to monitor the safety and efficacy of a therapeutic regimen, and adjust as necessary.

1.22 Participate in the management of pediatric emergencies.

1.23 Reconcile medications as necessary across the continuum of care including on admission, transfer, discharge, and during outpatient encounters.

1.24 Identify and refer patients with needs beyond the scope of the pediatric pharmacy specialist to an appropriate alternative level of care.
Knowledge of:
k1.33 Normal growth and development of the pediatric population
k1.34 Age-appropriate interviewing techniques for patients, parents, and caregivers
k1.35 Essential components of a medical history including maternal and birth history and childhood immunization status, if appropriate
k1.36 Essential components of a social history, including day care attendance, siblings, smoke exposure, home environment
k1.37 Pathophysiology, epidemiology, risk factors, diagnosis, prevention, and evidence-based treatment of common diseases and conditions in pediatric patients
k1.38 Equations to calculate body surface area, creatinine clearance, fluid requirements, and ideal body weight from birth to adult
k1.39 Pediatric populations for which standard calculated methods of assessment of renal impairment are not reliable
k1.40 Urine output calculation for body weight and appropriate output per age
k1.41 Methods for assessment of hepatic function in pediatric populations
k1.42 Normal laboratory values and vital signs from birth to adult
k1.43 Age-associated differences in pathophysiology and clinical manifestations of disease across patient populations
k1.44 Age-specific pharmacokinetic differences in neonates, infants, children, and adolescents:
k1.45 Age-specific pharmacodynamic differences in neonates, infants, children, and adolescents:
k1.46 Pharmacogenomic considerations in pediatric patients
k1.47 Appropriate use of off-label medications to treat pediatric patients
k1.48 Pediatric-specific drug interactions (e.g., ceftriaxone and calcium-containing products in the neonate, calcium and phosphorous in parenteral nutrition)
k1.49 Clinical or therapeutic implications in the fetus and neonate of placental transfer of medications or other substances (e.g., antenatal steroids, neonatal abstinence syndrome [NAS], anticonvulsant withdrawal)
k1.50 Influence of medications on the production of breast milk
k1.51 Excretion of medications and other substances in breast milk
k1.52 Appropriate dosing based on age and body size (e.g., body surface area, post-menstrual age, gestational age, dosing weight)
k1.53 Medication dosing in extracorporeal membrane oxygenation (ECMO) and in renal replacement therapy (e.g., continuous renal replacement therapy [CRRT], PD, HD)
k1.54 Medication dose adjustment in pediatric patients with renal and hepatic impairment
k1.55 Essential components of medication reconciliation in pediatric patients (e.g., concentration, dose in mg, palatability)
k1.56 Pediatric-specific adverse effects (e.g., liver failure with valproate, tetracycline and tooth discoloration):

k1.57 Differences in laboratory sampling for pediatric patients (e.g., blood volume; method, frequency and timing of sampling)

k1.58 Differences in the management of pediatric emergencies (e.g., respiratory distress, neonatal seizures, cardiopulmonary arrest)

k1.59 Nutritional and fluid requirements for infants and children for normal growth and disease

k1.60 Childhood immunization schedules

k1.61 Factors affecting adherence to the treatment regimen

k1.62 Specialty needs of pediatric patients requiring referral to other providers (e.g., infant with signs of dehydration, patient needs compounded oral formulation)

Domain 2: Practice Management

Tasks related to advancing pediatric pharmacy practice; and recommending, designing, implementing, and monitoring systems and policies to optimize the care of pediatric patients.

2.9 Develop and implement systems to assure appropriate drug delivery (e.g., extemporaneous compounding, standardized concentrations) for pediatric patients.

2.10 Participate in decision-making regarding selection and implementation of equipment/technology and decision support involved in the medication use process (e.g. infusion pumps, CPOE, bar coding).

2.11 Develop and maintain a preferred formulary for pediatric patients and ensure appropriate pediatric dosing is incorporated in all formulary monographs.

2.12 Adopt, adapt or develop evidence-based practice guidelines and protocols for the management of pediatric patients in accordance with health-system policies and procedures.

2.13 Establish processes to anticipate, prevent, review, and report medication use events (e.g., trigger review, root cause analysis, failure mode and effects analysis, MedWatch, Vaccine Adverse Event Reporting System [VAERS]).

2.14 Perform continuous quality improvement activities aimed at enhancing safety and effectiveness of medication use.

2.15 Develop policies and direct the medication use process for investigational drugs (including compassionate use agents) in the pediatric population.

2.16 Justify and document the clinical and financial value of pediatric pharmacy services.

Knowledge of:

k2.10 Medication safety considerations (e.g., Institute for Safe Medication Practices [ISMP] and Joint Commission recommendations, Food and Drug Administration [FDA] alerts)
k2.11 Position statements, white papers, and national guidelines as an aid to the development of health-system policies and procedures

k2.12 Pediatric-specific considerations (e.g., age and body size) in the design or improvement of medication use processes (e.g., computerized physician order entry [CPOE], infusion pumps, electronic medical record [EMR])

k2.13 Routes of administration (e.g., intraosseous, oral/enteral, parenteral, IM, transdermal, intranasal, intraventricular)

k2.14 Impact of medication administration techniques on drug delivery in pediatric patients (e.g., inhalers, dead space in IV tubing, overfill, j-tip device)

k2.15 Medication administration technology (e.g., infusion pumps, subcutaneous needle devices, intranasal administration devices, aerosols)

k2.16 Appropriate references to support the preparation of pediatric formulations (e.g., IV dilutions, extemporaneously compounded preparations)

k2.17 Considerations when selecting pediatric-appropriate dosage formulations

k2.18 Metrics for evaluating quality of pediatric pharmacy services (e.g., patient/parent/caregiver satisfaction, length of stay, readmission, medication errors)
Domain 3: Information Management and Education
Tasks related to retrieval, generation, interpretation, and dissemination of knowledge related to pediatric pharmacy, and the education of healthcare providers, trainees, patients and caregivers.

3.7 Provide pediatric pharmacy-specific education and training for pharmacists, pharmacy technicians, pharmacy fellows, pharmacy residents, or student pharmacists.

3.8 Educate healthcare professionals or students in other health professions concerning safe and effective use of medications and other issues related to the care of the pediatric patient.

3.9 Educate and provide counseling to patients/parents/caregivers regarding the safe and effective use of medications, the treatment regimen, the monitoring of side effects, and the importance of adherence to the treatment regimen.

3.10 Contribute to the pediatric body of knowledge (e.g., participate in research, deliver presentations, participate as peer reviewer, publish).

3.11 Retrieve and interpret biomedical literature with regard to study methodology, statistical analysis, study results and applicability to pediatric pharmacy practice.

3.12 Develop and maintain a pediatric-specific medical reference library (electronic or print).

Knowledge of:

k3.11 Principles and methods of educating pharmacy staff, fellows, residents, student pharmacists and/or other healthcare professionals regarding pediatric health-related issues

k3.12 Age-appropriate patient education principles and methods

k3.13 Health literacy and cultural considerations in educating patients/parents/caregivers:

k3.14 Tools, methods and counseling techniques to increase adherence to the treatment regimen:

k3.15 Research design, methodology, and statistical analysis:

k3.16 Clinical application and limitations of published data and reports

k3.17 Regulatory/IRB/human subjects safety requirements and concerns for conducting research in the pediatric population

k3.18 Medical literature publication and review process

k3.19 Opportunities for disseminating pediatric knowledge and scholarly activity (e.g., presentations, manuscripts, newsletters, abstracts, posters)

k3.20 Appropriate pediatric-specific references

Domain 4: Public Health and Patient Advocacy
Tasks related to providing preventive health services, public health information, and advocacy for the pediatric patient population healthcare policy.

4.7 Advocate for public health initiatives to promote health, safety, and wellness in infants, children and adolescents.
4.8 Advocate for the availability of age-appropriate formulations, safety and efficacy studies in the pediatric population, and product labeling in pediatric patients.

4.9 Educate the public regarding the importance of health, safety, and wellness in infants, children and adolescents (e.g., poison prevention, vaccination, safe and effective medication use, substance abuse/misuse).

4.10 Participate in professional organizations related to pharmacy and pediatric practice.

4.11 Facilitate access to care and treatment for pediatric patients in times of financial need, disaster, drug shortage, or public health threat.

4.12 Promote the role of the pediatric pharmacy specialist to stakeholders (e.g., healthcare system administrators, legislators, patients/parents/caregivers).

Knowledge of:

k4.10 Healthcare disparities in pediatric patients

k4.11 Access to care disparities in pediatric patients

k4.12 Emergency preparedness resources for pediatric patients

k4.13 Public health resources for pediatric patients (e.g., childhood immunizations, sexually transmitted disease [STD] treatment, free health clinics)

k4.14 Public health initiatives and legislation to improve the overall well-being of children (e.g., smoking cessation, child proof caps, poison prevention, Best Pharmaceuticals for Children Act)

k4.15 Resources that improve access to medications and other therapies necessary for the care of pediatric patients (e.g., WIC, patient assistance programs, specialty pharmacies, compounding pharmacies)

k4.16 Professional organizations and their roles and resources related to advocacy

k4.17 Appropriate avenues to advocate for safe and effective use of medications in the pediatric populations (e.g., pediatric-specific formulations, removal of dangerous substances from the market, pediatric-specific product labeling)

k4.18 Evidence demonstrating value of post doctoral pediatric training and the pediatric pharmacy specialist (e.g., decreasing medication errors, decreased cost, decreased length of stay, improved outcomes)
Appendix D-2

NAPLEX Blueprint
NAPLEX Blueprint

As a direct result of a national analysis conducted by NABP, a new NAPLEX blueprint went into effect March 1, 2010. The analysis consisted of an evaluation of current pharmacy practice outcomes and an expert review of the current NAPLEX blueprint content. An analysis such as this is customarily performed on a regular basis to ensure that the blueprint, which guides the content of the NAPLEX, is current with the knowledge and skills necessary to safely and effectively practice entry-level pharmacy.

One of the more noteworthy changes to the blueprint included the addition of pharmacoeconomics to three competency statements to appropriately reflect its incorporation into the practice of pharmacy today with respect to patient care outcomes. The blueprint was validated through a survey of practicing pharmacists across the United States and Canada. Analysis of the survey resulted in changes to the percentage of examination questions allotted to two of the three major content areas of the blueprint.

New Passing Standard

The final step of the NAPLEX blueprint review involved convening a panel of subject matter experts and practicing pharmacists from across the country to participate in a standard-setting study. Throughout the study, the panel focused on the level of knowledge and performance related to pharmacy practice that is expected of a pharmacist in order to protect the health and welfare of the public. This type of study helps to ensure that the performance standard is valid and appropriate for contemporary practice standards.

The NAPLEX Competency Statements

The NAPLEX Competency Statements provide a blueprint of the topics covered on the examination. They offer important information about the knowledge, judgment, and skills you are expected to demonstrate as an entry-level pharmacist. A strong understanding of the Competency Statements will aid in your preparation to take the examination.

Area 1 Assess Pharmacotherapy to Assure Safe and Effective Therapeutic Outcomes (Approximately 56% of Test)

- **1.1.0** Identify, interpret, and evaluate patient information to determine the presence of a disease or medical condition, assess the need for treatment and/or referral, and identify patient-specific factors that affect health, pharmacotherapy, and/or disease management.
- **1.1.1** Identify and assess patient information including medication, laboratory, and disease state histories.
• 1.1.2 Identify patient specific assessment and diagnostic methods, instruments, and techniques and interpret their results.
• 1.1.3 Identify and define the etiology, terminology, signs, and symptoms associated with diseases and medical conditions and their causes and determine if medical referral is necessary.
• 1.1.4 Identify and evaluate patient genetic, and biosocial factors, and concurrent drug therapy, relevant to the maintenance of wellness and the prevention or treatment of a disease or medical condition.
• 1.2.0 Evaluate information about pharmacoeconomic factors, dosing regimen, dosage forms, delivery systems and routes of administration to identify and select optimal pharmacotherapeutic agents, for patients
• 1.2.1 Identify specific uses and indications for drug products and recommend drugs of choice for specific diseases or medical conditions.
• 1.2.2 Identify the chemical/pharmacologic classes of therapeutic agents and describe their known or postulated sites and mechanisms of action.
• 1.2.3 Evaluate drug therapy for the presence of pharmacotherapeutic duplications and interactions with other drugs, food, and diagnostic tests.
• 1.2.4 Identify and evaluate potential contraindications and provide information about warnings and precautions associated with a drug product’s active and inactive ingredients.
• 1.2.5 Identify physicochemical properties of drug substances that affect their solubility, pharmacodynamic and pharmacokinetic properties, pharmacologic actions, and stability.
• 1.2.6 Evaluate and interpret pharmacodynamic and pharmacokinetic principles to calculate and determine appropriate drug dosing regimens.
• 1.2.7 Identify appropriate routes of administration, dosage forms, and pharmaceutical characteristics of drug dosage forms and delivery systems, to assure bioavailability and enhance therapeutic efficacy.
• 1.3.0 Evaluate and manage drug regimens by monitoring and assessing the patient and/or patient information, collaborating with other health care professionals, and providing patient education to enhance safe, effective, and economic patient outcomes.
• 1.3.1 Identify pharmacotherapeutic outcomes and endpoints.
• 1.3.2 Evaluate patient signs and symptoms, and the findings of monitoring tests and procedures to determine the safety and effectiveness of pharmacotherapy. Recommend needed followup evaluations or tests when appropriate.
• 1.3.3 Identify, describe, and provide information regarding the mechanism of adverse reactions, allergies, side effects, iatrogenic, and drug-induced illness, including their management and prevention.
• 1.3.4 Identify, prevent, and address methods to remed[y medication non-adherence, misuse, or abuse.
• 1.3.5 Evaluate current drug regimens and recommend pharmacotherapeutic alternatives or modifications.

Area 2 Assess Safe and Accurate Preparation and Dispensing of Medications
(Approximately 33% of Test)
• 2.1.0 Demonstrate the ability to perform calculations required to compound, dispense, and administer medication.
• 2.1.1 Calculate the quantity of medication to be compounded or dispensed; reduce and enlarge formulation quantities and calculate the quantity or ingredients needed to compound the proper amount of the preparation.
• 2.1.2 Calculate nutritional needs and the caloric content of nutrient sources.
• 2.1.3 Calculate the rate of drug administration.
• 2.1.4 Calculate or convert drug concentrations, ratio strengths, and/or extent of ionization.
• 2.2.0 Demonstrate the ability to select and dispense medications in a manner that promotes safe and effective use.
• 2.2.1 Identify drug products by their generic, brand, and/or common names.
• 2.2.2 Identify whether a particular drug dosage strength or dosage form is commercially available and whether it is available on a nonprescription basis.
• 2.2.3 Identify commercially available drug products by their characteristic physical attributes.
• 2.2.4 Assess pharmacokinetic parameters and quality assurance data to determine equivalence among manufactured drug products, and identify products for which documented evidence of inequivalence exists.

• 2.2.5 Identify and provide information regarding appropriate packaging, storage, handling, administration, and disposal of medications.

• 2.2.6 Identify and provide information regarding the appropriate use of equipment and apparatus required to administer medications.

• 2.3.0 Demonstrate the knowledge to prepare and compound extemporaneous preparations and sterile products.

• 2.3.1 Identify techniques, procedures, and equipment related to drug preparation, compounding, and quality assurance.

• 2.3.2 Identify the important physicochemical properties of a preparation’s active and inactive ingredients.

• 2.3.3 Identify the mechanism of and evidence for the incompatibility or degradation of a product or preparation and methods for achieving its stability.

Area 3 Assess, Recommend, and Provide Health care Information that Promotes Public Health (Approximately 11% of Test)

• 3.1.0 Identify, evaluate, and apply information to promote optimal health care.

• 3.1.1 Identify the typical content of specific sources of drug and health information for both health care providers and consumers, and recommend appropriate resources to address questions or needs.

• 3.1.2 Evaluate the suitability, accuracy, and reliability of clinical and pharmacoeconomic data by analyzing experimental design, statistical tests, interpreting results, and formulating conclusions.

• 3.2.0 Recommend and provide information to educate the public and healthcare professionals regarding medical conditions, wellness, dietary supplements, and medical devices.

• 3.2.1 Recommend and provide health care information regarding the prevention and treatment of diseases and medical conditions, including emergency patient care and vaccinations.

• 3.2.2 Recommend and provide health care information regarding nutrition, lifestyle, and other non-drug measures that promote health or prevent the progression of a disease or medical condition.

• 3.2.3 Recommend and provide information regarding the documented uses, adverse effects, and toxicities of dietary supplements.

• 3.2.4 Recommend and provide information regarding the selection, use, and care of medical/surgical appliances and devices, self-care products, and durable medical equipment, as well as products and techniques for self-monitoring of health status and medical conditions.
Appendix F-1

ASHP Educational Outcomes, Goals, and Objectives for Postgraduate Year Two (PGY2) Pharmacy Residencies in Pediatrics
Educational Outcomes, Goals, and Objectives for Postgraduate Year Two (PGY2) Pharmacy Residencies in Pediatrics

Prepared in collaboration with the Pediatric Pharmacy Advocacy Group

Overview of PGY2 Pharmacy Residencies in Pediatrics

The PGY2 pharmacy residency in pediatrics is designed to transition PGY1 residency graduates from generalist practice to specialized practice focused on the care of pediatric patients. Residency graduates are equipped to participate as integral members of interdisciplinary teams caring for pediatric patients, assuming responsibility for pharmaceutical care. These residents acquire the capacity to deliver evidence-based care to pediatric patients within the limitations presented by the shortage of research in the use of medications in this patient population. They are able to prepare or supervise the preparation of the unique formulations required by pediatric patients as those patients’ needs change according to their stage of growth and development.

Pediatric pharmacy residency graduates will serve health care organizations successfully as the ultimate resource for information about medications used in the care of children and for decision-making affecting the care of these patients. This includes leadership in decision-making related to the use or modification of guidelines for the care of individual patients and for participation in organizational planning for, implementation of, and maintenance of technology and automation systems.

Exiting residents have been trained to assume responsibility for identifying and implementing opportunities to improve the medication-use system in pediatric practice areas. Groomed for practice leadership, pediatric pharmacy residency graduates can be expected to continue their pursuit of expertise in practice; to possess advanced skills to identify the pharmacotherapy and medication-use training needs of other health care professionals caring for pediatric patients; to deliver effective training to those health care professionals; and to contribute to public health efforts for health improvement, wellness, and disease prevention.
Explanation of the Contents of This Document:

Each of the document’s objectives has been classified according to educational taxonomy (cognitive, affective, or psychomotor) and level of learning. An explanation of the taxonomies is available elsewhere.¹

The order in which the required educational outcomes are presented in this document does not suggest relative importance of the outcome, amount of time that should be devoted to teaching the outcome, or sequence for teaching.

The educational outcomes, goals, and objectives are divided into those that are required and those that are elective. The required outcomes, including all of the goals and objectives falling under them, must be included in the design of all programs. The elective outcomes are provided for those programs that wish to add to the required outcomes. Programs selecting an elective outcome are not required to include all of the goals and objectives falling under that outcome. In addition to the potential elective outcomes contained in this document, programs are free to create their own elective outcomes with associated goals and objectives. Other sources of elective outcomes may include elective educational outcomes in the list provided for PGY1 pharmacy residencies and educational outcomes for training in other PGY2 areas. Each of the goals falling under the program’s selection of program outcomes (required and elective) must be evaluated at least once during the resident’s year.

Educational Outcomes (Outcome): Educational outcomes are statements of broad categories of the residency graduates’ capabilities.

Educational Goals (Goal): Educational goals listed under each educational outcome are broad sweeping statements of abilities.

Educational Objectives (OBJ): Resident achievement of educational goals is determined by assessment of the resident’s ability to perform the associated educational objectives below each educational goal.

Instructional Objectives (IO): Instructional objectives are the result of a learning analysis of each of the educational objectives. They are offered as a resource for preceptors encountering difficulty in helping residents achieve a particular educational objective. The instructional objectives falling below the educational objectives suggest knowledge and skills required for successful performance of the educational objective that the resident may not possess upon entering the residency year. Instructional objectives are teaching tools only. They are not required in any way nor are they meant to be evaluated.

Outcome R1: Demonstrate leadership and practice management skills in the pediatric patient care setting.

Goal R1.1 Exhibit the ongoing development of essential personal skills of a pediatric pharmacy practice leader.

OBJ R1.1.1 (Characterization) Practice self-managed continuing professional development with the goal of improving the quality of one’s own performance through self-assessment and change.

IO State criteria for judging one’s performance of tasks that are critical in one’s own practice.

IO Explain the role of participation in pediatric and pharmacy professional organization meetings in the ongoing development of expertise in pediatric pharmacy.

IO Explain the importance of staying current with pertinent pediatric literature.

OBJ R1.1.2 (Characterization) Demonstrate commitment to the professional practice of pediatric pharmacy through active participation in the activities of local, state, and/or national pediatric and pharmacy professional organizations.

IO Assess the relevance of membership or participation in various professional organizations associated with pediatric pharmacy practice.

IO Explain the importance of contributing to the work of pediatric professional organizations in advancing the visibility of the pharmacist’s role in the care of pediatric patients.

OBJ R1.1.3 (Synthesis) Devise an effective plan for balancing professional and personal life.

IO Explain the importance of balancing professional and personal life.

IO Explain potential negative consequences of failure to achieve balance in professional and personal life.

IO Explain various approaches advocated for achieving balance in one’s life.

OBJ R1.1.4 (Characterization) Display integrity in professional relationships and actions.

IO Explain ethical dilemmas that may confront the pediatric pharmacist.

IO Explain the system of ethical reasoning employed in arriving at a particular ethical decision.

IO Explain ethical principles embodied in the American Pharmacists Association Code of Ethics for Pharmacists.

IO Explain the implications of the Belmont Report\(^2\) for ethical decision-making in pediatric pharmacy.

OBJ R1.1.5 (Application) Comply with the requirements of the organization’s policy in all interactions with the pharmaceutical industry.

IO Explain the potential conflicts inherent in the objectives of one’s health care organization and the objectives of a pharmaceutical industry representative.

OBJ R1.1.6 (Synthesis) Initiate and maintain a systematic approach to documenting professional activities and accomplishments.

Goal R1.2 Contribute to the leadership and management activities within the pediatric pharmacy practice area.

OBJ R1.2.1 (Application) Use effective negotiation skills to resolve conflicts.

OBJ R1.2.2 (Synthesis) Use group participation skills when leading or working as a member of a formal or informal work group.

IO Explain methods for achieving consensus.

IO Explain how to create an agenda for a meeting.

IO Explain methods for assuring participation by all members of a group.

IO Explain methods for effective group leadership.

Goal R1.3 Exercise pediatric pharmacy practice leadership.

OBJ R1.3.1 (Characterization) Demonstrate a commitment to advocacy for the optimal care of pediatric patients through the assertive and persuasive presentation of patient care issues to members of the health care team, the patient, and/or the patient’s representative(s).

OBJ R1.3.2 (Characterization) Display initiative in preventing, identifying, and resolving pharmacy-related pediatric patient care problems.

OBJ R1.3.3 (Comprehension) Explain the nature of mentoring in pharmacy, its potential connection with achievement, and the importance of being willing to serve as a mentor to appropriate individuals.

OBJ R1.3.4 (Comprehension) Explain the general processes of establishing and maintaining a pediatric pharmacy residency program.

OBJ R1.3.5 (Comprehension) Explain the benefits, to the practitioner and the profession, of contributing to the pediatric pharmacy literature.

Goal R1.4 Communicate effectively.

OBJ R1.4.1 (Analysis) Use an understanding of effectiveness, efficiency, customary practice and the recipient's preferences to determine the appropriate type of, and medium and organization for, communication.

IO Accurately identify the primary theme or purpose of one's written or oral communication.

IO Accurately determine what information will provide credible background to support or justify the primary theme of one's written or oral communication.

IO Properly sequence ideas in written and oral communication.

IO Accurately determine the depth of communication appropriate to one's audience.

IO Accurately determine words and terms that are appropriate to one's audience.

IO Accurately determine one's audience's needs.
IO Accurately identify the length of communication that is appropriate to the situation.

IO Explain the importance of assessing the listener's understanding of the message conveyed.

IO Explain techniques for persuasive communications.

OBJ R1.4.2 (Complex Overt Response) Speak clearly, distinctly, and with correct grammar in the primary language of the practice site.

OBJ R1.4.3 (Application) Use listening skills effectively in performing job functions.

IO Explain the use of body language in listening to others.

IO Explain verbal techniques that can be used to enhance listening to others.

OBJ R1.4.4 (Application) Use correct grammar, punctuation, spelling, style, and formatting conventions in preparing all written communications.

Outcome R2: Optimize the care of inpatient and outpatient pediatric patients by providing evidence-based, patient-centered medication therapy as an integral part of an interdisciplinary team.

(A residency in pediatric pharmacy is dependent upon the availability of a broad range of patient categories and professional practice experience. Therefore, core experiences in direct patient care must occur with both pediatric inpatients and outpatients. However, the outpatient learning experience may be conducted in the same clinic through the year even if it is focused on a specialty area or a narrow spectrum of disease states, such as pediatric endocrinology or pediatric asthma.)

<table>
<thead>
<tr>
<th>Establish collaborative professional relationships with health care team members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritize delivery care to pediatric patients</td>
</tr>
<tr>
<td>Establish collaborative pharmacist-patient and pharmacist-caregiver relationships</td>
</tr>
<tr>
<td>Collect and analyze patient information</td>
</tr>
</tbody>
</table>

3 Evidence-based medicine -- the integration of best research evidence, clinical expertise, and patient values in making decisions about the care of individual patients (Institute of medicine, 2001; Straus and Sackett, 1998). Best research evidence includes evidence that can be quantified, such as that from randomized controlled trials, laboratory experiments, clinical trials, epidemiological research, and outcomes research and evidence derived from the practice knowledge of experts, including inductive reasoning (Guyatt et al., Higgs et al., 2001). Clinical expertise is derived from the knowledge and experience developed over time from practice, including inductive reasoning. Patient values and circumstances are the unique preferences, concerns, expectations, financial resources, and social supports that are brought by each patient to a clinical encounter. (Institute of Medicine. Health professions education: a bridge to quality. Washington, DC: The National Academies Press; 2001.)
When necessary make and follow up on patient referrals/consults

Design evidence-based therapeutic regimen

Design evidence-based monitoring plan

Recommend or communicate regimen and monitoring plan

Implement regimen and monitoring plan

Evaluate patient progress and redesign as necessary

Communicate ongoing patient information

Document direct patient care activity

Goal R2.1 Establish collaborative professional relationships with members of the inpatient and outpatient pediatric interdisciplinary teams.

OBJ R2.1.1 (Synthesis) Implement a strategy that effectively establishes cooperative, collaborative, and communicative working relationships with members of the pediatric interdisciplinary team.

IO Explain the training and expected areas of expertise of the members of the pediatric interdisciplinary team with which one works.

IO For each of the professions with which one interacts on the pediatric interdisciplinary team, explain the profession’s view of its role and responsibilities and their expectations of the pharmacist’s role in collaborations on patient-centered care.

IO Explain the professional dynamics of the different services that contribute to the care of pediatric patients.

IO Identify the interpersonal dynamics of each member of the pediatric interdisciplinary team.

Goal R2.2 For a caseload of pediatric patients, prioritize the delivery of pharmaceutical care.

OBJ R2.2.1 (Evaluation) Devise a plan for determining the priority for care of pediatric patients if given limited time and multiple patient care responsibilities.

IO Explain factors to consider when determining priority for care among pediatric patients.

Goal R2.3 Establish collaborative pharmacist-patient and pharmacist-caregiver relationships.

OBJ R2.3.1 (Synthesis) Formulate a strategy that effectively establishes a patient-centered pharmacist-patient and a pharmacist-caregiver relationship.

IO Explain unique characteristics of pediatric patients that may influence pharmacist-patient and pharmacist-caregiver relationships.

IO Explain the importance of including in the strategy an explanation to the patient and/or caregiver of the pediatric pharmacist’s role in his/her care.
IO Explain problems associated with emotional attachments between health care professionals and patients.

IO Explain the impact of fear, anger, depression, loss, grief and their opposites on the pharmacist’s approach to caring for pediatric patients.

IO Explain techniques for coping with the emotions generated by the abuse of children.

IO Explain the appropriate types of bonds between pharmacists and pediatric patients and their caregivers that can facilitate the pharmacist’s capacity to fulfill balanced caring with clinical judgment.

IO Explain the view of diverse cultures and religions on the conceptualization of illness, treatment, and of death and dying.

IO Explain modifications to communication strategies that can be effective in working with children of varying ages.

IO Explain modifications to communication strategies that can be effective in working with the caregivers of pediatric patients.

Goal R2.4 Collect and analyze patient information.

OBJ R2.4.1 (Analysis) Collect and organize all patient-specific information needed by the pediatric pharmacist to make appropriate evidence-based, patient-centered medication therapy recommendations as part of the pediatric interdisciplinary team. (See Appendix)

IO Identify the types of patient-specific information the pharmacist requires to anticipate, prevent, detect, and/or resolve medication-related problems and to make appropriate evidence-based, patient-centered medication therapy recommendations for pediatric patients.

IO Explain each of the developmental stages of children.

IO Explain the normal rates and stages of growth from infancy through adolescence.

IO Explain signs and symptoms, epidemiology, risk factors, pathogenesis, natural history of disease, pathophysiology, clinical course, etiology, and treatment of diseases commonly encountered in pediatric patients.

IO Explain the mechanism of action, pharmacokinetics, pharmacodynamics, pharmacogenomics, pharmacoeconomics, usual regimen (dose, schedule, dosage form, route, and method of administration), indications, contraindications, interactions, adverse reactions, and therapeutics of medications commonly used to treat pediatric patients.

IO Explain age-related differences in pharmacokinetics, pharmacodynamics, usual regimen (dose, schedule, dosage form, route, and method of administration), indications, contraindications, adverse reactions, and therapeutics of medications commonly used to treat pediatric patients.

IO Compare and contrast the pharmacokinetics of drugs in adults and in various pediatric populations.

IO Explain age-related differences in nutritional needs of pediatric patients.

IO Explain methods for meeting the nutritional needs of pediatric patients at each stage of development.

IO Explain age-related differences in vital signs and their interpretation.
IO Explain modifications to standard procedures for measuring vital signs that may be required for various pediatric populations.

IO Explain age-related differences in the interpretation of common laboratory findings.

IO Explain common teratogenic effects of drug exposure in utero.

IO Explain the relative safety for the infant of the presence of various drugs in breast milk.

OBJ R2.4.2 (Analysis) Determine the presence of any of the following medication therapy problems in the current medication therapy of a pediatric patient:

1. Medication used with no medical indication
2. Patient has medical conditions for which there is no medication prescribed
3. Medication prescribed inappropriately for a particular medical condition
4. Immunization regimen is incomplete
5. Current medication therapy regimen contains something inappropriate (dose, dosage form, duration, schedule, route of administration, method of administration)
6. There is therapeutic duplication
7. Medication to which the patient is allergic or sensitive to has been prescribed
8. There are adverse drug- or device-related events or potential for such events
9. There are clinically significant drug-drug, drug-disease, drug-food, or drug-laboratory test interactions or potential for such interactions
10. Medical therapy has been interfered with by social, recreational, nonprescription, complementary, or alternative drug use by the patient or others
11. Patient not receiving full benefit of prescribed medication therapy
12. There are problems arising from the financial impact of medication therapy on the patient or caregiver
13. Patient or caregiver lacks understanding of medication therapy
14. Patient or caregiver not adhering to medication regimen

IO Compare expectations of medication adherence and persistence of pediatric patients or their caregivers when patients are treated in the ambulatory versus inpatient environment.

IO Explain the necessity to consider the possibility of transfer of medications to the infant through breast milk.

IO Explain the necessity to consider the possibility of in utero exposure to medications.

IO Explain the importance of meeting age-appropriate nutritional needs.

OBJ R2.4.3 (Analysis) Using an organized collection of patient-specific information, summarize the health care needs of a pediatric patient.

IO Explain economic, social and environmental factors affecting the delivery of health care that should be considered when defining the health care needs of pediatric patients.

IO Explain the legal system for the protection of children and its impact on their health care.
IO Explain the impact of pediatric patients’ growth and development on changes in their health care needs.

Goal R2.5 When necessary, make and follow up on referrals/consults for pediatric patients.

OBJ R2.5.1 (Evaluation) When presented with a pediatric patient with health care needs that cannot be met by the pharmacist, make a referral/consult to the appropriate health care provider based on the patient’s acuity and the presenting problem.

OBJ R2.5.2 (Synthesis) Devise a plan for follow-up for a referral/consult for a pediatric patient.

Goal R2.6 Design evidence-based therapeutic regimens for pediatric patients.

OBJ R2.6.1 (Synthesis) Specify therapeutic goals for a pediatric patient, incorporating the principles of evidence-based medicine that integrate patient-specific data, disease and medication-specific information, ethics, and quality-of-life considerations.

IO Identify the sources of disease management and medication-use guidelines, consensus statements, and evidence-based meta-analyses currently used in pediatric practice.

IO Explain quality-of-life issues that may impact the setting of therapeutic goals for pediatric patients.

IO Explain ethical issues specific to setting therapeutic goals for pediatric patients.

OBJ R2.6.2 (Synthesis) Design a patient-centered regimen that meets the evidence-based therapeutic goals established for a pediatric patient; integrates patient-specific information, disease and drug information, ethical issues and quality-of-life issues; and considers pharmacoeconomic principles.

IO Explain the challenge to the pediatric pharmacist of designing therapy in the absence of guidelines and supportive literature.

IO Explain additional concerns with availability, adherence, persistence, palatability, stability (especially with extemporaneous preparations), storage, cost, and route of administration to be considered when making decisions on medication regimens for pediatric patients treated in the inpatient versus ambulatory care environment.

IO Explain factors that affect the delivery of small-volume parenteral drug therapy to pediatric patients.

IO Explain how to calculate pediatric medication doses according to body weight, body surface area, or other standard methods preferred by the health care organization.

IO Explain how to modify the dosing regimen of a medication in pediatric patients with organ dysfunction.

IO Explain unique concerns for designing enteral and parenteral nutritional therapies for pediatric patients versus adults.

IO Explain the effect of dialysis on the disposition of medications in pediatric patients.

IO Explain the effect of extracorporeal membrane oxygenation on the disposition of medications in pediatric patients.
IO Explain the effect of continuous renal replacement therapy on the disposition of medications in pediatric patients.

Goal R2.7 Design evidence-based monitoring plans for pediatric patients.

OBJ R2.7.1 (Synthesis) Design a patient-centered, evidence-based monitoring plan for a therapeutic regimen that effectively evaluates achievement of the therapeutic goals set for a pediatric patient.

IO State standard monitoring parameters for therapeutic regimens commonly prescribed for pediatric patients.

IO Explain the relationship between the normal value ranges for parameters measured in pediatric patients and the influence of a disease state.

IO Explain psychosocial issues unique to pediatric patients and/or their caregivers that should be considered when designing a monitoring plan.

IO Explain the potential role of the patient’s caregiver in the fulfillment of a monitoring plan.

Goal R2.8 Recommend or communicate regimens and monitoring plans for pediatric patients.

OBJ R2.8.1 (Application) Recommend or communicate a patient-centered, evidence-based therapeutic regimen and corresponding monitoring plan to other members of the interdisciplinary team, caregivers, and, when appropriate, the pediatric patient, in a way that is age-appropriate, systematic, logical, accurate, timely, and sensitive.

IO Explain the kinds of issues that require particular sensitivity when discussing treatment plans with pediatric patients and/or their caregivers.

Goal R2.9 Implement regimens and monitoring plans for pediatric patients.

OBJ R2.9.1 (Application) When appropriate, initiate the patient-centered, evidence-based therapeutic regimen and monitoring plan for a pediatric patient according to the organization's policies and procedures.

IO Explain the organization’s policies and procedures for ordering inpatient and outpatient medications.

IO Explain the organization’s policies and procedures for ordering tests.

OBJ R2.9.2 (Complex Overt Response) When appropriate, exercise skill in the administration or supervision of the administration of a pediatric patient’s therapeutic regimen.

IO Explain different devices used to deliver medications to various pediatric populations.

IO Explain unique aspects of administration of oral medications, eye drops, ear drops and suppositories in pediatric patients.

IO Explain how to perform intramuscular and subcutaneous injections.

IO Explain how to administer an intravenous medication.

IO Explain how to do an endotracheal administration of a medication.

IO Explain how to administer a medication through inhalation (e.g., nebulization, metered-dose inhalers).

IO Explain how to administer a medication through the intraosseous route.

IO Explain how to administer a medication through intrathecal, intraventricular, and epidural routes.
OBJ R2.9.3 (Application) When necessary, contribute to the work of the team that secures reimbursement for medications used in a regimen for a pediatric patient.
IO Explain the general framework of patient assistance programs available for pediatric medications.
IO Explain the pharmacist’s role (versus other interdisciplinary team members) in securing payer coverage or patient assistance.
IO Explain circumstances in which it may be appropriate to redesign a patient’s medication regimen in order to ensure that a patient will have financially viable access to prescribed pediatric medications.
IO Explain various approaches used to adjust medication regimens in order to facilitate patient access to pediatric medications.
IO Explain organizational policies and procedures for securing compassionate use medications needed for an individual patient.

OBJ R2.9.4 (Synthesis) Use effective patient education techniques to provide medication-related counseling to a pediatric patient and the patient’s caregiver(s).
IO Explain the concept of readiness-to-learn and its implications for the timing of counseling for pediatric patients and their caregivers.
IO Explain the types of patient and caregiver education required to facilitate self-care.
IO Explain how to tailor patient education so that it is age appropriate.
IO Identify resources for prepared materials designed for the education of pediatric patients and their caregivers.
IO Explain issues unique to the counseling of pediatric patients and their caregivers.
IO Explain differences in issues with adherence and persistence between adult and pediatric patients.
IO Explain lay terms that can successfully be used when counseling pediatric patients and their caregivers regarding complex medication-related issues.

Goal R2.10 Evaluate the progress of pediatric patients and redesign regimens and monitoring plans.
OBJ R2.10.1 (Evaluation) Accurately assess progress toward the therapeutic goal(s) of a pediatric patient.
OBJ R2.10.2 (Application) Ensure that accurate and timely medication-specific information regarding a specific pediatric patient reaches those who need it at the appropriate time.
OBJ R2.10.3 (Synthesis) Redesign the regimen and monitoring plan of a pediatric patient as necessary based on evaluation of monitoring data and therapeutic outcomes.

Goal R2.11 Communicate ongoing patient information to facilitate continuity of care.
OBJ R2.11.1 (Synthesis) Formulate a strategy for continuity of pharmaceutical care across all applicable treatment settings.
IO Explain potential problems that may place pediatric patients at risk in various treatment settings (e.g., hospital, clinic, home) or upon change in level of care.
IO Explain accrediting organizations’ requirements for medication reconciliation across the continuum of care.

IO Explain methods for coordinating information between multiple pharmacy and other health care workers serving the needs of pediatric patients that will facilitate the provision of pharmaceutical care.

IO Explain methods for assuring continuity of pharmaceutical care across all treatment settings used by a specific patient.

IO Explain continuity of care issues that may arise when unique pharmaceutical formulations used in the acute care setting will also be used by the patient in an alternate care setting.

OBJ R2.11.2 (Application) When given a pediatric patient who is transitioning from one health care setting to another, communicate pertinent pharmacotherapeutic information to the receiving health care professionals.

Goal R2.12 Document direct patient care activities appropriately.

OBJ R2.12.1 (Analysis) Appropriately select direct patient care activities for pediatric patients for documentation.

IO Explain the organization’s policies and procedures for identifying activities that must be documented.

OBJ R2.12.2 (Application) Use effective communication practices when documenting a direct patient-care activity for a pediatric patient.

IO Explain the organization’s policies and procedures for documenting direct patient care activities.

Outcome R3: Serve as an authoritative resource on the optimal use of medications used to treat pediatric patients.

Goal R3.1 Establish oneself as an organizational expert for pediatric pharmacy-related information and resources.

OBJ R3.1.1 (Synthesis) Implement a successful strategy for earning credibility within the organization to be an authoritative resource on the pharmaceutical care of pediatric patients.

IO Identify barriers for the pediatric pharmacist to earning credibility with members of the interdisciplinary pediatric team.

IO Identify barriers for the pediatric pharmacist to earning credibility within the organization.

Goal R3.2 Contribute the pediatric pharmacist’s perspective to technology and automation systems decisions.

OBJ R3.2.1 (Synthesis) When appropriate, contribute to the organization’s design of its technology and automation systems.

IO Explain the pediatric pharmacist’s role in contributing to the design of technology systems (e.g., CPOE, PDAs, software, smart pumps) for the organization.

IO Explain the pediatric pharmacist’s role in contributing to decisions regarding automation systems.

OBJ R3.2.2 (Synthesis) When appropriate, contribute to the organization’s implementation of its technology and automation systems.
IO Explain factors to consider when implementing technology and automation systems in the pediatric setting.

OBJ R3.2.3 (Synthesis) When appropriate, contribute to the organization’s maintenance of its technology and automation systems.

IO Explain the importance of ongoing evaluation of the organization’s technology and automation systems.

IO Explain the pediatric pharmacist’s role in contributing to the maintenance of technology systems for the organization.

IO Explain the pediatric pharmacist’s role in contributing to the maintenance of the organization’s automation systems.

Goal R3.3 Select core biomedical literature resources appropriate for pediatric pharmacy practice.

OBJ R3.3.1 (Application) Use knowledge of standard resources to select core primary, secondary, and tertiary biomedical literature resources appropriate for pediatric pharmacy practice.

IO State sources of primary, secondary, and tertiary pediatric biomedical literature.

IO Compare the characteristics of each of the available resources.

Goal R3.4 Provide concise, applicable, comprehensive, and timely responses to requests for drug information pertaining to the care of pediatric patients.

OBJ R3.4.1 (Analysis) Discriminate between the requester’s stated drug information question and the appropriate drug information need(s) by investigating the clinical situation and obtaining appropriate additional information.

OBJ R3.4.2 (Synthesis) Formulate a systematic, efficient, and thorough procedure for retrieving pediatric drug information.

OBJ R3.4.3 (Analysis) Determine from all retrieved biomedical literature the appropriate information to evaluate.

OBJ R3.4.4 (Evaluation) Evaluate the usefulness of biomedical literature gathered.

IO Explain scarcity of studies and subjects as causes for the frequent necessity to consider the clinical usefulness of less comprehensive studies when evaluating literature for pediatric patients.

OBJ R3.4.5 (Evaluation) Determine whether a study’s conclusions are supported by the study results.

OBJ R3.4.6 (Synthesis) Formulate responses to a drug information request based on analysis of the literature.

OBJ R3.4.7 (Synthesis) Provide appropriate responses to drug information questions that require the pediatric pharmacist to draw upon his or her knowledge base.

OBJ R3.4.8 (Evaluation) Assess the effectiveness of drug information recommendations.

IO Explain all factors that must be assessed to determine the effectiveness of a response.

Goal R3.5 Contribute to publishing periodic newsletters or bulletins for health care providers on timely medication-related matters and medication policies.

OBJ R3.5.1 (Synthesis) Write an article for a newsletter or bulletin addressing either a medication or a medication policy affecting pediatric patients.
Goal R3.6 Assist the organization in achieving compliance with accreditation, legal, regulatory, and safety requirements related to the use of medications used in the care of pediatric patients (e.g., The Joint Commission requirements; ASHP standards, statements, and guidelines; state and federal laws regulating pharmacy practice; OSHA regulations).

OBJ R3.6.1 (Evaluation) Determine appropriate activities and documentation to meet accreditation, legal, regulatory, and safety requirements in the area of pediatric pharmacy.

IO Explain the influence of accreditation, legal, regulatory, and safety requirements on pediatric pharmacy practice.

Goal R3.7 Contribute to the management of pediatric medical emergencies.

OBJ 3.7.1 (Synthesis) Exercise skill as a team member in the management of a pediatric medical emergency according to the organization’s policies and procedures.

IO Explain appropriate medication therapy in pediatric medical emergency situations.

IO Explain unique considerations when preparing and dispensing medications and calculating doses during a pediatric medical emergency.

OBJ R3.7.2 (Complex Overt Response) When administration is allowed by the organization, exercise skill in the administration of emergency medications for a pediatric patient.

Goal R3.8 Understand the role of the pediatric pharmacist in public health initiatives affecting children.

OBJ R3.8.1 (Comprehension) Explain the pediatric pharmacist’s role in the development of emergency protocols for public health disasters (e.g., natural disaster, bioterrorism, epidemic).

OBJ R3.8.2 (Comprehension) Explain the role of the pediatric pharmacist in advocacy for vaccination.

IO Explain the importance of vaccination in the prevention and control of the spread of infectious diseases.

IO Explain how to secure credentials for administering vaccinations.

Outcome R4: Evaluate, manage, and improve the medication-use process in pediatric patient care areas.

Goal R4.1 Prepare and dispense medications for pediatric patients following existing standards of practice and the organization’s policies and procedures.

OBJ R4.1.1 (Evaluation) Interpret the appropriateness of a pediatric patient’s medication order before preparing or permitting the distribution of the first dose.

OBJ R4.1.2 (Application) Follow the organization’s policies and procedures to maintain the accuracy of the patient’s medication profile.

OBJ R4.1.3 (Application) Prepare a pediatric patient’s medications following appropriate standards of practice and the organization’s policies and procedures.

IO Explain the necessity for pediatric pharmacists’ insistence on safety and quality control for pediatric medications.

IO Explain standards of practice for the preparation of pediatric medications.
IO Explain standards for evaluating appropriate concentrations, rate, compatibilities, stability, and storage of parenteral solutions prepared for use in the care of pediatric patients.

IO Explain strategies for preparing extemporaneously compounded medications to produce the desired end products for pediatric patients.

OBJ R4.1.4 (Application) Dispense medications for a pediatric patient following the organization’s policies and procedures.

Goal R4.2 Contribute to the maintenance of the organization’s formulary for medications used in the care of pediatric patients.

OBJ R4.2.1 (Evaluation) Make a recommendation for an addition or deletion to the organization’s formulary for medications used in the care of pediatric patients based on literature and/or comparative reviews.

IO State the elements of a comparative review.

IO State sources to consult in the preparation of a comparative review for medications used in the care of pediatric patients.

IO Explain the importance of including consideration of efficacy, safety, and cost in the preparation of reviews.

OBJ R4.2.2 (Synthesis) Formulate effective strategies for communicating formulary restrictions to providers.

IO Explain routes of communication of formulary information in the pediatric setting.

IO Identify instances when formulary changes should be communicated immediately.

OBJ R4.2.3 (Evaluation) When presented with a real or hypothetical drug shortage, identify appropriate alternative medications.

IO State resources for identifying medications in short supply.

IO Explain the organization’s system for communicating information regarding drug shortages.

IO Explain a strategy for making optimal choices for alternative medications.

OBJ R4.2.4 (Evaluation) When the needs of a particular patient warrant, determine if a non-formulary medication should be considered for therapy.

IO Identify the appropriate literature that supports the use of a non-formulary medication in a clinical situation.

IO Explain the organization’s system for approving, obtaining, and handling non-formulary medication used by patients.

Goal R4.3 Contribute to the review of existing, development of new, and implementation of the organization’s policies and procedures affecting the care of pediatric patients.

OBJ R4.3.1 (Synthesis) Contribute to the work of an organizational committee or work group concerned with the improvement of medication-use policies and procedures that affect the care of pediatric patients.

Goal R4.4 Contribute to the review of existing, development of new, and implementation of the organization’s evidence-based medication-related guidelines for the care of pediatric patients.

OBJ R4.4.1 (Analysis) Identify the need for an evidence-based medication-related guideline for the care of pediatric patients by comparing the applicability of
existing organizational or published guidelines to the needs of your own organization.

IO Explain the impact of the lack of scientific studies evaluating the safety and efficacy of medications in children on the pediatric pharmacist’s strategy for providing evidence-based care.

OBJ R4.4.2 (Synthesis) Contribute to the development of a medication-related guideline for the care of pediatric patients based on best available evidence and the characteristics of the local environment and patients.

IO Explain how level of evidence is determined.

OBJ R4.4.3 (Synthesis) Contribute to the formulation of a strategy that will successfully implement a medication-related guideline for the care of pediatric patients.

IO Explain the importance of including pharmacy, nursing, and medical services in the design of an implementation strategy.

OBJ R4.4.4 (Evaluation) Assess the results of implementing a medication-related guideline for the care of pediatric patients.

Goal R4.5 Identify opportunities for improvement of the safety of aspects of the organization’s medication-use system affecting pediatric patients.

OBJ R4.5.1 (Analysis) When applicable, contribute to a root cause analysis (RCA) of a medication error occurring in a pediatric patient.

OBJ R4.5.2 (Analysis) When applicable, contribute to a failure mode and effect analysis (FMEA) of a proposed new medication-use process affecting the care of pediatric patients.

OBJ R4.5.3 (Application) Participate in the organization’s system for reporting medication errors and adverse drug reactions.

Outcome R5: Demonstrate excellence in the provision of training or educational activities for pediatric health care professionals, health care professionals in training, and the public.

Goal R5.1 Provide effective education and/or training to health care professionals and health care professionals in training.

OBJ R5.1.1 (Synthesis) Use effective educational techniques in the design of an educational/training activity.

IO Identify emerging issues in pediatric pharmacy that would be suitable for interdisciplinary educational sessions.

IO Explain the differences in effective educational strategies when teaching colleagues versus residents versus students versus health professionals in other disciplines.

IO Design instruction that meets the individual learner’s needs.

IO Explain the concept of learning styles and its influence on the design of instruction.

IO Write appropriately worded educational objectives.

IO Explain the match between instructional delivery systems (e.g., demonstration, written materials, video) and the specific types of learning each facilitates.
IO Design instruction that employs strategies, methods, and techniques congruent with the objectives for education or training.

IO Explain effective teaching approaches for the various types of learning (e.g., imparting information, teaching psychomotor skills, inculcation of new attitudes).

OBJ R5.1.2 (Synthesis) Design an assessment strategy that appropriately measures the specified objectives for education or training and fits the learning situation.

IO Explain appropriate assessment techniques for assessing the learning outcomes of educational or training programs.

OBJ R5.1.3 (Application) Use skill in the four preceptor roles employed in practice-based teaching (direct instruction, modeling, coaching, and facilitation).

IO Explain the stages of learning that are associated with each of the preceptor roles.

OBJ R5.1.4 (Application) Use skill in case-based teaching.

IO Explain the importance of identifying the key teaching points for a case before attempting to construct it.

IO Explain factors to consider when deciding the patient data to present in a case.

OBJ R5.1.5 (Application) Use public speaking skills to speak effectively to a large group.

IO Explain techniques that can be used to enhance audience interest.

IO Explain techniques that can be used to enhance audience understanding of one's topic.

IO Explain speaker habits that distract the audience.

OBJ R5.1.6 (Application) Use public speaking skills to speak effectively in a small group.

Goal R5.2 Design and deliver education programs to the public that center on pediatric health improvement, wellness, and disease prevention.

OBJ R5.2.1 (Synthesis) Contribute to the design of an educational program for the public that centers on pediatric health improvement, wellness, or disease prevention.

IO Explain appropriate educational topics for pediatric support groups.

IO Explain appropriate educational topics for the general public that center on pediatrics.

OBJ R5.2.2 (Synthesis) Use appropriate educational techniques to deliver an educational program to the public that centers on pediatric health improvement, wellness, or disease prevention.

Outcome R6: Conduct pediatric pharmacy research.

Goal R6.1 Conduct a pediatric pharmacy research project using effective research and project management skills.

OBJ R6.1.1 (Synthesis) Identify a topic of significance for a pediatric pharmacy research project.

IO Explain the types of resident projects (e.g., prospective, retrospective, clinical trials) that will meet residency program project requirements and timeframe.
IO Explain how one determines if a potential project topic is of significance in one’s particular practice setting.

IO Explain how to conduct an efficient and effective pediatric literature search for the background analysis.

IO Explain how to generate a research question(s) to be answered by an investigation.

OBJ R6.1.2 (Synthesis) Formulate a feasible design for a pediatric pharmacy research project.

IO Explain the elements of a project proposal.

IO Explain how to identify those health care personnel who will be affected by the conduct of the project and strategies for gaining their cooperation.

IO Explain how to determine a timeline with suitable milestones that will result in project completion by an agreed upon date.

IO Explain factors unique to the conduct of research in pediatric patients.

IO Explain the ethics of research on pediatric subjects and the role of the IRB.

IO Explain the difference between consent and assent.

IO Explain various methods for constructing data collection tools.

OBJ R6.1.3 (Synthesis) Secure any necessary approvals, including IRB, for a pediatric pharmacy research project.

IO Explain how to identify those stakeholders who must approve a particular project.

IO Explain the components that make up a budget for a project.

IO Explain strategies for seeking funding for a research project.

IO Explain the role of the IRB in the approval process.

OBJ R6.1.4 (Synthesis) Implement a pediatric pharmacy research project as specified in its design.

IO Explain strategies for keeping one’s work on a project at a pace that matches with the projected timeline.

IO When given a particular approved residency project, explain methods for organizing and maintaining project materials and documentation of the project’s ongoing implementation.

IO Explain methods for data analysis.

IO Explain issues surrounding confidentiality of patient information accessed for a research study.

OBJ R6.1.5 (Synthesis) Effectively present the results of a pediatric pharmacy research project.

OBJ R6.1.6 (Synthesis) Use correct grammar, punctuation, spelling, style, and formatting conventions to prepare a written manuscript describing a pediatric pharmacy research project.

IO When given a particular residency project ready for presentation, explain the type of manuscript style appropriate to the project and criteria to be met when using that style.
Outcome E1: Demonstrate added skills for functioning effectively in the pediatric pharmacy practice environment.

Goal E1.1 Develop a proposal for a new pediatric pharmacy-related service.
 OBJ E1.1.1 (Synthesis) Write a proposal for a pediatric pharmacy-related service that meets a perceived need of the health system and its patients.

Goal E1.2 Contribute to the maintenance of the organization’s formulary for medications used in the care of pediatric patients.
 OBJ E1.2.1 (Evaluation) Make recommendations for drug class decisions affecting the care of pediatric patients based on comparative reviews.

Goal E1.3 Demonstrate additional skills in the management of pediatric medical emergencies.
 OBJ E1.3.1 (Synthesis) Acquire pediatric advanced life support (PALS) certification.

Goal E1.4 Contribute to the presentation and publication of pediatric pharmacy research.
 OBJ E1.4.1 (Synthesis) Design an effective poster for the presentation of a specific topic.
 IO Explain the types of content that should be included in a poster.
 IO Explain the rules for visual presentation of poster material.
 IO Explain resources that can be used to generate poster materials.
 OBJ E1.4.2 (Synthesis) Exercise skill in responding to questions occurring during the presentation of a poster.
 OBJ E1.4.3 (Application) Follow the submission requirements of an appropriate peer-reviewed publication to submit the completed project for publication.
 OBJ E1.4.4 (Evaluation) Contribute to the peer review of a pediatric pharmacy professional’s article submitted for publication or presentation.
 IO Explain sources of information on the components of a peer review.

Outcome E2: Conduct outcomes research.

Goal E2.1 Contribute to pediatric clinical, humanistic and economic outcomes analyses.
 OBJ E2.1.1 (Evaluation) Contribute to a pediatric prospective clinical, humanistic and/or economic outcomes analysis.
 IO Explain the principles and methodology of basic pharmacoeconomic analyses.
 IO Explain the purpose of a prospective clinical, humanistic or economic outcomes analysis.
 IO Explain study designs appropriate for a prospective clinical, humanistic and economic outcomes analysis.
 IO Explain the technique and application of modeling.
 IO Explain the types of data that must be collected in a prospective clinical, humanistic and economic outcomes analysis.
 IO Explain possible reliable sources of data for a clinical, humanistic and economic outcomes analysis.
IO Explain methods for analyzing data in a prospective clinical, humanistic and economic outcomes analysis.

IO Explain how results of a prospective clinical, humanistic and economic outcomes analysis can be applied to internal business decisions and modifications to a customer’s formulary or benefit design.

OBJ E2.1.2 (Evaluation) Contribute to a pediatric retrospective clinical, humanistic, and/or economic outcomes analysis.

IO Explain the purpose of a retrospective clinical, humanistic or economic outcomes analysis.

IO Explain study designs appropriate for a retrospective clinical, humanistic and economic outcomes analysis.

IO Explain the types of data that must be collected in a retrospective clinical, humanistic and economic outcomes analysis.

IO Explain the content and utilization of reports and audits produced by the pharmacy department.

IO Explain possible reliable sources of data for a retrospective clinical, humanistic and economic outcomes analysis.

IO Explain methods for analyzing data in a retrospective clinical, humanistic and economic outcomes analysis.

IO Explain the impact of limitations of retrospective data on the interpretation of results.

IO Explain how results of a retrospective clinical, humanistic and economic outcomes analysis can be applied to internal business decisions and modifications to a customer’s formulary or benefit design.

Outcome E3: Demonstrate skills required to function in an academic setting.

Goal E3.1 Understand faculty roles and responsibilities.

OBJ E3.1.1 (Comprehension) Explain variations in the expectations of different colleges/schools of pharmacy for teaching, practice, research, and service.

IO Discuss how the different missions of public versus private colleges/schools of pharmacy can impact the role of faculty members.

IO Discuss maintaining a balance between teaching, practice, research and service.

IO Discuss the relationships between scholarly activity and teaching, practice, research and service.

OBJ E3.1.2 (Analysis) Explain the role and influence of faculty in the academic environment.

IO Explain the responsibilities of faculty in governance structure (e.g. the faculty senate, committee service).

IO Describe the responsibilities of faculty (e.g. curriculum development and committee service) related to teaching, practice, research, and service roles.

OBJ E3.1.3 (Comprehension) Describe the academic environment.

IO Describe how the decisions by university and college administration impact the faculty.
IO Discuss outside forces (e.g. change in the profession, funding source, accreditation requirements) that impact administrator and faculty roles.

OBJ E3.1.4 (Comprehension) Describe the types and ranks of faculty appointments.
IO Explain the various types of appointments (e.g. non-tenure, tenure-track, and tenured faculty).
IO Differentiate among the various ranks of faculty (e.g. instructor, assistant professor, associate professor, full professor).
IO Discuss the role and implications of part-time and adjunct faculty as schools continue to expand and faculty shortages occur.

OBJ E3.1.5 (Comprehension) Discuss the promotion and/or tenure process for each type of appointment.
IO Identify the types of activities that are considered in the promotion process.
IO Identify the types of activities that are considered for tenure.

OBJ E3.1.6 (Application) Identify resources available to help develop academic skills.
IO Explain the role of academic-related professional organizations (e.g. AACP) in faculty professional development.
IO Identify resources to help develop teaching skills and a teaching philosophy.

OBJ E3.1.7 (Comprehension) Explain the characteristics of a typical affiliation agreement between a college of pharmacy and a practice site (e.g., health system, hospital, clinic, retail pharmacy).
IO Explain how the political environments of either a college or a practice site may affect the other.

Goal E3.2 Exercise teaching skills essential to pharmacy faculty.

OBJ E3.2.1 (Synthesis) Develop an instructional design for a class session, module, or course.
IO Construct a student-centered syllabus.
IO Construct educational objectives for a class session, module, or course that is appropriate to the audience.
IO Identify appropriate instructional strategies for the class session, module, or course to achieve the objectives.
IO Consider assessment tools that measure student achievement of the educational objectives.

OBJ E3.2.2 (Synthesis) Prepare and deliver didactic instruction on a topic relevant to the specialized area of pharmacy residency training.
IO Identify educational technology that could be used for a class session, module, or course (e.g., streaming media, course management software, audience response systems).
IO Create instructional materials appropriate for the topic and audience.
IO Identify strategies to deal with difficult learners.
IO Given feedback from teaching evaluations (e.g. student and or peer), devise a plan to incorporate improvements in future instruction.

OBJ E3.2.3 (Application) Develop and deliver cases for workshops and/or exercises for laboratory experiences.
IO Identify the appropriate level of case-based teachings for small group instruction.

IO Identify appropriate exercises for laboratory experiences.

IO Provide appropriate and timely feedback to improve performance.

OBJ E3.2.4 (Application) Serve as a preceptor or co-preceptor utilizing the four roles employed in practice-based teaching (direct instruction, modeling, coaching and facilitation).

IO Assess the learner’s skill level to determine the appropriate preceptor strategy for providing practice-based teaching.

IO Given performance-based criteria, identify ways to provide constructive feedback to learners.

IO Develop strategies to promote professional behavior.

IO Identify strategies to deal with difficult learners in the practice setting.

IO Given a diverse learner population, identify strategies to interact with all groups with equity and respect.

OBJ E3.2.5 (Analysis) Develop a teaching experience for a practice setting (e.g., introductory or advanced pharmacy experience).

IO Create educational goals and objectives to be achieved.

IO Develop activities that will allow achievement of identified educational goals and objectives.

IO Identify how and when feedback should be provided.

IO Identify other preceptors for the experience, if appropriate.

IO Determine training that might be needed for the preceptors to deliver student education.

IO Identify potential challenges of precepting and providing patient care services simultaneously.

OBJ E3.2.6 (Synthesis) Design an assessment strategy that appropriately measures the specified educational objectives for the class session, module, course, or rotation.

IO Identify appropriate techniques for assessing learning outcomes in various educational settings [e.g., written examinations, oral examinations, practical examinations, Objective Structured Clinical Examination (OSCE)].

IO Develop examination questions to assess the knowledge, skills, attitudes and behaviors that are appropriate to the learner’s level and topic.

IO Discuss the various methods for administering examination questions (e.g., computerized testing, paper testing).

OBJ E3.2.7 (Evaluation) Create a teaching portfolio.

IO Define the concept of a teaching portfolio and describe its primary purpose.

IO Outline the steps in building a teaching portfolio.

IO Develop a personal teaching philosophy to guide one’s teaching efforts and facilitate student learning.

OBJ E3.2.8 (Evaluation) Compare and contrast methods to prevent and respond to academic and profession dishonesty.

IO Evaluate physical and attitudinal methods to prevent academic dishonesty.

IO Discuss methods of responding to incidents of academic dishonesty.
IO Discuss the role of academic honor committees in cases of academic dishonesty.

IO Identify examples and methods to address unprofessional behavior in learners.

OBJ E3.2.9 (Comprehension) Explain the relevance of copyright laws to developing teaching materials.

IO Discuss copyright regulations as related to reproducing materials for teaching purposes.

IO Discuss copyright regulations as related to linking and citing on-line materials.

Approved by the ASHP Commission on Credentialing on March 8, 2008. Endorsed by the ASHP Board of Directors on April 18, 2008. Developed by the ASHP Commission on Credentialing in collaboration with the Pediatric Pharmacy Advocacy Group (PPAG) the American College of Clinical Pharmacy (ACCP). The design group comprised the following pediatric pharmacy practitioners, residency program directors, and ASHP staff: Melissa K. Heigham, Pharm.D., BCOP, Manager, Clinical Pharmacy Services, St. Louis Children’s Hospital; Donna M. Kraus, Pharm.D., FAPhA, Associate Professor of Pharmacy Practice, Departments of Pharmacy Practice and Pediatrics, University of Illinois College of Pharmacy; Lorianne Wright, Pharm.D., Clinical Coordinator, Department of Pharmacy, Vanderbilt Children’s Hospital; Bruce A. Nelson, R.Ph., M.S., Director, Operations, Accreditation Services Division, ASHP; and Christine M. Nimmo, Ph.D., Director, Standards Development and Training, Accreditation Services Division, ASHP. This document replaces the educational goals and learning objectives for pediatric pharmacy residencies approved by the ASHP Board of Directors on November 15, 1997. The contribution of reviewers is gratefully acknowledged.

Copyright © 2008, American Society of Health-System Pharmacists, Inc. All rights reserved.

The effective date for implementation of these educational outcomes, goals and objectives is commencing with the entering resident class of 2009.
Appendix

The resident will explain signs and symptoms, epidemiology, risk factors, pathogenesis, natural history of disease, pathophysiology, clinical course, etiology, and treatment of diseases and conditions listed below.

The resident will explain the mechanism of action, pharmacokinetics, pharmacodynamics, pharmacogenomics, pharmacoeconomics, usual regimen (dose, schedule, form, route, and method of administration), indications, contraindications, interactions, adverse reactions, and therapeutics of medications and non-traditional therapies, where relevant, that are applicable to the diseases and conditions listed below.

Cardiovascular
- Arrhythmias
- Congestive heart failure
- Kawasaki disease
- Hemolytic uremic syndrome
- Hypertension
- Rheumatic heart disease
- Shock

Collagen Vascular Disease
- Juvenile rheumatoid arthritis
- Lupus

Endocrine
- Adrenocortical insufficiency
- Diabetes insipidus
- Diabetes mellitus – Type 1 and Type 2
- Growth hormone deficiency
- Inborn errors of metabolism
- Rickets
- SIADH
- Thyroid disease

Fluid and Electrolyte Disorders
- Acid/base disorders
- Dehydration

Gastrointestinal
- Appendicitis
- Chronic diarrhea
- Constipation
- Gastroesophageal reflux
- Hemorrhage
Inflammatory bowel syndrome
Nausea/vomiting
Short bowel syndrome
Ulcers

Hematology
- Anemia
- DIC
- Hemophilia
- ITP
- Sickle cell disease

Infectious disease
- AIDS/HIV
- Catheter sepsis
- Cellulitis
- Conjunctivitis
- Croup
- Diarrhea
- Endocarditis
- Epiglottitis
- Fever
- Fungal infections
- Immunocompromised host
- Impetigo
- Meningitis
- Osteomyelitis
- Otitis media
- Parasitic infections
- Pneumonia
- Sepsis
- Septic arthritis
- Sexually transmitted diseases
- Shunt infections
- Strep throat
- Tuberculosis
- Urinary tract infection
- Viral encephalitis
- Respiratory syncytial virus

Liver Disease
- Cholestatic jaundice
- Hepatitis
- Liver failure
Neonatology
- Apnea with bradycardia
- Bronchopulmonary dysplasia
- Congenital heart disease
- Intraventricular hemorrhage
- Necrotizing Enterocolitis
- Hyperglycemia
- Hypoglycemia
- Ophthalmia neonatorum
- Patent ductus arteriosus
- Persistent pulmonary hypertension
- Respiratory distress syndrome
- Retinopathy of prematurity
- Seizures
- Sepsis

Nephrology
- Interstitial nephritis
- Renal failure
- Renal tubular acidosis

Neurology
- Attention deficit disorder
- Febrile convulsions
- Headache
- Head trauma
- Intracranial hypertension
- Seizures
- Status epilepticus

Obstetric problems
- Diabetes

Oncology
- CNS malignancies
- Hemangioma
- Hodgkin’s disease
- Leukemia
- Lymphoma
- Neuroblastoma
- Osteosarcoma
- Retinoblastoma
- Rhabdomyosarcoma
Psychosocial
 Depression
 Enuresis

Pulmonary
 Acute respiratory distress syndrome
 Asthma
 Bronchiolitis
 Cystic fibrosis
 Near drowning
 Status asthmaticus

The resident will be knowledgeable in the following topics as they relate to pediatric patients:

Antibiotic prophylaxis
Anticoagulation
Continuous renal replacement therapy
Drug abuse
Drug dosing in hepatic impairment
Drug dosing in renal impairment
Drugs in breast milk
Drugs in pregnancy
Enteral nutrition
 infant formulas
 nutritional supplements
Immunizations
Induction of labor
Infants of diabetic mothers
Infants of drug abusers
Intrauterine infections
Maintenance fluids
Oncologic emergencies
Oral rehydration
Pain management
Parenteral nutrition (neonates, infants, children)
Pharmacokinetics (general and developmental/age-related differences)
Pre-eclampsia/eclampsia
Premature labor
Premature rupture of membranes
Prenatal care/nutrition
Sedation and analgesia
Appendix F-2

ACCP Guidelines for Clinical Research Fellowship Training Programs
ACCP Guidelines for Clinical Research Fellowship Training Programs

Definition
A research fellowship is a directed, highly individualized, postgraduate training program designed to prepare the participant to function as an independent investigator.

Introduction
The purpose of fellowship training programs is to develop competency and expertise in the scientific research process, including hypothesis generation and development, study design, protocol development, grantsmanship, study coordination, data collection, analysis, and interpretation, technical skills development, presentation of results, and manuscript preparation and publication. A fellowship candidate is expected to possess appropriate practice skills relevant to the knowledge area of the fellowship. Such skills may be obtained through prior practice experience or completion of a residency program.

Under the close direction, instruction and supervision of a qualified investigator-preceptor, the fellow receives a highly individualized learning experience, utilizing the fellow’s research interests and knowledge needs as a focus for his/her education and training. Fellowships are typically offered through schools/colleges of pharmacy, academic health centers, the pharmaceutical industry, and/or specialized care institutions. A fellowship graduate should be capable of conducting independent and collaborative research and functioning as principal investigator.

Training Program Requirements
1. A minimum of 3,000 hours of the fellowship training time should be devoted to research-related activities over a minimum period of two years.
2. Administrative institutional support for the preceptor’s research program and the fellowship training program.
3. Availability of advanced educational opportunities (e.g., graduate level coursework) in research-related topics. Such coursework may include, but is not limited to, courses in research design and methods, biostatistics, ethical issues, pharmacokinetics, pharmacodynamics, pharmacoeconomics, and others as appropriate to the specific fellow and program.
4. Availability of appropriate facilities (e.g., laboratory and/or clinical) to conduct research.
5. Availability of qualified personnel to teach clinical, laboratory, and/or computer technology-based research skills.
6. Ready access to scientific literature and computer facilities.
Preceptor Qualifications
1. A clinical scientist with an established and on-going record of independent research accomplishments and expertise in the area of specialization related to the fellowship, which may be exemplified by:
 a. fellowship training, a graduate degree, and/or equivalent experience;
 b. principal or primary investigator on research grants and/or projects; and
 c. published research papers in peer-reviewed scientific literature on which the preceptor is the primary or senior author.
2. Active collaborative research relationships with other scientists.

Fellowship Applicant Criteria
1. Masters or doctoral degree in a health science discipline required
2. Residency or equivalent clinical experience preferred.
3. Demonstrated interest in or an aptitude for a career in research.

Fellowship Experiences

Ideally, a research fellow should initiate and complete at least one original research project. However, it is recognized that this may not be possible in every case. Whether through the completion of one project from start to finish or through participation in multiple projects, the fellow should obtain extensive experience in:

1. Development of at least one scientific hypothesis
2. Development of experimental methods to test the developed hypothesis.
3. Preparation of a protocol and submission of the protocol to the appropriate institutional review committee.
4. Grantsmanship, including identification of appropriate funding sources for specific projects and the preparation and submission of a grant for extramural funding consideration.
5. Study design and coordination and data collection.
6. Statistical analysis of data.
7. Data analysis and interpretation
8. Development of clinical, laboratory, and/or computer-based research skills as appropriate to the specific training program
9. Abstract preparation and submission
10. Presentation of research at peer-reviewed scientific meetings
11. Manuscript preparation and submission for publication in peer-reviewed journals.
12. Participation in journal clubs, research workshops, and/or seminar series.
13. Instruction in biomedical science ethics.

Approved by the ACCP Board of Regents, October 22, 2004
Appendix G-1

Pediatric Pharmacy Bibliography
 Pediatric Pharmacy Practice Bibliography

Poston D, Pai V, and Lamberjack K. Assessment of Ohio pharmacists' confidence in providing pharmaceutical care to pediatric patients in a community setting. APhA 2009 Annual Meeting; 2009.

Appendix G-2

Selected Pediatric Pharmacy Literature
A Clinical Pharmacist’s Role in Screening for Metabolic Syndrome in a Rural Pediatric Ambulatory Clinic

Sandra Benavides, PharmD1,2, Lisa A. Kohler, PharmD2 & Garry Souffrant, MD3

1 Department of Pharmacy Practice, Nova Southeastern University, Fort Lauderdale, Florida
2 Department of Pharmacy, Memorial Regional Hospital, Hollywood, Florida
3 Su Clinica Familiar, Harlingen, Texas

Abstract

Purpose: The prevalence of metabolic syndrome in the pediatric population is increasing. Barriers, including the lack of consensus of a definition for metabolic syndrome and time constraints for the pediatrician, may limit the identification and diagnosis of metabolic syndrome in children. The objective of this pilot study was to evaluate the role of a clinical pharmacist (CP) in screening children and adolescents for metabolic syndrome.

Methods: A 3-month, prospective, cross-sectional study aimed at utilizing a CP to identify metabolic syndrome in high-risk children, ages 10-18 years, in a pediatric ambulatory clinic located in a rural community health center was conducted. Upon enrollment a personal and family medical history was obtained, physical examination was reviewed, and a fasting laboratory analysis was performed. The CP evaluated each component of metabolic syndrome to determine if the participant met criteria for diagnosis. The CP provided a summary of the risk factors and treatment recommendations to the pediatrician.

Findings: Twenty-five Mexican American participants (ages 13.7 ± 2.3 years) enrolled and completed the study. One child (4%) met 3 or more criteria required for diagnosis of metabolic syndrome. Of the remaining participants, 7 (28%) met 2 criteria, 9 (36%) met 1 criterion, and 8 (32%) met no criteria for metabolic syndrome. The CP provided treatment recommendations for 68% of the participants.

Conclusion: CPs can have an active role in early identification of specific components of metabolic syndrome in a rural community health center.

Key words community health center, patient assessment, pediatrics, pharmacy, rural.
Table 1 Published Definitions of Metabolic Syndrome in Pediatrics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>12-19</td>
<td>12-19</td>
<td>4-20</td>
<td>Not specified</td>
</tr>
<tr>
<td>Glucose levels (mg/dL)</td>
<td>FG ≥ 110</td>
<td>FG ≥ 110</td>
<td>IGT*</td>
<td>IGT*</td>
</tr>
<tr>
<td>Weight measurement</td>
<td>WC ≥ 90th percentile</td>
<td>WC > 75th percentile</td>
<td>BMI (z-score ≥ 2.0)</td>
<td>WC ≥ 90th percentile</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>≥ 110 (mg/dL)</td>
<td>≥ 100 (mg/dL)</td>
<td>≥ 95th percentile</td>
<td>> 90th percentile</td>
</tr>
<tr>
<td>HDL-C</td>
<td>≤ 40 (mg/dL)</td>
<td>< 50 (mg/dL)</td>
<td>≤ 5th percentile</td>
<td>< 10th percentile</td>
</tr>
<tr>
<td>Blood pressure (percentile)</td>
<td>≥ 90th</td>
<td>> 90th</td>
<td>> 95th</td>
<td>> 90th</td>
</tr>
</tbody>
</table>

FG, fasting glucose; IGT, impaired glucose tolerance; WC, waist circumference; BMI, body mass index; HDL-C, high-density lipoprotein-cholesterol. * = defined as a glucose concentration greater than 200 mg/dL 2 hours following a 75 gram oral glucose tolerance test.

Metabolic syndrome parameters have been categorized by 4 definitions as illustrated in Table 1. However, a consensus on which definition is the most effective for patient identification has not been determined. In addition to varying definitions, the identification of metabolic syndrome in pediatrics can be cumbersome due to blood pressure, lipid concentrations, and weight values being categorized based on percentiles specific for age and sex, as opposed to fixed values as seen in adult criteria. With such obstacles, it is not surprising that one study found only 8% of general pediatric visits included screening for metabolic syndrome. As a result, practitioners may not be identifying all children with metabolic syndrome in clinical practice.

Recently, the United States Preventive Services Task Force issued a statement recommending all children over the age of 6 years be screened for overweight and obesity. In our pilot study, we not only screened for obesity in children, but sought to identify patients at increased risks for complications due to overweight and obesity.

Objective

The objective of this pilot study was to evaluate the role of a clinical pharmacist (CP) in screening children and adolescents for components of metabolic syndrome in a pediatric ambulatory clinic located in a rural community health center.

Methods

The study was approved by the Institutional Review Board (IRB) of the University of Texas, Pan American, which ensured the study was conducted in accordance with the Helsinki Declaration of 1975. Assent and consent were obtained from the participants and 1 parent, respectively, prior to enrollment into the study.

The study was conducted at a community health center clinic, Su Clinica Familiar at South Cameron, located outside of Brownsville, Texas. Su Clinica Familiar comprises several clinics that provide health care to the indigent population of the Lower Rio Grande Valley (LRGV) of South Texas. The LRGV region encompasses a 4-county area including Cameron, Hidalgo, Starr, and Willacy counties. It is a predominantly rural area, although rapid population growth is occurring in many cities. At the time of the study, a pediatrician traveled to the South Cameron clinic 3 times per week. No additional physician extenders attended the clinic to provide services to pediatric patients.

The CP involved in the study was a full-time faculty member at a local College of Pharmacy with 100% salary support from the university. Aside from the Doctor of Pharmacy degree, the CP also completed 3-year post-doctoral training in a pharmacy practice residency and a pediatric pharmacotherapy fellowship, with a specific focus on metabolic complications secondary to medications. As a faculty member, the CP was required to develop a practice site for clinical clerkship students. As Su Clinica Familiar had a positive experience with a CP-managed psychiatric clinic, the administration welcomed the assistance of another CP in the pediatric setting. The CP was able to commit 2 days a week to the clinic.

Rates of pediatric obesity in this region had been well established. Because of the dire need to identify children and adolescents requiring intervention for obesity, and the limited pediatrician time, it was decided to utilize a CP to screen and identify which patients required treatment. Because of all the known complications of obesity, it was decided to systematically screen children for metabolic syndrome in order to capture, and hopefully halt the progression of, the co-morbid conditions related to obesity. The patients at Su Clinica Familiar typically did not have health insurance; therefore, grant funding was obtained to pay for the cost of the laboratory screenings.

The study was a 3-month, prospective, cross-sectional, pilot study. Children were eligible to participate if they were between 10 and 18 years of age and if they met...
1 of the following criteria: (1) overweight (defined as greater than the 85th percentile for weight based on the Centers for Disease Control and Prevention [CDC] Growth Charts), (2) positive family history of type 2 diabetes in a first-degree relative, or (3) presence of acanthosis nigricans. Although the initial research protocol included children as young as 4 years of age, IRB restrictions did not allow for children younger than 10 years of age to participate in the study.

Patients were excluded if they were in treatment for metabolic syndrome or had an identifiable underlying cause for glucose impairment such as a previous diagnosis of type 1 or 2 diabetes mellitus, cystic fibrosis, psychiatric illness (eg, eating disorder, Willi Prader syndrome), human immunodeficiency virus, pregnancy, or a history of either a solid organ or bone marrow transplant. Patients were also excluded if they had a history of long-term oral corticosteroid use, history of growth hormone use, or a history of atypical antipsychotic use. The extensive exclusion criteria was intended to identify otherwise healthy children and adolescents at risk for or with components of metabolic syndrome.

Potential participants were identified by the pediatrician during a visit for a school or sport physical. If the patient met any of the inclusion criteria, they were asked for permission to be contacted by the CP for potential enrollment into the study. The CP reviewed the medical records to ensure the patient did not have any exclusion criteria and asked the patient to participate. Upon enrollment, participants completed a medical history (including a family history), a medical examination by the pediatrician, medication history, and a fasting laboratory analysis. The laboratory analysis included a chemistry panel, lipid panel, and a 2-hour oral glucose tolerance test. All laboratory analysis was subsidized by grant funding.

The CP plotted the participant’s height, weight, and calculated body mass index (BMI) on the appropriate CDC growth chart to classify weight. The blood pressure percentile was determined using the Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. High-density lipoproteins and triglycerides were classified into percentiles for age and sex. The CP evaluated which components of metabolic syndrome were present. At the time this project was designed, 4 different validated definitions of metabolic syndrome in children and adolescents existed as shown in Table 1. The definition utilized for our study allowed for incorporation of participants from 4 to 20 years of age, which is the broadest age range among the existing definitions, although our study included only children greater than 10 years of age. The definition utilized was also the strictest in regard to age-adjusted cutoff points for BMI, triglycerides, high-density lipoprotein-cholesterol (HDL-C), and blood pressure. Metabolic syndrome was diagnosed if a participant had 3 or more of the components. The CP provided a summary of the risk factors and treatment recommendations to the pediatrician.

All participants received a $25 gift certificate to a local sports store for participation in the study. Additionally, the parent of the child received a $10 gift card to a local grocery store.

Results

A total of 30 patients were identified by the pediatrician to be eligible for the study over a 3-month period. Of these, 25 (15 male and 10 female) enrolled and completed the study. Ages ranged from 10.3 to 17.3 years with a mean (±SD) of 13.7 ± 2.3 years. All participants were of Mexican American descent. Most participants were enrolled due to being overweight (n = 21), followed by presence of acanthosis nigricans (n = 19), and a first-degree relative with type 2 diabetes (n = 6). Only 1 child (4%) met 3 or more criteria required for diagnosis of metabolic syndrome. However, of the remaining participants, 7 (28%) met 2 criteria, 9 (36%) met 1 criterion, and 8 (32%) met no criteria of metabolic syndrome.

Table 2 provides the mean (±SD) for each criterion measured and the number of participants meeting the specific criterion.

The CP provided treatment recommendations to the physician for 17 (68%) children and adolescents; in other words, any participant meeting at least 1 criterion of metabolic syndrome. As the participants did not have an underlying cause for metabolic syndrome (eg, antipsychotic medication), treatment strategies were aimed at nonpharmacological therapy. All recommendations were for further evaluation and education by the clinic nutritionist. Additionally, every participant was educated on the importance of exercise.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Results of Each Metabolic Syndrome Component Measured</th>
<th>Mean ± SD</th>
<th>No. of Meeting Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>26.4 ± 4.9 kg/m²</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>117.9 ± 66.1 mg/dL</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>HDL-C</td>
<td>47.3 ± 10.2 mg/dL</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SBP/DBP</td>
<td>111.7 ± 11.1 mmHg/</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OGTT</td>
<td>106.0 ± 29.8 mg/dL</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

BMI, body mass index; TG, triglycerides; HDL-C, high-density lipoprotein-cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; OGTT, oral glucose tolerance test.
Discussion

This is the first prospective study illustrating the ability of a CP to screen and identify children and adolescents for metabolic syndrome in a rural community health center. In our Mexican American population, 1 (4%) adolescent was identified as meeting 3 criteria to be diagnosed with metabolic syndrome, which is consistent with the national prevalence of 2.6%-11.1% for the same ethnic population. The metabolic syndrome prevalence in all adolescents in the United States ranges between 2.0% and 9.4%, depending on the definition used. However, although the actual identification of children that met criteria for metabolic syndrome was low, more than half (68%) had at least 1 component of metabolic syndrome (eg, dyslipidemia, overweight). Only those who met at least 1 component were referred to a dietician for further evaluation and nonpharmacologic therapy.

The younger age at which the participants were screened in our study could be capturing these patients before they accumulate the 3 criteria to be diagnosed with metabolic syndrome. Our patient population ages ranged from 10 to 18 years (mean 13.7), which is lower than national rates that were based on 12- to 19-year olds. With this in mind, 17 of 25 participants did exhibit at least 1 criterion, which may be an early indication of future disease.

Metabolic syndrome (ie, obesity, hypertension, dyslipidemia, impaired glucose tolerance) is comprised of disease states that all have varying degrees of complication when left untreated. In our study, 21 (84%) participants were overweight or obese. The national prevalence of metabolic syndrome in overweight or obese children ranges from 12.4% to 44.2% in 12- to 19-year olds. Obesity itself can lead to complications such as cardiovascular disease, hypertension, diabetes, cancer, osteoarthritis, and hepatic steatosis. Although no participants were classified as having hypertension, 8 (32%) met prehypertension criteria. Left ventricular hypertrophy (LVH), an indication of end organ damage in children with hypertension, has been found in obese children without a diagnosis of hypertension. This indicates damage to the heart even in prehypertensive patients, which may extend into young adulthood. Therefore, identifying those with prehypertension may be beneficial in optimizing preventative care.

Rising triglyceride levels are typically seen before hypercholesterolemia develops and 10 (40%) participants had greater than or equal to 95th percentile, indicating hypertriglyceridemia. Hypercholesterolemia, an elevation in total cholesterol and low-density lipoprotein-cholesterol (LDL-C), can be accompanied by low HDL-C, which is another cardiovascular risk factor. Three (12%), 4 (16%), and 2 (8%) participants had elevated LDL-C, elevated total cholesterol, and low HDL-C, respectively. Impaired glucose tolerance precedes diabetes and can be associated with hyperinsulinemia. Nineteen (76%) participants displayed an outward symptom of hyperinsulinemia (eg, acanthosis nigricans), although only 1 (4%) had impaired glucose tolerance. In our sample, 1 (4%) participant also had hyperinsulinemia. The progression of these individual components is important to recognize in order to initiate preventive treatment strategies to halt the progression of diseases such as hypertension and diabetes.

Clinical pharmacists are active in screening for diabetes, cardiovascular disease, and metabolic syndrome in various patient populations. Pharmacists have been involved in performing point-of-care screenings, education, and referral of patients to their primary care physician for further analysis. Although the majority of pharmacist-initiated screenings occur in a community (or retail) setting, 1 study has described the use of a CP in a physician clinic to identify metabolic syndrome in an adult population with psychiatric disorders. In this particular program, a CP provided point-of-care screening for metabolic syndrome in patients taking an antipsychotic. The CP would provide the patient’s physician with an assessment and treatment recommendations. Additionally, the CP provided education on diet and exercise to the individual patients. In the 92 patients screened, 71% and 60% met 1 and 2 components of metabolic syndrome, respectively. The utility of performing such assessments in the medical office allowed for immediate follow-up or referral to a primary care provider for any abnormal laboratory findings.

A weight management pharmaceutical care service for faculty and staff at Auburn University has been developed by a team of CPs. The service provided body weight assessments and education regarding nutrition and exercise to patients. Once patients failed 6 months of diet and exercise, a pharmacological intervention was recommended to the patient’s primary care provider. Over a 4-year time period, 289 patients who were enrolled in the program lost more than 1,000 kg, with an average of 3.6 kg per person. CPs also act as physician extenders and manage pharmacological therapy in patients with other diseases, such as hyperlipidemia and diabetes, and this practice has shown positive health outcomes. It is hoped that eventually, CPs can act as physician extenders to pharmacists and manage pharmacological therapy for obesity, hypertension, dyslipidemia, and diabetes in the pediatric population in the event that these complications cannot be averted.

Only 1 other study has been conducted in which a pharmacist identified metabolic syndrome in adolescents. In this study, the authors retrospectively
reviewed the charts of 52 adolescents diagnosed with type 2 diabetes for metabolic syndrome prevalence and identified 76.9% as meeting specified criteria. Our study differs in that screening specifically excluded children with a diagnosis of type 2 diabetes in order to identify metabolic syndrome prior to the development of overt complications. The inclusion criteria in our study were intended to capture those pediatric patients at highest risk for future cardiovascular and metabolic disease. Although only 1 participant was found to have metabolic syndrome, many had at least 1 indication for referral to a nutritionist or dietician. The participants who did not meet criteria for diagnosis of metabolic syndrome or other individual diseases (e.g., diabetes, hypertension) still displayed abnormal parameters. Additionally, our study differed in that it was prospective in nature and aimed at identifying children and adolescents that previously had not been identified as being high-risk for components of metabolic syndrome.

Limitations

Limitations of this study include the short time frame and the small sample size. Given that the patient population consisted primarily of adolescents, the enrollment of 25 participants in 3 months is promising. With this rate of enrollment, in a years’ time over 100 children and adolescents who may be at risk could be screened and identified. The population in this study is of Mexican American descent from a rural community health center and may not be generalizable to other clinical settings. If such screenings are conducted in other ethnicities or in a metropolitan area, variations may exist. Another limitation of this study is the lack of waist circumference measurements, which is not a criteria for the definition used in the study. Obtaining these measurements would have allowed for comparisons of the rates of metabolic syndrome utilizing the various definitions of metabolic syndrome.

Conclusions

The preliminary findings in this study show that a CP can have an active and critical role in the screening and identification of metabolic syndrome in pediatric patients. The CP may aid in increasing the identification of precursors to metabolic and cardiovascular disease by working collaboratively with a pediatrician. However, future studies are necessary to fully evaluate a CP role in this setting. Furthermore, CPs may also have a role in the development of prevention and treatment strategies, including patient education, lifestyle modifications, and pharmacological therapy.

References

15. Sivanandam S, Sinaiko AR, et al. Relation of increase in adiposity to increase in left ventricular mass from

National Patient Safety Goals

Pharmacists’ Medication Reconciliation–Related Clinical Interventions in a Children’s Hospital

Brian Gardner, Pharm.D.; Kevin Graner, R.Ph.

I

It has been estimated that 46% of medication errors occur on admission or discharge when new orders are written.¹ Medication reconciliation, a process to consciously continue, discontinue, or modify medication orders, is undertaken to ensure that patients receive all intended medications during hospitalization. It is also an effective strategy for reducing medication errors; in one study, for example, it decreased medication errors by 70%–80% and adverse drug events by more than 15%.² Bond and Raehl report that obtaining admission medication histories in adult patients significantly decreased drug costs and total costs of care.³ Surveying clinical pharmacy services offered at 1,081 participating hospitals, they found that performing admission medication histories led to the greatest reduction—51%—in medication errors.⁴ Hospitals having pharmacists obtain admission medication histories reported 85% fewer adverse drug reactions and 82% fewer medication errors that adversely affect patient outcomes than hospitals not providing this clinical pharmacy service.⁵

Before 2006, there were many barriers at Mayo Eugenio Litta Children’s Hospital to full compliance with Joint Commission National Patient Safety Goal 8 (“Accurately and completely reconcile medications across the continuum of care,” JNCPCG-14, first implemented in 2005⁶). Many health care professionals obtained admission medication histories and created their own admit medication lists, often with many inaccuracies. There was also a lack of coordinated, multidisciplinary review of a patient’s admission medication history, reflecting the fact that one official medication list was not defined. Finally, no formal policy existed to assign necessary responsibility for coordinated multidisciplinary medication reconciliation.

This article describes how Mayo Eugenio Litta Hospital developed and implemented a new medication reconciliation process to improve compliance with Joint Commission National Patient Safety Goal 8.

¹ In response to organizations’ input regarding difficulties in meeting the complex requirements of this goal, the goal will continue to be evaluated but not scored until sometime in 2010. The updated goal will be posted on The Joint Commission Web site at http://www.jointcommission.org.

Background: In response to experienced difficulties at Mayo Eugenio Litta Children’s Hospital (Rochester, Minnesota) with medication reconciliation, the hospital developed and implemented a new medication reconciliation process.

Methods: In 2005, a multidisciplinary task force determined the need to improve accuracy of the admission medication list, define multidisciplinary responsibilities within the medication reconciliation process, develop a tool to readily identify patients in need of medication reconciliation, and allow for efficient documentation on completion of medication reconciliation activities. A patient-provided medication list was developed within the electronic medical record (EMR) to provide a common documentation tool for physicians, nurses, and pharmacists. Functionality was added to pharmacy’s electronic pharmaceutical care Web-based program (PCARE) to alert pharmacists when a patient’s admit medication history, admit medication reconciliation, or transfer medication reconciliation needs to be completed.

Results: From May 2006 to August 2007, the pediatric pharmacists performed admission medication reconciliation on 85% of the patients within 24 hours and completed transfer reconciliation on all the patients—an average of 13 admitted and 11 transfer patients a day. They documented 567 medication reconciliation–related interventions during the May 2006 through the August 2007 period; 522 (92%) occurred during admission medication reconciliation and the remaining 46 (8%) during transfer reconciliation; 505 (89%) led to a change in therapy.

Discussion: Pharmacists’ medication reconciliation–related clinical interventions indicate that the time and effort of performing medication reconciliation activities results in benefits for patients.
Methods

SETTING
Mayo Eugenio Litta Children’s Hospital is a 105-bed hospital within Saint Marys Hospital, a 1,340-bed tertiary care teaching hospital. Mayo Eugenio Litta Children’s Hospital is composed of a pediatric intensive care unit (PICU), a transplant center, a neonatal intensive care unit (NICU), a cardiovascular surgery intensive care unit (CVS ICU), a general care area, and an ambulatory infusion therapy center (PITC). The hospital provides care for a wide variety of pediatric medical and surgical subspecialty patients.

Eleven pediatric clinical pharmacists [including B.G.], 12 pharmacy technicians, and 1 pharmacy practice resident provide pharmacy services to Mayo Eugenio Litta Children’s Hospital. The pediatric pharmacy services supervisor [K.G.] oversees all provided clinical and operational services. The supervisor reports to Mayo Clinic Rochester’s pharmacy leadership. Services provided by the pediatric pharmacy staff consist of the following:

■ Attendance in daily team rounds in the PICU, transplant center, and CVS ICU
■ Comprehensive daily medication therapy review in the PICU, transplant center, and CVS ICU
■ Target-drug therapy monitoring in the NICU and general care area
■ Medication order review and profiling for all areas
■ Unit-dose dispensing
■ Intravenous (IV) admixture service
■ Participation in pediatric code team
■ Training of pharmacy residents and students
■ Participation in organizationwide committees, including medication safety and pharmacy and therapeutics (P&T).

Mayo Eugenio Litta Children’s Hospital does not have a patient safety officer. Each individual department is responsible for safety related to its discipline. The pharmacy department has two pharmacy specialist–medication safety pharmacists.

The use of automated dispensing cabinets is limited primarily to the dispensing of controlled substances. The pediatric pharmacy satellite is open from 7:00 A.M. through 11:30 P.M. seven days a week. The area is staffed with 50 pharmacist hours and 48 technician hours per day Monday through Friday, with 30 and 40 hours, respectively, on weekends and holidays.

DESIGN AND PLANNING

In January 2005, Mayo Clinic Rochester organized a multidisciplinary task force composed of representatives from pharmacy, nursing, information services, medication safety, and the medical staff to improve the medication reconciliation process—and thereby improve compliance with The Joint Commission’s National Patient Safety Goal 8. To achieve this goal, the task force determined that the institution needed to improve the accuracy of the medication list, define multidisciplinary responsibilities within the medication reconciliation process, develop a tool to readily identify patients in need of medication reconciliation, and allow for efficient documentation upon completion of medication reconciliation activities.

From January to November 2005, the task force met weekly to identify problems with the current process, decide what tools were needed to allow staff to efficiently perform medication reconciliation, and define each health care discipline’s responsibilities. It concluded that one specific location in the medical record was needed for documentation regarding a patient’s medication list. It was decided that inpatient pharmacy services should be involved in obtaining each patient’s admission medication history and completing admission medication reconciliation and transfer medication reconciliation activities.

For the next four months, computer programmers created the necessary electronic tools. A new patient-provided medication list (PPML; the information is “provided” by the patient when the admission medication history is obtained) was developed within the electronic medical record (Figure 1, above) to
provide a common documentation tool for physicians, nurses, and pharmacists. Using this tool, nurses and pharmacists create a single admission medication list. Physicians refer to the list when performing their admit medication reconciliation.

To efficiently manage the pharmacist’s work flow associated with medication reconciliation activities and to document those activities, hospital leadership asked that new functionality be added to pharmacy’s electronic pharmaceutical care program (PCARE). PCARE, a Mayo Clinic Rochester–created Web-based system, integrates data from disparate systems, including pharmacy, admissions, nursing, parenteral nutrition, and microbiology, into a “one-stop” screen for pharmacists. It allows pharmacists to document clinical interventions and communicate ongoing pharmaceutical care issues with colleagues within the same electronic window (Appendix 1, available in online article).

A major difficulty in getting the pharmacist involved in admission medication histories and reconciliation activities was that no process existed to efficiently identify patients needing these services. Functionality was designed within PCARE that automatically alerts pharmacists when a patient’s admit medication history, admit medication reconciliation, or transfer medication reconciliation needs to be completed. PCARE allows documentation of each step after completion (Figure 2, above). The PCARE Admit Screen effectively alerts pharmacists to the need for patient admit medication history, admit medication reconciliation, and transfer reconciliation. The patient list is updated every 30 minutes and prevents staff from getting too behind. PCARE also allows for documentation of pharmacist clinical interventions secondary to medication reconciliation activities and the production of reports to be reviewed by various leadership groups.

IMPLEMENTATION

On April 4, 2006, pharmacy clinical coordinators involved in the development of the new medication reconciliation process trained two pediatric pharmacists. During the following two weeks, these pediatric pharmacists then trained the remaining pediatric pharmacists in their new responsibilities, expected work flow relating to medication reconciliation activities, components of obtaining a thorough medication history, and use of the new PPML and PCARE tools. In preparation for medication reconciliation and other patient care responsibilities, we added 70 hours of pharmacist time per week.

Hospital policy instructs nurses to obtain a patient’s home medication list and enter it into the PPML flow sheet. Within 24 hours of admission, a pharmacist completes an independent medication history and verifies or updates the PPML. The pharmacist then reviews the current inpatient hospital orders and clarifies any issues with the primary medical service. Finally, the pharmacist documents the completion of admission medication reconciliation and any subsequent interventions in PCARE.

The pharmacist performs transfer medication reconciliation when a patient transfers to a different service or level of care (for example, ICU to general care floor). He or she compares the current inpatient medication list with the PPML to determine appropriateness of all medications on transfer (for example, the possibility to restart a maintenance medication now that the patient is more stable). The pharmacist also determines if there...
are any medications on the current inpatient medication list that are no longer needed or are inappropriate for the level of care. The pharmacist documents in PCARE the completion of transfer reconciliation and any subsequent interventions. The primary medical service is also responsible for performing this review on transfer of service or level of care.

Results

Pharmacists’ involvement in the revised medication reconciliation process can be monitored using reporting functions within the electronic tools. Pharmacy leadership closely follows the work load associated with medication reconciliation activities and the percentage of patients receiving pharmacists’ medication reconciliation service. Quality assurance reports measuring the percentage of PPML flow sheets updated/corrected by the pharmacist were collected for five weeks. Intervention reports secondary to medication reconciliation activities can also be obtained from PCARE.

From May 2006 to August 2007, the pediatric pharmacists performed admission medication reconciliation on 85% of the patients within 24 hours, and completed transfer reconciliation on 100% of the patients—an average of 13 admitted and 11 transfer patients per day. This involved reconciling all prescription, over-the-counter, and herbal medications. During the first five weeks, pharmacists corrected 24% of the PPML flow sheets. Pharmacists continue to correct the PPML based on the admission medication histories they perform; however, data are not collected on an ongoing basis.

Pediatric pharmacists documented 567 medication reconciliation–related interventions during the May 2006 through the August 2007 period—the most recent period that such data were gathered. Of the 567 interventions, 522 (92%) occurred during admission medication reconciliation, and the remaining 46 (8%) occurred during transfer reconciliation; 505 (89%) led to a change in therapy. When entering PCARE interventions, pharmacists assign a patient-related severity rating to each one (Table 1, right). Table 2 (right) summarizes the types of admission prescribing errors identified by the pharmacists. These results justified to hospital leadership the need for the allocation of resources to have pharmacists participate in the medication reconciliation process. Pharmacy and nursing continue to work together to improve the accuracy of each patient’s PPML and subsequent medication reconciliation.

Discussion

The PPML and PCARE medication reconciliation functionalities were created to provide efficient tools for staff to improve compliance with the Joint Commission National Patient Safety Goal 8 and prevent medication errors. A survey of pediatric pharmacists undertaken in September 2007 indicated that they were able to conduct an average of three to four reconciliations per eight-hour shift.

It takes an average of nine minutes per patient to identify patients with the PCARE Admit Screen (we did not collect data on the number of drugs per patient), interview the patient or family member, populate the PPML or verify the PPML, clarify any issues with the primary medical service, and document the completion of medication reconciliation and any interventions secondary to the activities in PCARE. In contrast, Nester and Hale reported it took an average of 19 minutes for staff, using a standard medication form, to perform medication reconciliation for adult patients. To date, the most challenging aspect of the program is finding the appropriate family member to provide the patient’s medication information. Staff find it may take several trips to a patient’s room before a thorough

Table 1. Reconciliation-Related Interventions, May 2006–August 2007

<table>
<thead>
<tr>
<th>Patient Impact</th>
<th>Interventions (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal Patient Impact: 27%</td>
<td>Intervention has minimal health consequences for the patient. Example: continuation of home multivitamin</td>
</tr>
<tr>
<td>Moderate Patient Impact: 66%</td>
<td>Intervention results in improved patient outcome. The overall health consequences are considered to be non–life threatening. Example: dosage change to the patient’s current dose or continuation of maintenance prescription medication</td>
</tr>
<tr>
<td>Severe Patient Impact: 7%</td>
<td>Absence of an intervention creates a potentially life-threatening situation for the patient. Example: continuation of tacrolimus in the transplant patient, trimethoprim and sulfamethoxazole prophylaxis in the oncology patient, or omeprazole in the patient admitted with gastrointestinal bleed</td>
</tr>
</tbody>
</table>

Table 2. Types of Admission Prescribing Errors for the 567 Medication Reconciliation–Related Interventions, May 2006–August 2007

<table>
<thead>
<tr>
<th>Type of Error</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omission</td>
<td>339 (65%)</td>
</tr>
<tr>
<td>Subtherapeutic dose</td>
<td>78 (15%)</td>
</tr>
<tr>
<td>Supratherapeutic dose</td>
<td>68 (13%)</td>
</tr>
<tr>
<td>Incorrect medication</td>
<td>27 (5%)</td>
</tr>
<tr>
<td>No longer taking</td>
<td>10 (2%)</td>
</tr>
<tr>
<td>Total</td>
<td>522 (100%)</td>
</tr>
</tbody>
</table>
admission medication history can be obtained.

Hospital leadership is fully committed to 100% compliance with complete medication reconciliation. To meet this and other pharmacy initiatives, one pediatric pharmacist shift was added per day during this time period. The 567 medication reconciliation–related clinical interventions performed by pharmacists indicate that the time and effort of performing medication reconciliation activities leads to positive benefit for patients.

Pharmacist involvement in Mayo’s medication reconciliation program has improved the accuracy of the admit medication list, with one-quarter of PPML flow sheets corrected during the first five weeks. As a result of these interventions, the computer-assisted medication reconciliation process, which has continued as described, has improved patient care by aiding pharmacists to complete more thorough medication reconciliation.

References

Online-Only Content
See the online version of this article for Appendix 1. Medication History Printout.
Appendix 1. (PCARE) Program: Patient Detailed Report Screen and Contained Information

A screen shot of the top of this window is shown, along with a description of the information contained in each section of the Patient Detailed Report. PCARE, Mayo Eugenio Litta Hospital’s Web-based pharmaceutical care program; CC-HPI-PMH, Chief Complaint-History of Present Illness-Past Medical History; BMI, body mass index; BSA, body surface area; HB, Harris Benedict; PCR, Polymerase chain reaction; BUN, blood urea nitrogen; INR, international normalized ratio; APTT, activated partial thromboplastin time; CSF, cerebrospinal fluid.

Demographic information: age, sex, actual weight, ideal and aminoglycoside dosing weight, body surface area
Hospital room location, primary service, and pager number
Dates of recent hospitalizations
Infection Control status and isolation requirements
CC-HP-PMH note documentation
Calculations: HB equation, BMI, BSA, aminoglycoside dosing weight
Infectious disease service consultations and pager number
Drug allergies
Renal function/status
Estimated & measured creatinine clearance
Dialysis (if applicable): intermittent dialysis, peritoneal dialysis, or continuous renal replacement therapy (CRRT)
Medication reconciliation history and documentation
All medications within desired time range on a timeline grid and/or a drug detail grid
Parenteral nutrition: composition and calculations (total calories, calories as fat/protein, deviation from HB equation)
Microbiology data: cultures, stains, and PCR assays
Selected laboratory data: blood counts, electrolytes, liver enzymes, creatinine, BUN, bilirubin, international normalized ratio, activated partial thromboplastin time, acid/base status, etc.
Antimicrobial and other drug assays/serum drug levels
Surgical operative reports
Rule flag information with link to intervention documentation form
Intervention information history and intervention outcomes
Monitors (including links to reference documents) and pharmacist communication notes
Nonformulary drug documentation and nonformulary order history
Urinalysis
CSF results
Warfarin protocol history
Training Pediatric Clinical Pharmacology and Therapeutics Specialists of the Future: The Needs, the Reality, and Opportunities for International Networking

Paediatric Drugs
January 1, 2009 | Gazarian, Madlen

Abstract

In recent years there has been a rapid and marked increase in global recognition of the need for better medicines for children, with various initiatives being implemented at global and regional levels. These exciting developments are matched by recognition of the need to build greater capacity in the field of pediatric clinical pharmacology and therapeutics to help deliver on the promise of better medicines for children. A range of pediatric medicines researchers, educators, clinical therapeutics practitioners, and experts in drug evaluation, regulation, and broader medicines policy are needed on a larger scale, in both developed and developing world settings. The current and likely future training needs to meet these diverse challenges, the current realities of trying to meet such needs, and the opportunities for international networking to help meet future training needs are discussed from a global perspective.

Pediatric clinical pharmacology and therapeutics (PCPT) can be broadly described as the 'discipline concerned with the evaluation and use of medicines in the pediatric population,' although many different descriptions of the specialty exist.[1,2] The last few years have seen a rapid and marked increase in global recognition of the need for
better medicines for children, and pediatric clinical pharmacologists have been leading this effort.[3,4] The key challenges PCPT specialists now face in delivering on the promise of better medicines for children include: (i) doing high-quality medicines research relevant to meeting actual child health needs at a global level; (ii) timely evaluation, collation, and dissemination of new research evidence about the efficacy and safety of medicines to all clinicians involved in using medicines in the pediatric population; (iii) timely access to appropriate medicines; and (iv) effective use of research evidence from appropriate pediatric studies in the routine care of pediatric patients (rational use of medicines or quality use of medicines). This includes the effective application of 'knowledge translation' research to improving medicines use and outcomes, an emerging field of expertise that is of great importance to achieving optimal therapeutics in actual practice.[5]

There is increasing recognition of the need to build greater capacity in PCPT to meet these challenges. A range of pediatric medicines researchers, educators, clinical therapeutics practitioners, and experts in drug evaluation, regulation, and broader medicines policy are needed on a larger scale. The need for greater efforts at training to meet the increasing need for expertise is recognized by a number of professional bodies at global and regional levels,[1,3] with several initiatives already underway.[4]

This article discusses the current and likely future training needs from a global perspective, the current realities of trying to meet such needs, and the opportunities for international networking to help meet training needs in the future.

What is Needed for Training in Pediatric Clinical Pharmacology and Therapeutics?

Content of Training Programs

Defining core content for PCPT training with some consistency at a global level has been problematic,[6,7] although a recent comparison of current Canadian and UK programs found considerable similarities.[2] In considering future training needs, it makes sense to look at the key challenges of delivering better medicines to children and
design training around the skills needed to address them. Some core general competencies that are needed are listed in figure 1. A range of specialized clinical and research skills, together with expertise in teaching and learning at many levels are needed. Perhaps much more so than any other specialty, PCPT experts need to be highly skilled in the public health and social, and political dimensions of healthcare, including expertise in drug development, medicines evaluation, regulation and reimbursement issues, and evidence-based therapeutic decision-making skills to inform both clinical practice and broader medicines policy. They also need sophisticated knowledge of, and skills in, ethical interactions with the pharmaceutical industry, whether through involvement in the design, conduct, or review of ethical medicines research, or through playing a key role in helping achieve rational use of medicines in clinical practice across a range of settings.

Traditionally, most PCPT experts have undertaken some type of specialty or subspecialty pediatric clinical training, with the content and duration varying between different countries. Although most are medical specialists, some have arrived at PCPT through pediatric pharmacy clinical training. Yet others have trained in adult medicine as their clinical base. In the future, it is likely that more trainees from a diverse disciplinary background may wish to train in PCPT. Irrespective of the professional discipline in which clinical training may have originated, a core set of clinical competencies in PCPT is needed by all experts in the field. These include specialized knowledge and skills relevant to clinical care and therapeutic decision making specifically in the pediatric population (figure 2). In addition to the classically defined competencies in pharmacology and toxicology, high-level expertise in the critical evaluation of clinical research and application to evidence-based therapeutic decision making is needed. Such expertise is increasingly being valued and sought, for example, by various bodies concerned with rational therapeutics, medicines access and reimbursement, or with evidence-based therapeutic guidelines or medicines information development at local, national, and global levels. Indeed, highlighting the importance of such expertise to optimizing medicines use in healthcare settings has been suggested as critical to the survival of the specialty itself.[8]
In addition to skills relevant to using research evidence, PCPT experts must also be highly skilled in doing high-quality research to generate the needed evidence. Formal research training in a basic science field and/or in clinical research methods is optimally acquired through a higher degree in research (e.g. masters or doctorate). Although this is strongly encouraged, there is insufficient dedicated time within most PCPT training programs currently in existence, so trainees need to devote additional time to acquiring a higher degree. Given the central role most PCPT experts have played, and will continue to play, in the design and conduct of medicines research, these are core skills relevant to all trainees. This is especially so in the current context of increased demand for pediatric medicines research globally. A range of high-level expertise in the comprehensive scientific evaluation of medicines, including the design and conduct of high-quality preand post-marketing clinical trials and observational studies relevant to the pediatric population, is needed (figure 3). Specialized expertise in the ethics of clinical research in children, including skills to appropriately address any possible ethical issues in pharmaceutical industry-funded studies, is vital.[9,10]

Expertise in teaching and learning at both undergraduate and postgraduate levels is needed by all PCPT experts. In addition to teaching trainees within the field of PCPT, there will be an increasing need to provide effective cross-disciplinary teaching about a variety of topics relevant to pediatric medicines and therapeutics to a wide variety of health professionals, scientists, and others from academia, pharmaceutical industry, and government agencies in the developed and developing worlds.

Structure and Duration of Training Programs

The structure and duration of training can be variable, with total durations ranging from 5 to 10 years in existing programs.[2,11] This is partly due to differences between countries in requirements for training in the foundation clinical discipline[1,2,11] and partly to differences in the duration of specialty training for the PCPT component, despite similar content of some programs.[2] The required duration of dedicated research training can also vary (e.g. at least 6 months in Canada and at least 12
months in the UK), although most programs emphasize that longer periods of research are highly desirable.

As the field continues to grow, it should be possible to eventually develop some global consistency about the content and duration of the specialized 'pediatric CPT' component of any training program. This could then be integrated into an overall training program structure taking into account differences in foundation disciplinary training requirements, which vary between countries. Defining minimum criteria for the nature, duration, and structure of formal research training would be highly desirable. Innovative ways of delivering the needed training should be explored. These may include, for example, enrolment in a higher degree research program concurrent with clinical specialty training as a feasible model.

Who Needs Training?

Potential trainees may come from a range of medical, pharmacy, or other backgrounds. Medical trainees could include pediatricians, pediatric sub-specialists, or those who have initially trained in adult medicine. Increasingly, scientists and health professionals from a range of settings, including the pharmaceutical industry, academia, government, and non-government organizations will need to acquire training in various aspects of PCPT, either in whole or in part. Flexible and tailored programs to meet these diverse needs will be vital to delivering relevant training and building a larger pool of expertise in the field globally. Balancing such diversity against maintaining high standards in core PCPT competencies will be challenging.

The Realities: How and Where can Training Needs be Met?

Although there are indications and expectations of increasing demand for training in PCPT at a global level, the current reality is that the capacity to meet that need is suboptimal in many parts of the world. A recent survey of European Society for Developmental Perinatal, and Paediatric Pharmacology (ESDP) members found that only four European countries had more than one pediatric clinical pharmacologist and
the total number of trainees (n = 23) exceeded the number of pediatric clinical pharmacologists (n = 18). Four trainees were in centers where there was no pediatric clinical pharmacologist.111 The limited availability of PCPT experts to act as trainers is also the reality in many other parts of the world, with the possible exception of North America.

Even in centers where there may be a pediatric clinical pharmacologist, the capacity of a single center to deliver all of the diverse training needs is often limited. This may be due to limitations in the facility (e.g. limited infrastructure or access to an appropriate mix of patients); limitations in the ability to provide adequate supervision (e.g. number, expertise, or availability of senior staff); or limitations in the range of educational or research opportunities available. In many instances, funding for such training positions may not be available. A shift from the traditional approach to training might help address such challenges. Ultimately, the appropriateness of training may need to be determined by acquisition of required core competencies through innovative and flexible models of delivery, which may include multi-site training delivered by different trainers, rather than the traditionally defined location- and duration-based training programs. This will be especially relevant to building capacity in areas of greatest need, such as the developing world. A key determinant of the success of such an approach will be developing consensus on a core curriculum for PCPT that is globally relevant. While this has proved challenging in the past, the desirability of globally transferable skills in a field such as PCPT is an increasingly relevant need for the future.

International networking in training and capacity building to help meet this need is currently under discussion and its success will be vital to the future viability of the field. Key professional organizations such as the International Union of Basic and Clinical Pharmacology (IUPHAR) and the ESDP are actively collaborating to develop new resources and innovative modes of delivery to support training in PCPT at a global level.[4] There are also a number of excellent training resources that are currently in existence and which could be more widely utilized by trainees from different parts of the world. These include the annual ESDPEudipharm course in 'Evaluation of Medicinal
Products in Children;' the biannual 'International Workshop on Paediatric Clinical Trials' run by the Association of Clinical Research Professionals and the Journal of Pediatric and Perinatal Drug Therapy; and education days in association with regular scientific meetings, such as those of the ESDP and the American Society for Clinical Pharmacology and Therapeutics (ASCPT). In addition, training opportunities available through local universities and relevant other organizations could be more widely utilized. For example, formal programs in clinical epidemiology and pharmacoepidemiology, clinical trials methodology, or drug development,[12] offer excellent general opportunities that can be integrated with PCPT training.

Accreditation of Programs and Assessment of Trainees

Currently, trainees spend defined periods of time undertaking specified activities at accredited training sites. Not all sites have undergone an independent or formal accreditation process. Assessment of competencies is usually through a combination of formative and summative evaluations performed by the same experts who provided the training, which has obvious drawbacks. Although none of the existing programs has so far had an exit examination at a national level, this will be a requirement in the Canadian program soon (Ito S, personal communication).[13]

A potential future model of flexible training programs built around acquisition of core competencies through a variety of sites, trainers, and learning modes will increase the need for independent, competency-based assessments. With site-based training models, processes need to be established for independent evaluation of the suitability of training programs and sites, especially as new ones emerge. It is also highly desirable to have a separation of assessment from the delivery of training. Similarly, independent processes to address potential problems arising during training are needed to ensure high-quality training experiences and outcomes. Given the current limitations in numbers of available experts in most countries, the need for independent assessments (of trainers and trainees) presents additional challenges. These might also be addressed by innovative approaches in international networking.
Acknowledgments

Thanks to Prof. Shinya Ito and Prof. Imti Choonara for providing access to the Canadian and UK training curriculum documents. Dr Gazarian trained in pediatrics in Australia, and in pediatric clinical pharmacology, pediatric rheumatology, and clinical epidemiology in Canada. This article is informed partly by personal experience and reflections (as trainee and trainer) and personal communications over a number of years with colleagues from different countries, whose input is gratefully acknowledged. Special thanks to Profs Gideon Koren, Shinya Ito, Imti Choonara, and Kalle Hoppu for sharing their insights on training in pediatric clinical pharmacology. No sources of funding were used to assist in the preparation of this article. The author has no conflicts of interest that are directly relevant to the content of this article.

References

[Author Affiliation]
Mathen Gazarian

Paediatric Therapeutics Program, School of Women's and Children's Health, University of New South Wales and Sydney

Children's Hospital, Randwick, New South Wales, Australia

[Author Affiliation]

Correspondence: Dr Mathen Gazarian, Paediatric Therapeutics Program, School of Women's and Children's Health, University of New South Wales, Level 3, Emergency Wing, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.

E-mail: M.Gazarian@unsw.edu.au

Gazarian, Madlen

Copyright Wolters Kluwer Health Adis International 2008

http://www.highbeam.com/doc/1P3-1638228481.html

HighBeam Research is operated by Cengage Learning. © Copyright 2012. All rights reserved.

www.highbeam.com
Abstract Pediatric patients who have undergone cardiac surgery are at risk for renal insufficiency. The impact of pharmacist consultation in the pediatric cardiac intensive care unit (ICU) has yet to be defined. Patients admitted to the pediatric cardiac ICU at our institution from January through March of 2006 were included. Patient information, collected retrospectively, included: demographics, cardiac lesion/surgery, height, weight, need for peritoneal or hemodialysis, need for mechanical support, highest and lowest serum creatinine, ICU length of stay (LOS), renally eliminated medications, pharmacist recommendations (accepted or not), and appropriateness of dosing changes.

There were 140 total admissions (131 patients; age: 3.0 ± 6.3 years) during the study period. In total, 14 classes of renally eliminated medications were administered, with 32.6 ± 56.4 doses administered per patient admission. Thirty-seven patient admissions had one or more medications adjusted for renal insufficiency; the most commonly adjusted medication was ranitidine. Patients who required medication adjustment for renal dysfunction were significantly younger compared to those patients not requiring medication adjustment. Pharmacist recommendations were responsible for 96% of medication adjustments for renal dysfunction, and the recommendations were accepted and appropriate all of the time. The monetary impact of pharmacist interventions, in doses saved, was approximately $12,000. Pharmacist consultation can result in improved dosing of medications and cost savings. The youngest patients are most at risk for inappropriate dosing.

Keywords Renal insufficiency · Pediatric · Cardiac surgery · Intensive care · Pharmacist interventions · Medication adjustment

Introduction Renal function is integrally involved in the disposition of medications in the human body. Because renal dysfunction is common in patients undergoing cardiac surgery, medications often require adjustment for changes in renal clearance [26]. In adult patients, failure to adjust medication doses and schedules often results in possible adverse effects and inappropriate dosing [20]. Interventions to identify patients at risk for inappropriate medication dosing secondary to renal dysfunction have been shown to improve medication utilization [6, 12].

Patients in the pediatric cardiac intensive care unit (ICU) are at considerable risk for the development of renal insufficiency. Factors contributing to renal insufficiency include low cardiac output, medications, cardiopulmonary bypass, pathophysiology, surgical procedure, and young age [2, 3, 7, 10]. Use of peritoneal dialysis and hemodialysis is therefore not uncommon [5]. A pharmacist review of medications is likely to prevent inappropriate dosing secondary to renal dysfunction [1, 14, 15]. There is currently no literature describing the impact of a pharmacist review of medications for renal dosing in the pediatric cardiac ICU.

The purposes of this study were (1) to identify the medications in the pediatric cardiac ICU that most
frequently require adjustment for renal dysfunction, (2) to characterize the population of patients requiring medication adjustment secondary to renal insufficiency, and (3) to characterize pharmacist consultation for adjustment of medications due to renal insufficiency in the pediatric cardiac ICU.

Materials and Methods

A renal dosing program was initiated in the pediatric cardiac ICU at our institution in August 2003. The pharmacy computer system was configured to automatically calculate creatinine clearance (CrCl) from serum creatinine (SCr) values according to the modified Schwartz equation, for pediatric patients, or the Cockcroft-Gault equation, for adult patients [8, 22]. The pharmacy staff in the ICU was required to evaluate patient medication profiles relative to patient CrCl on a daily basis. As indicated, pharmacists made recommendations to the medical team in accordance with guidelines for medication dosing in renal dysfunction located in the institutional medication formulary, which was adapted from *Pediatric Dosage Handbook*, 13th ed. [23].

Patients admitted to the pediatric cardiac ICU at our institution from January through March of 2006 were identified and a waiver of consent was obtained from the investigational review board. Patients were included in the study if they were admitted to the pediatric cardiac ICU for greater than 24 h during the study period, received at least one medication, and had at least one SCr level drawn. Patients were excluded if they spent less than 24 h admitted to the ICU, did not receive any medications while admitted to the ICU, or did not have a SCr level. Medications that are monitored by serum concentrations (e.g., aminoglycosides, enoxaparin, vancomycin) were not included in the evaluation, as renal insufficiency is not the only factor affecting their disposition. Angiotensin-converting enzyme (ACE) inhibitors, such as captopril or enalapril, are initiated at very low doses and titrated to effect over a period of days and, therefore, are not adjusted in patients with decreased renal function in our institution.

Patient information, collected retrospectively, included: demographics, cardiac lesion/surgery, height, weight, use of peritoneal or hemodialysis, need for mechanical circulatory support, high and low SCr and CrCl, ICU length of stay (LOS), medications that are renally eliminated, response to pharmacist recommendations, and appropriateness of dosing changes according to CrCl.

 Appropriateness of pharmacist recommendations was assessed by the accuracy of the recommendation according to institutional guidelines. Monetary impact of pharmacist interventions was determined by calculating the number of doses that were saved by appropriately decreasing medication doses or schedules for renal insufficiency. Patient charge, determined from current medication buying contracts and pricing, was used as the basis for determining cost savings.

Data are presented as mean ± standard deviation, unless otherwise noted. Comparisons between groups were performed with the Wilcoxon rank sum test for nonparametric data and Fisher’s exact test for categorical data.

Results

There were 140 admissions (131 patients) to the pediatric cardiac ICU during the study period, and the mean patient age on the day of admission was 3.0 ± 6.3 years (median: 168 days; range: 1 day–44 years). The mean length of stay in the ICU was 6.3 ± 8.8 days (median: 4.0 days; range: 1–65 days). Twenty-four (17.1%) admissions did not involve surgical intervention. Of the remaining 116 (82.8%) surgical admissions, 100 (86.2%) required cardiopulmonary bypass. Peritoneal dialysis was utilized in a small number of patients (19 admissions, 13.6%), and no patients underwent hemodialysis. Three (2.1%) admissions were on a form of mechanical circulatory support. Six (4.3%) admissions underwent delayed sternal closure.

The mean low and high calculated CrCl for the study cohort was 74.0 ± 37.6 ml/min/1.73 m² and 115.5 ± 56.5 ml/min/1.73 m², respectively. A reduced CrCl (<50 ml/min/1.73 m²) was observed in 40 (28.6%) admissions, a CrCl < 35 ml/min/1.73 m² was observed in 21 (15.0%) admissions, and no patients had a CrCl < 10 ml/min/1.73 m².

Fourteen classes of medications requiring adjustment in renal dysfunction, according to institutional guidelines, were prescribed during the study period (Table 1). A median of 18 doses (range: 1–414) of renally eliminated medications were administered per patient admission. Two patients did not receive any renally eliminated medications.

Patients who required medication adjustment for renal dysfunction were significantly younger and smaller than those patients who did not require medication adjustment. However, patients were not more likely to have undergone cardiopulmonary bypass or to have a single ventricle physiology (Table 2).

Thirty-seven (26.4%) patient admissions required adjustment of one or more medications due to renal dysfunction. Thirty-six (97.3%) of these admissions had one or more medications appropriately adjusted for renal dysfunction, according to institutional guidelines, and ranitidine was the most common medication adjusted for renal dysfunction (34 admissions, 91.8%) (Fig. 1, Table 3). Nine patients required readjustment of medications for improved renal function.
Seventy-seven (91.6%) of 84 courses of medication were appropriately adjusted for renal dysfunction. Pharmacists were responsible for 74 (96%) adjustments and physicians were responsible for 3 (4%) adjustments for renal dysfunction. Pharmacist recommendations for adjustment of medications were accepted 100% of the time. The monetary impact of pharmacist interventions, in doses saved, was $12,482.54.

Discussion

Renal dysfunction can be a common occurrence in cardiac intensive care. Reports have documented the incidence of renal insufficiency, according to the RIFLE criteria, in adults after cardiac surgery as high as 19.6% [19]. Subsequently, programs to improve the use of medications in adult patients with renal insufficiency have been adopted. In our study population, 15% (21/140) of the admissions had renal insufficiency during ICU admission. Appropriate dosing of medications for critically ill patients with renal insufficiency is important for therapeutic, safety, and cost-effective reasons.

Although the Schwartz and Cockroft-Gault equations are the current standard for calculation of CrCl in the clinical setting, most publications evaluating the Schwartz equation have identified an overestimation in the calculations [8, 13, 22]. Harrison et al. demonstrated that the Schwartz equation overestimates CrCl in neonates after surgery for hypoplastic left heart syndrome or transposition of the great arteries, which could lead to toxic concentrations of drugs eliminated by the kidneys [16]. If a more accurate method for estimation of CrCl is developed, there will likely be a larger incidence of patients requiring medication adjustments for renal dysfunction.

Due to significant renal insufficiency in some patients, our study population had instances of peritoneal dialysis use. Elimination of medications might be affected by peritoneal dialysis. However, there are very little data on the removal of medications due to peritoneal dialysis, and medications were not adjusted for the effects of peritoneal dialysis in our cohort [11, 17, 21]. Similarly, medications were not adjusted solely due to mechanical circulatory support, which might or might not include hemodialysis or hemofiltration [4].

Medication adjustment was more common in younger patients. Decreased renal function after cardiac surgery is a common occurrence in neonates [2, 3, 7, 9, 10]. This likely is due to the developmental changes in the kidney

Table 1 Classes of renally eliminated medications prescribed

<table>
<thead>
<tr>
<th>Medication class</th>
<th>Total no. of doses administered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td>1530</td>
</tr>
<tr>
<td>Histamine-2 antagonists</td>
<td>1375</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>821</td>
</tr>
<tr>
<td>Diuretics</td>
<td>167</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>138</td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>140</td>
</tr>
<tr>
<td>Prokinetic agents</td>
<td>125</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>49</td>
</tr>
<tr>
<td>Antifungal agents</td>
<td>43</td>
</tr>
<tr>
<td>Antiviral agents</td>
<td>42</td>
</tr>
<tr>
<td>Antiepileptics</td>
<td>28</td>
</tr>
<tr>
<td>Digoxin</td>
<td>27</td>
</tr>
<tr>
<td>Antiarrhythmics</td>
<td>27</td>
</tr>
<tr>
<td>Colchicine</td>
<td>5</td>
</tr>
<tr>
<td>Uricosuric agents</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2 Patient factors associated with adjustment of medications for renal dysfunction

<table>
<thead>
<tr>
<th>Category</th>
<th>Medications adjusted (n = 37)</th>
<th>Medications not adjusted (n = 103)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay (days)</td>
<td>11.2 ± 13.6</td>
<td>4.5 ± 4.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>5.9 ± 15.1</td>
<td>14.5 ± 18.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>51.9 ± 21.9</td>
<td>78.1 ± 30.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age (months)</td>
<td>0.9 ± 1.1</td>
<td>36.5 ± 76.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Presence of CPB</td>
<td>64.8%</td>
<td>75.7%</td>
<td>NS</td>
</tr>
<tr>
<td>>18 years of age</td>
<td>2.7%</td>
<td>5.8%</td>
<td>NS</td>
</tr>
<tr>
<td>Univentricular anatomy</td>
<td>20%</td>
<td>26.2%</td>
<td>NS</td>
</tr>
</tbody>
</table>
occurring early in life in addition to the inflammatory pathophysiology associated with cardiopulmonary bypass [2, 3, 7, 9, 10]. Additionally, younger patients might have had a higher acuity of illness, as reflected by the increased mean LOS.

Ranitidine was the medication most frequently requiring adjustment for renal dysfunction in our study group. Ranitidine is the standard for stress ulcer prophylaxis after cardiovascular surgery at our institution. Although the clinical risks associated with overdosing of ranitidine are not great, the cost benefit associated with appropriate ranitidine dosing was significant in our cohort [24].

Pharmacist involvement in pediatric patient pharmacotherapy has been documented to be beneficial [1, 14, 15, 18, 25]. Additionally, in pediatric intensive care patients, pharmacist involvement has been noted to decrease the cost of care, decrease medication errors, and optimize medical therapies via several types of activities [18]. This is the first account of pharmacist interventions focusing solely on medication adjustment in renal insufficiency in patients in a cardiac ICU. The extrapolated cost savings of $50,000 per year is substantial, demonstrating the benefit of a multidisciplinary approach to pediatric critical care.

Conclusions

Patients in the pediatric cardiac ICU receive many medications that require adjustment for renal insufficiency, with the youngest patients most at risk for inappropriate dosing. Pharmacist consultation can result in improved dosing of medications and substantial cost savings.

Acknowledgments The authors would like to thank the CV pharmacy team for their help in the study: Susan Abraham, Michael Allegrino, Roy Chacko, Robert Chin, Lizy Josekutty, and David Ung.

References

<table>
<thead>
<tr>
<th>Medication</th>
<th>Creatinine clearance (ml/min/1.73 m²)</th>
<th>Adjustment schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>10–30</td>
<td>Administer every 8–12 h</td>
</tr>
<tr>
<td></td>
<td><10</td>
<td>Administer every 12 h</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>10–30</td>
<td>Administer every 12 h</td>
</tr>
<tr>
<td></td>
<td><10</td>
<td>Administer every 24 h</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>10–50</td>
<td>Administer every 12 h</td>
</tr>
<tr>
<td></td>
<td><10</td>
<td>Administer every 24 h</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>30–50</td>
<td>Administer every 12 h</td>
</tr>
<tr>
<td></td>
<td>10–29</td>
<td>Administer every 24 h</td>
</tr>
<tr>
<td></td>
<td><10</td>
<td>Administer every 48–72 h</td>
</tr>
<tr>
<td>Digoxin</td>
<td>10–50</td>
<td>Reduce dose 25–75% or administer every 36 h</td>
</tr>
<tr>
<td></td>
<td><10</td>
<td>Reduce dose 75–90% or administer every 48 h</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>21–50</td>
<td>Reduce dose 50%</td>
</tr>
<tr>
<td></td>
<td>11–20</td>
<td>Reduce dose 75%</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td>50–69</td>
<td>2.5 mg/kg/dose every 24 h</td>
</tr>
<tr>
<td></td>
<td>25–49</td>
<td>1.25 mg/kg/dose every 24 h</td>
</tr>
<tr>
<td></td>
<td>10–24</td>
<td>0.625 mg/kg/dose every 24 h</td>
</tr>
<tr>
<td>Ranitidine</td>
<td><50</td>
<td>0.625 mg/kg/dose 3 times/week following hemodialysis</td>
</tr>
</tbody>
</table>

| | | Administer every 18–24 h |
Unit-based clinical pharmacists’ prevention of serious medication errors in pediatric inpatients

RAINU KAUSHAL, DAVID W. BATES, ERIKA L. ABRAMSON, JANE R. SOUKUP, AND DONALD A. GOLDMANN

Purpose. Rates of serious medication errors in three pediatric inpatient units (intensive care, general medical, and general surgical) were measured before and after introduction of unit-based clinical pharmacists.

Methods. Error rates on the study units and similar patient care units in the same hospital that served as controls were determined during six- to eight-week baseline periods and three-month periods after the introduction of unit-based clinical pharmacists (full-time in the intensive care unit [ICU] and mornings only on the general units). Nurses trained by the investigators reviewed medication orders, medication administration records, and patient charts daily to detect errors, near misses, and adverse drug events (ADEs) and determine whether near misses were intercepted. Two physicians independently reviewed and rated all data collected by the nurses. Serious medication errors were defined as preventable ADEs and nonintercepted near misses.

Results. The baseline rates of serious medication errors per 1000 patient days were 29 for the ICU, 8 for the general medical unit, and 7 for the general surgical unit. With unit-based clinical pharmacists, the ICU rate dropped to 6 per 1000 patient days. In the general care units, there was no reduction from baseline in the rates of serious medication errors.

Conclusion. A full-time unit-based clinical pharmacist substantially decreased the rate of serious medication errors in a pediatric ICU, but a part-time pharmacist was not as effective in decreasing errors in pediatric general care units.

Index terms: Clinical pharmacists; Clinical pharmacy; Errors, medication; Hospitals; Interventions; Pediatrics; Pharmaceutical services

Am J Health-Syst Pharm. 2008; 65:1254-60
care pediatric hospital; ADEs were reduced by 41% in a pediatric critical care unit.15,16 More recently, studies have suggested that CPOE, like any intervention, can lead to new types of errors, especially during the early phase of technology deployment and dissemination.17 Furthermore, CPOE is expensive to install and update.

It is important, therefore, to evaluate other, non-IT approaches to reducing medical error. For example, standardized protocols, education programs, and initiatives that address institutional culture may be efficacious in reducing medication error rates, although the evidence base for these interventions is quite limited.18,19 The use of unit-based clinical pharmacists is perhaps the most promising non-IT-based intervention. Leape et al.20 found that having a clinical pharmacist participate on physician rounds in an adult intensive care unit (ICU) decreased preventable ADEs at the prescription-writing stage by 66%, while Kucukarslan et al.21 found that unit-based clinical pharmacists reduced preventable ADEs at the same stage by 78%. These studies, conducted on adult units in single institutions, focused primarily on errors in ordering medications. Few studies have focused on errors at all stages of the medication-use process in children.

We hypothesized that unit-based clinical pharmacists might be able to reduce rates of serious medication errors in pediatric inpatients in both ICU and general care unit settings. Our study was designed to test this hypothesis in pediatric inpatient units of an academic medical center.

Methods

Study site. The prospective cohort study was conducted at a freestanding pediatric teaching hospital located in an urban area with a socioeconomically diverse patient population. Fewer than 5% of the patients treated are adults, most of whom have complex long-term medical and surgical conditions. At the time of this study, physicians wrote orders on paper charts. Copies were sent to the pharmacy, and nurses transcribed orders into the medication administration record (MAR). Before the study intervention, dispensing pharmacists sent ready-to-administer doses to the patient care units but participated only intermittently in unit-based rounds.

We studied the error rates before and after pharmacist intervention in two general medical units, two general surgical units, the pediatric ICU, and the cardiac ICU. The pairs of general units were selected because of their similar characteristics and patient populations. The ICUs, however, had differences in case mix; whereas the cardiac ICU served primarily patients with heart diseases, the pediatric ICU had patients from the general surgery, neurosurgery, orthopedic, craniofacial reconstruction, otolaryngology, and medicine services. One of the medical units and one of the surgical units were randomly selected as experimental groups, and the others served as controls. The pediatric ICU was randomly selected as an experimental group; the cardiac ICU served as its control. Despite the differences between cardiac ICU patients and pediatric ICU patients, these were the most similar patient populations in terms of severity and complexity of disease. The hospital’s human subjects research committee approved the study protocol.

Definitions. We used IOM definitions for the study.1 Medication errors were defined as errors in drug ordering, transcribing, dispensing, administering, or monitoring. Medication errors with significant potential for injuring patients were defined as near misses or potential ADEs. Near misses were further subdivided into intercepted and nonintercepted potential ADEs. Whereas intercepted near misses were corrected before the medication reached the patient, nonintercepted near misses were administered but did not cause any harm. ADEs were defined as injuries that resulted from the use of a drug.22 An ADE was considered preventable if it was associated with a medication error and nonpreventable if it was not. For example, a rash due to penicillin in a known penicillin-allergic patient was considered a preventable ADE, whereas a penicillin-related rash in a patient with no known allergies was a nonpreventable ADE. Serious medication errors were defined as preventable ADEs and nonintercepted near misses. An effective patient safety intervention should decrease serious medication error rates, but it may increase rates of intercepted near misses. These same definitions have been used in previous studies.13,14

We used the term “unit-based clinical pharmacist” to describe a pharmacist whose duties include making rounds with physicians as well as monitoring drug dispensing, storage, and administration. The unit-based clinical pharmacists all had earned the Doctor of Pharmacy degree and had comparable skill levels. In contrast, the primary role of “dispensing pharmacists” at our institution is to dispense medications.

Data collection. Before collecting data, we enlisted the support of staff members and educated them on the study’s purpose and methods. We trained nurse data collectors for two weeks to develop a comprehensive, uniform approach to error detection. Interrater reliability was verified in the month before formal data collection and again every other month during the study period.

Baseline data were collected for six to eight weeks in each unit during a six-month period from March to August 2000. After the introduction of unit-based clinical pharmacists, data were collected concurrently in each intervention and control ICU or general unit pair.
for three months between June and November 2000.

Medication errors, near misses, and ADEs were identified through detailed review of all medication orders, MARs, and patient charts by a nurse data collector randomly assigned to each study unit on a daily basis. These reviews were performed each weekday and on Mondays for the previous weekend. To compile as complete a list as possible, we also solicited reports of errors from house officers, nurses, and pharmacists. Reporting a medication error did not trigger a review of clinical data; rather, all clinical data were reviewed daily for all patients enrolled in the study. All reported errors had previously been identified in the review process.

Data collected for each error, near miss, or ADE included the drug name, dose, route, and category; the point in the system at which the error occurred; the type of error; medical teams involved; and additional work resulting from the error. The data collectors evaluated whether near misses had been intercepted. Data on the complexity of individual drug regimens, including number and types of drugs, were recorded. Clinical and demographic data were collected from patient records and institutional administrative databases. Morbidity and disability data were collected until discharge for all patients with an ADE.

Two physicians independently reviewed each suspected ADE and near miss and classified them as ADEs, near misses, or medication errors. The reviewers were blinded to the time period (i.e., before or after intervention) and the unit location of events in order to minimize potential bias. The reviewers used a four-point Likert scale to rate the severity of injury for ADEs and near misses. Preventability of ADEs was rated on a five-point Likert scale, and attribution (i.e., the likelihood that an incident was due to the specific drug) was rated with the algorithm of Naranjo et al. Disagreements between reviewers were resolved through discussion and consensus.

Intervention. After baseline error rates were obtained for all six units, a unit-based clinical pharmacist was added to the team in one medical unit, one surgical unit, and one ICU. These pharmacists’ primary role was to provide physicians with timely information and advice on ADEs, drug interactions, and appropriate dosages, dose intervals, and routes of administration. In addition, they facilitated communication between the medical care team and the pharmacy and assisted nurses with drug preparation by providing information on administration and monitoring. They also helped monitor the order transcription process and the medication preparation, storage, and distribution systems. The pharmacist was an integral part of the unit-based continuous quality-improvement (CQI) team, which included a unit nurse administrator, a unit attending physician, a member of the unit nursing staff, a member of the house staff, and one of the study’s principal investigators or coinvestigators. The CQI team met bimonthly to review serious medication errors and to design process changes and system improvements to be implemented after the completion of data collection.

In the ICU, the pharmacist was present full-time (40 hours per week) and participated daily in physician rounds. In the general medical and surgical units, the pharmacist was available only on a part-time basis during morning hours. The pharmacist in the general surgical unit often had difficulty attending rounds with surgeons, which occurred in the early morning before the start of daytime pharmacist shifts and before scheduled surgeries. In the general medical unit, the pharmacist tended to leave shortly after physician rounds were completed.

Statistical methods. We report preintervention and postintervention rates of serious medication errors (nonintercepted near misses and preventable ADEs) per 1000 patient days, assuming a Poisson distribution. Measures of interrater reliability (before discussion and consensus) were calculated using the kappa statistic, with moderate-to-excellent levels of agreement (0.75 for incident classification). The a priori level of significance was 0.05.

Results

During the study period, we examined a total of 1249 admissions in the ICUs, 1690 admissions in the general medical units, and 1924 admissions in the general surgical units. Table 1 summarizes patient demographics. Preintervention patients were generally similar to postintervention patients in all studied units, with most variation occurring in age distribution.

Table 2 summarizes serious medication error rates. The ICU with the full-time unit-based clinical pharmacist had a decrease in serious medication errors from 29 per 1000 patient days before the intervention to 6 per 1000 patient days after the intervention ($p < 0.01$). On the other hand, during the intervention period, the rate of intercepted near misses in the intervention ICU increased from 32 to 57 per 1000 patients ($p = 0.08$). There was no significant difference between the two ICUs in the preintervention rates of serious medication errors. There were 33 fewer net serious medication errors per 1000 patient days in the intervention ICU (where the reduction was 23 errors per 1000 patient days) than in the control ICU (where the rate increased by 10 errors per 1000 patient days) ($p < 0.001$). There was no reduction in the rate of serious medication errors with pharmacist participation in the general units. In both ICUs, a majority of detected errors occurred at the drug ordering stage (67–100%).
Table 1. Demographic Characteristics of Study Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention Unit</th>
<th>Control Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preintervention</td>
<td>Postintervention</td>
</tr>
<tr>
<td>Intensive Care Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>209</td>
<td>401</td>
</tr>
<tr>
<td>Mean LOS (days) (95% CI)</td>
<td>5.94 (4.12–7.76)</td>
<td>6.50 (4.80–8.19)</td>
</tr>
<tr>
<td>No. (%) female</td>
<td>79 (38)</td>
<td>179 (45)</td>
</tr>
<tr>
<td>Race (no. [%])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>129 (62)</td>
<td>253 (63)</td>
</tr>
<tr>
<td>Black</td>
<td>18 (9)</td>
<td>36 (9)</td>
</tr>
<tr>
<td>Asian</td>
<td>6 (3)</td>
<td>9 (2)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>15 (7)</td>
<td>31 (8)</td>
</tr>
<tr>
<td>Other</td>
<td>7 (3)</td>
<td>23 (6)</td>
</tr>
<tr>
<td>Unknown</td>
<td>34 (16)</td>
<td>49 (12)</td>
</tr>
<tr>
<td>Age (no. [%])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 mo</td>
<td>17 (8)</td>
<td>34 (8)</td>
</tr>
<tr>
<td>2 mo–1 yr</td>
<td>39 (19)</td>
<td>81 (20)</td>
</tr>
<tr>
<td>2–5 yr</td>
<td>37 (18)</td>
<td>78 (19)</td>
</tr>
<tr>
<td>6–12 yr</td>
<td>54 (26)</td>
<td>87 (22)</td>
</tr>
<tr>
<td>13–19 yr</td>
<td>52 (25)</td>
<td>86 (21)</td>
</tr>
<tr>
<td>>19 yr</td>
<td>10 (5)</td>
<td>35 (9)</td>
</tr>
<tr>
<td>No. (%) with Medicaid</td>
<td>51 (24)</td>
<td>83 (21)</td>
</tr>
<tr>
<td>General Medical Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>56</td>
<td>296</td>
</tr>
<tr>
<td>Mean LOS (days) (95% CI)</td>
<td>4.49 (3.21–5.77)</td>
<td>5.70 (4.73–6.66)</td>
</tr>
<tr>
<td>No. (%) female</td>
<td>26 (47)</td>
<td>143 (48)</td>
</tr>
<tr>
<td>Race (no. [%])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>29 (53)</td>
<td>182 (61)</td>
</tr>
<tr>
<td>Black</td>
<td>10 (18)</td>
<td>37 (13)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (4)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>6 (11)</td>
<td>35 (12)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (2)</td>
<td>15 (5)</td>
</tr>
<tr>
<td>Unknown</td>
<td>7 (13)</td>
<td>23 (8)</td>
</tr>
<tr>
<td>Age (no. [%])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 mo</td>
<td>2 (4)</td>
<td>20 (7)</td>
</tr>
<tr>
<td>2 mo–1 yr</td>
<td>17 (30)</td>
<td>37 (13)</td>
</tr>
<tr>
<td>2–5 yr</td>
<td>5 (9)</td>
<td>50 (17)</td>
</tr>
<tr>
<td>6–12 yr</td>
<td>18 (32)</td>
<td>96 (32)</td>
</tr>
<tr>
<td>13–19 yr</td>
<td>12 (21)</td>
<td>73 (25)</td>
</tr>
<tr>
<td>>19 yr</td>
<td>2 (4)</td>
<td>20 (7)</td>
</tr>
<tr>
<td>No. (%) with Medicaid</td>
<td>17 (30)</td>
<td>81 (27)</td>
</tr>
<tr>
<td>General Surgical Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>369</td>
<td>745</td>
</tr>
<tr>
<td>Mean LOS (days) (95% CI)</td>
<td>3.53 (2.88–4.18)</td>
<td>3.74 (3.33–4.14)</td>
</tr>
<tr>
<td>No. (%) female</td>
<td>188 (51)</td>
<td>370 (50)</td>
</tr>
<tr>
<td>Race (no. [%])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>286 (78)</td>
<td>557 (75)</td>
</tr>
<tr>
<td>Black</td>
<td>16 (4)</td>
<td>48 (6)</td>
</tr>
<tr>
<td>Asian</td>
<td>9 (2)</td>
<td>13 (2)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>19 (5)</td>
<td>45 (6)</td>
</tr>
<tr>
<td>Other</td>
<td>13 (4)</td>
<td>20 (3)</td>
</tr>
<tr>
<td>Unknown</td>
<td>26 (7)</td>
<td>62 (8)</td>
</tr>
</tbody>
</table>

Continued on next page
Interception of errors by unit-based clinical pharmacists occurred at all stages of the medication process, with most intercepted errors (79%) occurring at the physician ordering stage.

The increase in the serious medication error rate in the control ICU was largely attributable to an incorrect preprinted order template for acetaminophen that resulted in the ordering of significant overdoses. After excluding these acetaminophen errors from our data analysis, there would still be a net of 30 fewer serious medication errors per 1000 patient days in the intervention ICU than in the control ICU ($p = 0.01$). The acetaminophen template error was recognized and rectified through review of data by the CQI team.

Discussion

Our results suggest that the introduction of a full-time unit-based clinical pharmacist was associated with a 79% reduction in the serious medication error rate in critically ill pediatric inpatients. However, we found no apparent effect from adding part-time unit-based clinical pharmacists to the general medical and surgical units. Because of the low baseline error rates on these units, the study may have been underpowered to detect a difference associated with the intervention. We speculate, however, that the primary reason for efficacy of the intervention only in the ICU may have been the full-time presence of the pharmacist in the ICU and only part-time involvement in the general medical and surgical units.

Some patient care units appear to have organizational characteristics that either facilitate or impede collaboration with a clinical pharmacist. For example, rounds in the ICU were conducted with a multidisciplinary team at the bedside, whereas rounds in the general medical and surgical units were often conducted away from the bedside and orders were not entered during rounds. Such procedural differences may have mitigated the ability of the pharmacist to correct errors in real time. In addition, the ICU tends to treat fewer patients, and house staff physicians usually are in or near the unit and easily accessible to staff, including unit-based clinical pharmacists. In the general units, patients are more spread out, and each physician is responsible for more patients, often on multiple floors. In addition, surgeons spend a considerable portion of each day in the operating room; although the surgeons had a covering nurse practitioner, it has been previously demonstrated that opportunities for error increase when decision-making responsibilities are “handed off” from one provider to another.24,25

Further research is necessary to determine if the addition of a full-time unit-based clinical pharmacist and increased physician–pharmacist interaction decrease medication errors in the general medical or surgical unit setting. A recent study by Kucukarslan et al.21 suggests that pharmacist participation on a general medicine unit may indeed contribute to a significant reduction in preventable ADEs. Our study supports the conclusion that adding pharmacists to medical and surgical rounds is challenging. Altering the shifts of clinical pharmacists so that they are available early for surgeons’ rounds, having them available throughout the day, and having them make rounds with covering nurse practitioners are strategies for improving their effectiveness on general medical or surgical units.

The benefit of unit-based clinical pharmacists in the pediatric ICU in this study is similar to what has been observed in adult ICUs. We found a 79% decrease in the rate of serious medication errors in the pediatric ICU, while Leape et al.20 using a very similar method, found a 66% decrease in preventable ADEs at the ordering stage in an adult ICU. Our study showed a decrease in serious medication error rates at all stages, whereas Leape et al. were concentrating on errors at the ordering stage.

Like many previous studies, our study documented higher rates of serious medication errors in the pediatric intensive care setting.5,22 This is likely the result of greater patient...

Table 1 (continued)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention Unit</th>
<th>Control Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preintervention</td>
<td>Postintervention</td>
</tr>
<tr>
<td>Age (no. [%])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 mo</td>
<td>0</td>
<td>2 (0)</td>
</tr>
<tr>
<td>2 mo–1 yr</td>
<td>18 (5)</td>
<td>33 (4)</td>
</tr>
<tr>
<td>2–5 yr</td>
<td>46 (13)</td>
<td>72 (10)</td>
</tr>
<tr>
<td>6–12 yr</td>
<td>129 (35)</td>
<td>273 (37)</td>
</tr>
<tr>
<td>13–19 yr</td>
<td>143 (39)</td>
<td>287 (39)</td>
</tr>
<tr>
<td>>19 yr</td>
<td>33 (9)</td>
<td>78 (10)</td>
</tr>
<tr>
<td>No. (%) with Medicaid</td>
<td>55 (15)</td>
<td>117 (16)</td>
</tr>
</tbody>
</table>

*Data are reported for preintervention and postintervention periods, although no intervention occurred in the control units. LOS = length of stay, CI = confidence interval.
morbidty and medication complexity. Implementing error prevention strategies such as the use of unit-based clinical pharmacists in ICUs is particularly efficacious because of these higher baseline error rates.

Despite a growing body of data demonstrating the potential of unit-based clinical pharmacists to decrease medication errors, only 30% of hospitals nationwide have pharmacists participating in physician rounds. Pharmacists actively participating in rounds provide real-time advice to physicians in the same way that CPOE systems provide real-time computerized decision support. Studies have demonstrated that physicians are much more amenable to changing therapeutic direction when advice is given before rather than after order completion. Since about 80% of near misses in pediatric inpatients occur during medication ordering, unit-based clinical pharmacists can intercept errors and inform clinical choices before orders are finalized. They can also intercept other types of medication errors by independently monitoring the transcription, drug preparation, storage, and dispensing of medications.

In addition to being effective, unit-based clinical pharmacists are practical and financially justifiable. Both adult and pediatric ICUs have shown significant cost savings from implementation of a unit-based clinical pharmacist program. Unit-based clinical pharmacists are generally less expensive than most IT-based patient safety interventions, which can cost millions of dollars to implement and maintain. By restructuring existing pharmacist resources from centralized to unit-based positions, hospitals can quickly decrease errors and, perhaps, the overall cost of care.

Our study has several limitations. First, it was performed in a single, freestanding academic pediatric hospital, which limits its generalizability. Ideally, unit-based clinical pharmacists would have been present full-time on all study units, but this was not achieved. It also seems likely that the individual attributes of clinical pharmacists have an important impact on their efficacy in reducing error rates. However, given the single-institution design of this study, we were unable to assess such factors.

Conclusion

A full-time unit-based clinical pharmacist substantially decreased the serious medication error rate in the pediatric intensive care setting, but a part-time pharmacist was not as effective in general care pediatric units.

References

7. Bates DW, Boyle DL, Vander Vliet MB et al. Relationship between medication er-

Table 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intervention Unit Preintervention</th>
<th>Postintervention</th>
<th>Control Unit Preintervention</th>
<th>Postintervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive Care Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patient days</td>
<td>311</td>
<td>835</td>
<td>1062</td>
<td>759</td>
</tr>
<tr>
<td>No. SMEs</td>
<td>9</td>
<td>5</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>SMEs/1000 patient days</td>
<td>29</td>
<td>6</td>
<td>20d</td>
<td>30e</td>
</tr>
<tr>
<td>General Medical Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patient days</td>
<td>660</td>
<td>1163</td>
<td>604</td>
<td>1319</td>
</tr>
<tr>
<td>No. SMEs</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>SMEs/1000 patient days</td>
<td>8</td>
<td>9</td>
<td>7e</td>
<td>8*</td>
</tr>
<tr>
<td>General Surgical Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. patient days</td>
<td>573</td>
<td>1109</td>
<td>737</td>
<td>1253</td>
</tr>
<tr>
<td>No. SMEs</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>SMEs/1000 patient days</td>
<td>7</td>
<td>9</td>
<td>8f</td>
<td>10g</td>
</tr>
</tbody>
</table>

aData are reported for preintervention and postintervention periods, although no intervention occurred in the control units.

*p = 0.38 for comparison with intervention unit.

*p < 0.01 for comparison with intervention unit.

*p = 0.84 for comparison with intervention unit.

*p = 0.78 for comparison with intervention unit.

*p = 0.81 for comparison with intervention unit.

*p = 0.89 for comparison with intervention unit.
Medication errors

Effects of a pharmacist-led pediatrics medication safety team on medication-error reporting

JENNIFER L. COSTELLO, DEBORAH LLOYD TOROWICZ, AND TIMOTHY S. YEH

Medication errors have been recognized as one of the major causes of iatrogenic disease in the United States and have risen to the forefront of safety initiatives in health care institutions. It has been estimated that 44,000–98,000 people die each year in the United States as a result of a medication error. Medication errors are prevalent in both adult and pediatric populations. Errors have the capacity to result in harm and can occur during any phase of the medication-use process. Although medication errors occur at similar rates in the adult and pediatric populations, errors in pediatric patients have three times the potential to cause harm. Compared with errors that occur in adults, medication errors in children are understudied and most likely underreported.

Medication errors have been reported in a variety of pediatric settings, including general pediatrics wards, pediatric intensive care units (PICUs), neonatal intensive care units, and pediatric emergency departments. Children in intensive care settings are at greatest risk for iatrogenic complications, most likely a result of environmental intensity, clinical symptoms, severity of illness, comorbidities, and an inability to communicate.

Multiple studies have analyzed error-prevention strategies utilizing a clinical pharmacist. Several reports have shown that ward-based clinical pharmacists reduce medication errors. Other studies have addressed collaboration between nursing and other disciplines, but only a limited number of articles have been published regarding nurse–pharmacy collaboration. An extensive review of the literature did not produce any studies evaluating the effects of a nurse–pharmacist team on medi-
cation errors in a PICU. However, intensive care outcomes resulting from interdisciplinary collaboration among nursing, medicine, and other disciplines have been reported. We hypothesized that the use of an interdisciplinary team, including a nurse, pharmacist, and physician, would reduce the severity of medication errors through nonpunitive reporting and increased awareness through staff education. The objectives of the study were to increase medication-error reporting and reduce the severity of medication errors reported in the pediatric critical care center (PCCC) by implementing a pediatrics medication safety team (PMST), comprising a pediatrics clinical pharmacist, a pediatrics critical care nurse, and a pediatrics medical intensivist.

Methods

The study was approved by the hospital’s institutional review board and conducted in three phases in a 19-bed PCCC. Phase 1, conducted between September and December of 2004, involved a retrospective analysis of medication-error reports retrieved from the institution’s medication-incident database. The reports were sorted by number of incidents, error type, severity, and specialty of reporter (i.e., nurse, physician, pharmacist, or dietician). During phase 2, conducted between February and May of 2005, a clinical pharmacist was introduced to the PCCC. The pharmacist’s effect on medication errors was analyzed prospectively utilizing the existing medication-error reporting system. When phase 2 was completed, three variables were introduced to the pediatrics critical care staff: a PMST, a new reporting system, and monthly focus groups. The PMST included a nurse leader, medical director, and clinical pharmacist, all of whom had expertise in pediatrics critical care.

The new medication-incident reporting form was adapted from Cimino et al. (Figure 1). When a medication incident was identified, the form was completed and placed in a labeled box kept in the medication room of the PCCC. Staff were not required to sign the form or identify themselves in any manner. Inservice education on the reporting process was provided to all staff. At the end of each month, the nurse leader and pharmacist reviewed the medication-incident reports. Each incident was subsequently entered into the medication-incident database by the clinical pharmacist. The database classifies incidents by severity (appendix).

Education was provided to health care providers during patient care rounds and during monthly open forums with the critical care staff and the PMST. All monthly forums were interactive. At the beginning of each meeting, the prior month’s medication incidents were addressed using root-cause analysis. This method was used to discover and address system flaws, instead of focusing on individual staff members. During the second part of each meeting, the new reporting process was reviewed and staff brainstormed to develop innovative ways to prevent future medication errors. The outcomes of these interventions were measured prospectively in phase 3 (June–September 2005).

Results

A total of 109 medication-error reports were identified between June and September of 2005. Over the three phases of the study, patient volume remained constant in the PCCC. The total numbers of reported errors for each phase of the study are shown in Figure 2. There was a twofold increase in medication-error reporting between phase 1 (baseline) and phase 2 and a sixfold increase between phases 1 and 3. A threefold increase was observed between phases 2 and 3. Table 1 shows the occurrence of medication errors during phase 3 by error type and discipline (nursing, medicine, pharmacy). Medication omission (dispensing delay in service or error in administration time), wrong medication, and wrong dose accounted for the highest number of reported errors. Error severity decreased over the three time periods. In phases 1, 2, and 3, 46%, 8%, and 0% of the errors reported were category D or E, respectively. Conversely, the reporting of near-miss errors increased from 9% in phase 1 to 38% in phase 2 and to 51% in phase 3.

Discussion

Medication-error reporting was increased and the severity of medication errors reduced in the PCCC after the implementation of a PMST, educational forums, and the addition of a clinical pharmacist. Overall, medication-error reporting increased during phases 2 and 3. We anticipated that the increase in phase 2 would result from the introduction of a clinical pharmacist, who would raise staff awareness of medication safety and encourage reporting of all incidents. However, the increased reporting in phase 2 did not demonstrate the anticipated change, since the increase was almost entirely accounted for by incidents captured during rounds and chart review by the clinical pharmacist. These findings demonstrated that the introduction of a clinical pharmacist did not change the existing culture of medication-error reporting during the study period. Reports made by nursing staff remained relatively constant, and physician reports decreased. The dramatic increase in reporting during phase 3 was most likely due to several intervening factors, including the vigilance of the team leader during rounds and continued presence in the unit, the nonpunitive reporting form, and the open forums with the intensive care staff. If medication incidents were discovered during rounds, staff were encouraged to report them. The in-
Figure 1. Medication-incident reporting form.16

Patient Name ___	MR# _________________________________
Date of Suspected Error ___	Unit/Department Occurred ________________
Medication	**Name/Dose/Route**
Level of Staff That Made Initial Error	
☐ Pharmacy	☐ Nursing
Error Type (✓ all that apply for ☐ type and ☑ subtype)	
☐ Delay in Service	☐ Duplication/Extra Dose
☐ Given without Orders	☐ Given without Proper Storage
☐ Mislabeled	☐ Omission
☐ Wrong Dose	☐ Wrong Dosage Interval
☐ Wrong Patient	☐ Wrong Infusion Rate
☐ Wrong Route	☐ Wrong Duration of Therapy
☐ Incomplete Order	
☑ Patient Name	☑ ID Number
☑ Dose	☑ Dosage Form
☑ Transcription Error	☑ Handwriting Illegible
☐ Monitoring	
☑ Allergy Information Not Checked	☑ Clinical Information
☑ Drug–Food Interaction	☑ I.V. Incompatibility
☐ Other	
Brief Description of Event and Patient Outcome	

<table>
<thead>
<tr>
<th>Did Medication Reach Patient?</th>
<th>☐ No</th>
<th>☑ Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>**************If Medication Reached Patient in Error — Notify Physician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was Order Reconciled with Prescriber?</td>
<td>☐ No</td>
<td>☑ Yes</td>
</tr>
<tr>
<td>Could Medication Error Have Been Prevented?</td>
<td>☐ No</td>
<td>☑ Yes</td>
</tr>
<tr>
<td>Was the Medication Accessed from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Pyxis</td>
<td>☐ Cassette</td>
<td>☐ Pharmacy</td>
</tr>
<tr>
<td>If Accessed from Pyxis, Was It an Override?</td>
<td>☐ No</td>
<td>☑ Yes</td>
</tr>
<tr>
<td>Medication Error Identified by (✓ all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Pharmacy</td>
<td>☐ Nursing</td>
<td>☐ Attending</td>
</tr>
<tr>
<td>☐ Other ___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interventions that resulted in a predictive change in behavior and culture were the anonymous medication-error reporting form and nonpunitive action by unit leadership.

Before the initiation of the anonymous medication-error reporting form, unit leadership addressed medication errors by counseling staff in the traditional method, in which staff received an oral warning for the first incident, a written warning for the second incident, and possible suspension and termination for the third incident. Therefore, staff perceived any medication-error reporting as a “black mark” on their personnel file that could potentially lead to termination. In phase 3, unit leadership dealt with all errors through root-cause analysis, focusing on education and systems changes to prevent future errors.

We believe that the reduction in error severity over the three study phases most likely resulted from increased staff awareness through targeted medication-error education, the global process of medication delivery, administration, and the reporting of errors earlier in the medication-use process. For example, if a category D or E error resulted from a prescribing, transcribing, dispensing, or administration error, staff would have a heightened awareness of the error and thus be more diligent when performing the first three steps of the medication-use process. Thus, the error severity would be reduced because it would be discovered earlier in the process.

Education appeared to reach all members of the medical team, as exemplified by an instance in which the clinical dietitian reported an error related to an order for total parenteral nutrition. Medication-error reporting by attending physicians did not increase; in fact, it decreased. There were no reports made by attending physicians in the last phase of the study. Further examination of the data revealed that physicians reported incidents that resulted in temporary or permanent harm to the patient and incidents that required the patient to have increased monitoring. There were no category D or higher incidents reported during phase 3.

In all phases, there was a lack of reporting by medical residents, even though they were specifically targeted at educational forums. We did observe a dramatic increase in nurses’ reports. Overall, nursing staff became more proactive over the study period, which we attribute to the nonpunitive reporting form, improved pharmacy–nursing interaction, and improved communication and feedback through focus groups.

Improvements in medication-error reporting and reductions in the severity of medication errors can be achieved through planned interventions, such as the introduction of a PMST. Changing the hospital culture and environment is essential, but it must include an integrative approach. Increased communication through education forums, the presence of a clinical pharmacist as a team leader, and a nonpunitive approach by medical and nursing leadership can produce culture changes that positively affect patient outcomes. One area that requires further attention is the effort to change the behavior of medical residents, since they are responsible for prescribing many medication regimens in teaching hospitals.
An unexpected observation during the study was that the current pharmacy services could not meet the demands of a pediatric critical care unit. The study provided support that led to the development of a pediatrics pharmacy satellite and improved pharmacy services.

Conclusion
An increase in the number of medication errors reported and a decrease in the severity of errors reported were observed in a PCCC after implementation of a PMST, provision of education to health care providers, and addition of a clinical pharmacist.

References

Appendix—Definitions of error severity

<table>
<thead>
<tr>
<th>Type of Error</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No error</td>
<td>A</td>
<td>Circumstance or event had the capacity to cause an error.</td>
</tr>
<tr>
<td>Error, no harm</td>
<td>B</td>
<td>An error occurred but did not reach the patient (an “error of omission” reaches the patient).</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>An error occurred that reached the patient but did not cause patient harm.</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>An error occurred that reached the patient and required monitoring to confirm that it resulted in no harm to the patient or required intervention to preclude harm.</td>
</tr>
<tr>
<td>Error, harm</td>
<td>E</td>
<td>An error occurred that may have contributed to or resulted in temporary harm to the patient and required intervention.</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>An error occurred that may have contributed to or resulted in temporary harm to the patient and required initial or prolonged hospitalization.</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>An error occurred that may have contributed to or resulted in permanent patient harm.</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>An error occurred that required intervention necessary to sustain life.</td>
</tr>
<tr>
<td>Error, death</td>
<td>I</td>
<td>An error occurred that may have contributed to or resulted in the patient’s death.</td>
</tr>
</tbody>
</table>
Evolution of Pediatric Clinical Pharmacy

Milap C Nahata

Nearly 42 years ago, Harry Shirkey (a pediatrician from Cincinnati) termed infants and children as “therapeutic orphans.” He was concerned that drugs may be given to these patients without adequate studies on their efficacy and safety. Although progress has been made, many drugs continue to be used in young pediatric patients when they have been approved by the Food and Drug Administration (FDA) only for adults. For the first time, the FDA Modernization Act provides a “carrot” of 6 months of market exclusivity for drugs under patent if the manufacturer conducts studies in children. The Best Pharmaceuticals for Children Act of 2002 directs the Secretary of the Department of Health and Human Services (through the National Institutes of Health Director and the FDA Commissioner) to develop and prioritize a list of drugs that need to be studied. Table 1 provides a list of drugs requiring pediatric studies.

This suggests that the need for pharmacokinetic, pharmacodynamic, pharmacogenetic, efficacy, and safety studies in pediatric patients continues. Since most drugs not labeled for this population are not available in appropriate dosage forms, the need for the development of suitable pediatric drug formulations also exists.

What Has Changed in Terms of Pediatric Pharmacy Practice?

Robert Levin described clinical pharmacy practice in a pediatric clinic in the pages of this journal in 1972 (see page 1175). Pharmacists’ clinical responsibilities at that time included counseling patients and families about medications by obtaining complete family and medication history, identifying adverse drug reactions, and monitoring drug therapy, as well as teaching physicians and pharmacy students about drug therapy.

John Piecoro began an inpatient pediatric clinical pharmacy practice at the University of Kentucky Medical Center in 1969. His recollection of major accomplishments included establishment of a well-defined role in patient care; involvement with making rounds with pediatric teams; provision of unit dose dispensing, dose standardization, parenteral nutrition, resuscitation medications, and clinical pharmacy services through a satellite pharmacy; and training of pharmacy residents as well as pharmacy...
students. He also was aware of pediatric pharmacy services offered by Roger Klotz in Chicago.

In 1979, I was the first clinical pharmacist at Columbus Children’s Hospital and faced similar challenges. I can remember my first day on the infectious disease ward when all of the physicians seemed to wonder why a pharmacist was on the 6th floor rather than in the basement. I was the interface between the dispensing pharmacist and the physicians and offered clinical pharmacy services and therapeutic drug monitoring. My other responsibilities included developing a research program (writing grants, abstracts, and articles) and teaching physicians, pharmacists, and medical and pharmacy students at the hospital as well as at Ohio State University (OSU). Soon, other specialties, including neonatology, hematology/oncology, and critical care, started requesting clinical pharmacy services. Today, there are 7 clinical pharmacy specialists at Children’s—6 funded by the hospital and 1 funded by the college.

Pediatric Pharmacy Advocacy Group (PPAG) developed pediatric pharmacy practice guidelines in 1991. American Society of Health-System Pharmacists [ASHP] Guidelines for Providing Pediatric Pharmaceutical Services in Organized Health Care Systems were published in 1993. These included general principles, orientation and training programs, inpatient services, ambulatory care services, drug information, therapeutic drug monitoring, pharmacokinetic services, patient and caregiver education, medication errors, adverse drug reactions, drug use evaluations, and research. We are able to treat most illnesses more effectively today than before, and yet new challenges among children and adolescents include rising rates of obesity, type 2 diabetes, primary hypertension, and psychiatric/behavioral disorders.

How Has Pediatric Pharmacy Education and Training Changed Over the Past 40 Years?

The majority of schools of pharmacy during the 1960s through the 1980s offered a BS (Pharmacy) degree; PharmD is now the sole entry-level degree. Both didactic education and clerkship experiences are now being provided for every pharmacy student. The required number of lecture hours has increased, and many schools, including OSU, offer an elective course in pediatric drug therapy. Clerkship experience in pediatrics is required by the Accreditation Council for Pharmacy Education.

Residencies and fellowships have been instrumental in preparing practitioners and scholars. There are 19 specialty residency programs in pediatric pharmacy practice currently accredited by the ASHP. Additional general pharmacy practice residencies with emphasis in pediatrics may also be offered to PharmD graduates. Seven pediatric fellowship programs are listed in the American College of Clinical Pharmacy (ACCP) database. We have provided fellowship training to 25 fellows over the past 20 years. However, the number of residency and fellowship programs appears to be too low to meet future needs. The funding of 13 pediatric pharmacology research units by the National Institute of Child Health and Human Development has stimulated research in pediatric pharmacotherapy.

Summary

Pediatric drug therapy has definitely improved over the past 40 years. Activities in practice, research, and education have all expanded. The Pediatric Special Interest Group of ASHP was the main venue for pharmacists; ACCP’s Practice and Research Network and PPAG are now additional venues for pediatric practitioners to share their knowledge and skills with colleagues. The future of pediatric pharmacotherapy indeed looks bright.

Milap C Nahata MS PharmD, Professor and Division Chair, College of Pharmacy; Professor of Pediatrics and Internal Medicine, College of Medicine, Ohio State University (OSU); Associate Director of Pharmacy, OSU Medical Center, Columbus, OH

I appreciate the input from John Piecoro MS PharmD at the University of Kentucky.

Published Online, 30 May 2006, www.theannals.com
DOI 10.1345/aph.1G459

Table 1. Drugs Listed by Department of Health and Human Services Requiring Studies in Pediatric Patients*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug</th>
<th>Drug</th>
<th>Drug</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir</td>
<td>Daunomycin</td>
<td>Heparin</td>
<td>Lithium</td>
<td>Promethazine</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Dexamethasone</td>
<td>Hydrochlorothiazide</td>
<td>Lorazepam</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Ampicillin/sulbactam</td>
<td>Diazoxide</td>
<td>Hydrocortisone valerate</td>
<td>Metoprolol</td>
<td>Sevelamer</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Doxobutamine</td>
<td>ointment and cream</td>
<td>Methadone</td>
<td>Sodium nitroprusside</td>
</tr>
<tr>
<td>Baclofen</td>
<td>Dopamine</td>
<td>Hydroxychloroquine</td>
<td>Methotrexate</td>
<td>Spirinolactone</td>
</tr>
<tr>
<td>Bumetanide</td>
<td>Eteriptan</td>
<td>Hydroxyurea</td>
<td>Metoclopramide</td>
<td>Vincristine</td>
</tr>
<tr>
<td>Bupropion</td>
<td>Ethambutol</td>
<td>Isoflurane</td>
<td>Metolazone</td>
<td>Zonisamide</td>
</tr>
<tr>
<td>Clonidine</td>
<td>Flucainide</td>
<td>Ivermectin</td>
<td>Morphine</td>
<td></td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>Furosemide</td>
<td>Ketamine</td>
<td>Piperacillin/tazobactam</td>
<td></td>
</tr>
<tr>
<td>Dactinomycin</td>
<td>Griseofulvin</td>
<td>Lindane</td>
<td>Pralidoxime</td>
<td></td>
</tr>
</tbody>
</table>

*April 25, 2006.
Computerized Physician Order Entry and Medication Errors in a Pediatric Critical Care Unit
Amy L. Potts, Frederick E. Barr, David F. Gregory, Lorianne Wright and Neal R. Patel

Pediatrics 2004;113;59-63

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.pediatrics.org/cgi/content/full/113/1/59
Computerized Physician Order Entry and Medication Errors in a Pediatric Critical Care Unit

Amy L. Potts, PharmD*; Frederick E. Barr, MD, MSCIt; David F. Gregory, PharmD, BCPS*; Lorianne Wright, PharmD*; and Neal R. Patel, MD, MPH†§

ABSTRACT. Objective. Medication errors are a major concern of health care professionals and medical institutions, especially errors involving children. Studies in adults have shown that computerized physician order entry (CPOE) systems reduce medication errors and adverse drug events (ADEs). The effect of CPOE implementation in a pediatric population has not been reported. The objective of this study was to evaluate the impact of CPOE on the frequency of errors in the medication ordering process in a pediatric critical care unit (PCCU).

Methods. A prospective trial was conducted of 514 pediatric patients who were admitted to a 20-bed PCCU in a tertiary-care children’s hospital before and after implementation of CPOE. Medication errors were identified after review of all orders during the study period and then further classified as potential ADEs, medication prescribing errors (MPE), and rule violations (RV).

Results. A total of 13,828 medication orders were reviewed. Before implementation, potential ADEs occurred at a rate of 2.2 per 100 orders, MPEs at a rate of 30.1 per 100 orders, and RVs at a rate of 6.8 per 100 orders. After implementation, the rate of potential ADEs was reduced to 1.3 per 100 orders, MPEs to 0.2 per 100 orders, and RVs to 0.1 per 100 orders. The overall error reduction was 95.9%. Potential ADEs were reduced by 40.9%, and MPEs and RVs were reduced by 99.4% and 97.9%, respectively.

Conclusions. The implementation of CPOE resulted in almost a complete elimination of MPEs and RVs and a significant but less dramatic effect on potential ADEs. Pediatrics 2004;113:59–63; medication errors, critical care, pediatrics, clinical decision support systems; computer-assisted drug therapy.

ABBREVIATIONS. ADE, adverse drug event; CPOE, computerized physician order entry; IOM, Institute of Medicine; PCCU, pediatric critical care unit; MPE, medication prescribing error; RV, rules violation.

Medication errors are a major concern of health care professionals and medical institutions, especially errors involving children. Children have significant differences in both pharmacokinetics and pharmacodynamics compared with adults that can make this population more susceptible to medication errors and related injuries. Several factors make children in a critical care setting especially vulnerable to medication errors and adverse events. These factors include weight-based dosing, significant weight changes over a relatively short period of time, lack of commercially available products leading to dilution of stock medications, and the decreased communication ability of critically ill patients.12 These problems are magnified by the use of vasoactive infusions and the emergent use of drugs during cardiopulmonary resuscitation. Each patient requires complex calculations to determine the concentration of many drugs, including vasoactive agents, to be mixed by the pharmacy and the rate of delivery to achieve a desired dose. The process of prescribing medications for critically ill children is complex and lacks standardization, which can increase the risk of medication errors and adverse events.

The significance of medication errors in pediatric inpatients has only recently been described. Kaushal et al1 studied 1120 pediatric patients who were admitted to 2 hospitals during a 6-week period. The authors analyzed >10,000 medication orders and found 616 medication errors, resulting in an error rate of 5.7%. This error rate is consistent with the rate reported in adults.3 In addition, this study evaluated the frequency at which medication errors occurred at different points in the medication system.1 Seventy-nine percent of potential adverse drug events (ADEs) occurred at the time of physician ordering, whereas a smaller percentage occurred at the point of transcription or administration.

Recent trends toward cost containment, standardization, and accessibility of common medications have led to the implementation of various entities of automation and technology. Computerized physician order entry (CPOE) has been identified by the Institute of Medicine (IOM), Leapfrog Group, Institute for Safe Medication Practices, American Medical Association, American Academy of Pediatrics, and others as a tool that may prevent errors that occur during the medication ordering process.14–10 The Leapfrog Group has also identified CPOE as 1 of 3 initial hospital safety standards and has described several benefits of CPOE that may result in improved quality of care and reduced health care costs.5 These benefits may include enhanced communication be-
between health care professionals through the elimination of illegible or incomplete orders and the increased efficiency of order processing through instantaneous transmission of orders to other hospital systems. Computerized decision support associated with CPOE systems, such as displaying age-specific dosing regimens to the user, checking for doses above or below the usual range, providing warnings if current laboratory values indicate that the drug or regimen would be inappropriate for a particular patient, and screening for allergies and drug–drug interactions may also improve the ordering process.

The role of CPOE in preventing medication errors and ADEs has been noted in the adult literature. Bates et al. evaluated the medication error rates of 3 medical units before and after CPOE during a 4-year period. The authors concluded that CPOE substantially decreased the rate of medication errors with additional reductions observed after the addition of decision support and other features. Another study evaluated the use of CPOE in an adult population and found that serious medication errors were reduced by 55%. The development of CPOE systems that are adaptable to pediatric critical care environments has been problematic. Developing systems that provide weight-based dosing, as well as age-specific algorithms, is difficult and applicable only to a small proportion of the overall health care market. There are limited data on the impact of CPOE on medication errors in pediatric patients. Most literature has evaluated medication errors and ADEs that have resulted in patient injury regardless of the point in the system at which the error occurred. We evaluated medication errors that occurred specifically at the time of prescribing rather than administration or dispensing. The objective of this study was to determine the impact of CPOE on the frequency of medication errors at the point of physician ordering in a pediatric critical care unit (PCCU).

METHODS

Study Setting

The study was conducted in a 20-bed multidisciplinary PCCU at an academic institution located in a major metropolitan area. The institution provides services to a diverse socioeconomic patient population. The PCCU has an average daily census of 16.3 patients, and the average length of stay is 4.1 days. The hospital cares for both adult and pediatric patients, but pediatric services are both geographically and administratively distinct.

Patient Population

This study included all patients who were admitted to the PCCU during the designated study periods and encompassed both medical and surgical patients. Disease states represented in this patient population included postoperative congenital heart defect repair, metabolic disorders, trauma, respiratory diseases, bone marrow and solid organ transplantation, and other childhood illnesses.

Study Design

In this prospective cohort study, a comparison was made between the occurrences of errors in the medication ordering process before and after implementation of a CPOE system in the PCCU. Approval from the Institutional Review Board at Vanderbilt University Medical Center was obtained. Data were collected before

CPOE implementation for a 2-month period from October 4, 2001, to December 4, 2001. There was a 1-month period when no data were collected to allow for CPOE implementation and training of all attendings, fellows, residents, and staff. Post-CPOE data collection then occurred for a 2-month period from January 4, 2002, to March 4, 2002.

Computer Systems

WizOrder is a CPOE system developed in 1994 by the faculty in the division of Biomedical Informatics at Vanderbilt University. WizOrder is the precursor to the commercially available Horizon Expert Order system (McKesson, Atlanta, GA) and currently interfaces with the Pyxis Medstation 2000 system (Pyxis Corp, San Diego, CA) and the pharmacy computer system, McKesson Series. WizOrder provides clinicians with several types of decision support, including drug allergy alerts, dose checking, drug interaction alerts, and US Food and Drug Administration alerts. In addition, WizOrder includes clinical pathways using >900 preprogrammed individual order sets and links to drug monographs, evidence-based literature sites, and the National Library of Medicine PubMed site. This system also interfaces to a computerized archive of medical records that serves as a clinical data repository so that order-related and laboratory-related alerts can be generated for each individual patient. The depth of clinical decision support can be adjusted on the basis of predetermined criteria such as age or patient location. Recommendations for medication dosage adjustment for impaired renal function, for example, varies between adult and pediatric patients. Adjustments are recommended for adult patients on the basis of estimates of creatinine clearance using standard formulas. Unfortunately, these formulas cannot reliably be used in pediatric patients. For these patients, clinical decision support provides only recent laboratory values and an alert to take renal function into account during the ordering process. Another aspect of clinical decision support that has been implemented is information on varying medication dosage by clinical indication. The system calculates the dose once the clinician selects 1 of the recommendations. WizOrder had been implemented on all adult units and the general medical/surgical pediatric wards before its implementation in the PCCU.

Review Process

All medication orders were included in this analysis except for the following: fluids, dialysate, total parental nutrition (TPN)/lipids, and chemotherapeutic agents. TPN and lipids had not been added to the CPOE system at the time of the study. Fluids, dialysate, and chemotherapy orders were entered in the CPOE system but will be evaluated at a later date. A designated clinical pharmacist reviewed all eligible orders. Errors were entered into a database that included information such as patient name, age, weight, drug, presence of error, dose, interval, and route. Errors were identified and further classified into categories on the basis of the definitions and classifications listed in Table 1 and reviewed for accuracy and relevance by a second clinical pharmacist. A physician reviewer independently evaluated all original medication orders for 10% of randomly selected patients in both the pre-CPOE and post-CPOE groups to determine level of agreement with clinical pharmacists.

Main Outcome Measures

This study focused on errors that occurred during the medication ordering process. An error was determined to have occurred when an order was found to be incomplete, incorrect, or inappropriate at the time of physician ordering. Errors were classified as potential ADEs, medication prescribing errors (MPEs), or rule violations (RVs). A potential ADE was defined as any error that, if allowed to reach the patient, could result in patient injury. Potential ADEs are those errors in which the ordering physician provided incorrect or inappropriate information. They also include instances in which the ordering physician failed to account for patient-specific information (eg, allergy). MPEs were defined as errors in which inadequate information was provided or further interpretation (eg, illegibility) was required for the order to be processed. RVs were defined as errors that were not compliant with standard hospital policies (eg, abbreviations).
A chi-square analysis and Fisher exact test for smaller sample sizes were used for pre-CPOE and post-CPOE data comparison. The STATA statistical program was used for analysis (Stata Corp, College Station, TX). The interrater reliability was calculated using the percentage of agreement and the statistic. The statistic for interrater reliability between the physician reviewer and clinical pharmacist was 0.96. This corresponds to excellent reliability.

RESULTS

A total of 13,828 medication orders involving 514 patients were analyzed throughout the study period. A total of 268 patients were evaluated during the pre-CPOE study period and 246 patients were evaluated during the post-CPOE period. The mean age of patients in the pre-CPOE group was 6.5 ± 12.0 years and in the post-CPOE group was 5.4 ± 10.3 years. This was not a significant difference between the 2 groups. Overall length of stay in the PCCU for both groups was also not significantly different. The mean length of stay was 4.2 ± 10.7 days for the pre-CPOE group and 4.1 ± 6.6 days for the post-CPOE group.

During pre-CPOE, 6803 orders were analyzed. A total of 2662 (39.1 per 100 orders) errors and RVs were identified and are described in further detail in Table 2. After additional classification, 2.2 per 100 orders were identified as potential ADEs, 30.1 per 100 orders were identified as MPEs, and 6.8 per 100 orders were identified as RVs. The most common errors in the last 2 categories were missing information and abbreviations.

During post-CPOE, 7025 orders were analyzed and a total of 110 (1.6 per 100 orders) overall errors and RVs were identified (Table 2). Of those, 1.3 per 100 orders were categorized as potential ADEs. The rate for MPEs and RVs was only 0.2 per 100 orders and 0.1 per 100 orders, respectively. CPOE significantly reduced the rate of MPEs and RVs (P < .001; Table 2). Because of almost a complete elimination of MPEs and RVs, potential ADEs became the most common level of error in the post-CPOE period. Errors involving medication dosage and interval

Table 1. Error Classifications and Definitions

<table>
<thead>
<tr>
<th>Medication error</th>
<th>Any order that was incomplete, incorrect, or inappropriate at the time of physician ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential ADEs</td>
<td>Any error that, if allowed to reach the patient, could result in patient injury</td>
</tr>
<tr>
<td>Duplicate therapy</td>
<td>Same drug prescribed twice or 2 or more drugs from the same class with no evidence-based medicine to prove benefit from both</td>
</tr>
<tr>
<td>Inappropriate dose12</td>
<td>Based on a 10% difference in published dosing guidelines or our PCCU standards of practice</td>
</tr>
<tr>
<td>Inappropriate interval12</td>
<td>Based on differences found from published dosing guidelines</td>
</tr>
<tr>
<td>Inappropriate route12</td>
<td>Drug not available or not recommended to be given in the route ordered</td>
</tr>
<tr>
<td>Wrong drug</td>
<td>Incorrect drug ordered</td>
</tr>
<tr>
<td>Wrong units</td>
<td>Units are not correct for drug, diagnosis, or dose used (eg, units/kg/min vs mcg/kg/min)</td>
</tr>
<tr>
<td>Drug interaction</td>
<td>Documented drug interaction between 2 medications that deems drug ineffective or contraindicated (eg, beta-blocker with beta-agonist)</td>
</tr>
<tr>
<td>Allergy</td>
<td>Documented allergy to drug ordered</td>
</tr>
<tr>
<td>MPE</td>
<td>Missing route, interval, concentration, rate, or dose that results in an incomplete order</td>
</tr>
<tr>
<td>Missing information</td>
<td>Patient’s weight not available</td>
</tr>
<tr>
<td>No weight</td>
<td>Unable to read, required further interpretation</td>
</tr>
<tr>
<td>Illegible</td>
<td>Shorthand representation of a drug name (eg, dopa, epi, MSO4). Does not include CaCl2 or NaHCO3.</td>
</tr>
<tr>
<td>RVs</td>
<td>Zeros to the right of the decimal point (eg, 1.0 mg)</td>
</tr>
</tbody>
</table>

Table 2. Overall Medication Error Analysis Before and After CPOE

<table>
<thead>
<tr>
<th></th>
<th>Pre-CPOE (n = 6803)</th>
<th>Post-CPOE (n = 7025)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Number</td>
<td>Number Per 100 Orders</td>
<td>Total Number</td>
</tr>
<tr>
<td>Potential ADEs</td>
<td>147</td>
<td>2.2</td>
<td>88</td>
</tr>
<tr>
<td>Duplicate therapy</td>
<td>4</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Inappropriate dose12</td>
<td>53</td>
<td>0.78</td>
<td>59</td>
</tr>
<tr>
<td>Inappropriate interval12</td>
<td>24</td>
<td>0.35</td>
<td>19</td>
</tr>
<tr>
<td>Inappropriate route12</td>
<td>6</td>
<td>0.09</td>
<td>6</td>
</tr>
<tr>
<td>Wrong drug</td>
<td>6</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>Allergy</td>
<td>1</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Drug interaction</td>
<td>1</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Wrong units</td>
<td>52</td>
<td>0.76</td>
<td>9</td>
</tr>
<tr>
<td>MPEs</td>
<td>2049</td>
<td>30.1</td>
<td>12</td>
</tr>
<tr>
<td>Weight not available</td>
<td>22</td>
<td>0.32</td>
<td>0</td>
</tr>
<tr>
<td>Missing Information</td>
<td>1979</td>
<td>29.09</td>
<td>12</td>
</tr>
<tr>
<td>Illegible</td>
<td>48</td>
<td>0.71</td>
<td>0</td>
</tr>
<tr>
<td>RVs</td>
<td>466</td>
<td>6.8</td>
<td>10</td>
</tr>
<tr>
<td>Trailing zeros</td>
<td>55</td>
<td>0.81</td>
<td>10</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>411</td>
<td>6.04</td>
<td>0</td>
</tr>
</tbody>
</table>
were the most prevalent potential ADEs. The reduction in error rates for dosing ($P = .69$) and interval ($P = .39$) after CPOE implementation was not significant.

Overall, CPOE resulted in a 95.9% ($P < .001$) reduction in all types of errors associated with medication ordering. Figure 1 shows a significant reduction in MPEs (99.4%; $P < .001$) and RVs (97.9%; $P < .001$). A smaller but still significant reduction was found with potential ADEs (40.9%; $P < .001$) after CPOE implementation.

DISCUSSION

During the past decade, the prevention of medication errors and ADEs has become a major focus of medical institutions. Public knowledge regarding the frequency and seriousness of medication errors and the steps that patients can take to prevent such events has increased accordingly. In addition, improving patient safety through reduction of medication errors and ADEs has received the attention of government officials at both state and national levels.

In 1999, the impact of medical errors was dramatically publicized by an IOM report, which estimated that between 44 000 and 98 000 people die each year partly as a result of medical errors.8 This report laid out a comprehensive strategy by which government, health care providers, and consumers could reduce medication errors. Another report of the IOM released in March 2001, Crossing the Quality Chasm: A New Health System for the 21st Century, focused on improving and redesigning the health care system.13 Prepared by the IOM’s Committee on the Quality of Health Care in America, this report recommends the use of automated systems for order processing and the elimination of handwritten clinical information by the end of this decade.

ADEs are associated with significant morbidity and mortality and are often preventable. Classen et al14 reported a 2-fold increase in death associated with ADEs as well as prolonged hospitalization. In another study, Bates et al15 found that 28% of ADEs were preventable and that 56% of those occurred at the point of medication prescribing. The overall cost of ADEs has been estimated to exceed $2000 per event, with preventable ADEs associated with an annual national cost of >$2 billion.14,16 The American Academy of Pediatrics has also stated that medication errors in particular are associated with significant morbidity and mortality and increased health care costs by an estimated $1900 per patient.9,17 This figure does not reflect the additional emotional costs incurred by patients and their families.

Most guidelines that address methods to reduce medication errors recommend that institutions implement CPOE systems. However, there are limited data evaluating the impact of CPOE on medication errors in the pediatric population. In this study, we evaluated errors that occur only during the medication ordering process. In addition, the separation of potential ADEs, MPEs, and RVs provides for a detailed analysis of the specific impact of CPOE on different types of errors.

In this study, CPOE significantly reduced all categories of errors. MPEs and RVs were virtually eliminated, and potential ADEs were reduced by 40.9%. In addition, during the study, there were no reports of errors caused by the CPOE system, including no reports of orders being entered on the wrong patient. MPEs and RVs often lead to confusion and lack of efficiency as a result of incorrect or missing information that requires interpretation and clarification by pharmacy and nursing personnel. Our study demonstrated that a major benefit of CPOE is the enhancement of communication between health care professionals that subsequently decreases the possibility of misinterpretation of medication orders.

Potential ADEs were significantly reduced ($P < .001$) but not nearly to the extent of MPEs and RVs. Potential ADEs were identified as errors in which incorrect or inappropriate information was provided or patient-specific factors were not taken into account and potential injury could occur to the patient if the medication were received as ordered. Overall, most types of potential ADEs, including duplicate therapy, wrong drug, wrong units, allergy, and drug interactions, were eliminated or significantly reduced. This error reduction, when extrapolated annually, would equate to a decrease of approximately 300 instances per year in which a potential ADE was prevented. However, errors involving dose and interval showed no significant difference between pre-CPOE and post-CPOE. This may be explained by the lack of decision support, on initial CPOE implementation, that would assist the prescriber in choosing an age- and indication-specific dose and interval for the patient. This is an area in which additional enhancements to CPOE systems are needed. Targeted decision support associated with CPOE was shown to be effective in adult inpatients with renal insufficiency by Chertow et al.18 Decision support tools focused on pediatric issues such as weight-based calculations for infusions and age-specific dosing guidelines may result in additional reductions in these types of errors.

Fig 1. Comparison of rates of potential ADEs, MPEs, and RV is between pre-CPOE and post-CPOE phases. All categories of errors decreased significantly ($P < .001$) after CPOE implementation. The overall reduction was 40.9% ($P < .001$) for potential ADEs, 99.4% ($P < .001$) for MPEs, and 97.9% ($P < .001$) for RVs.
Our study evaluated medication errors that occur at the time of physician ordering. The prevention of actual ADEs involves multiple facets of the medication delivery process. Kaushal et al3 showed that the frequency of preventable ADEs is very low (0.05 per 100 orders). Despite the significant number of errors in the ordering phase of medication delivery, our study was not appropriately powered to evaluate the impact of CPOE on overall preventable ADEs. An appropriately powered study would require a sample size that is 20 times the number evaluated in our study. Another limitation of our study is that we did not investigate how these errors were detected by other components of the medication use system, such as verification of the order by a pharmacist or review of the order by nursing staff before administration.

Medication error rates have not been well studied in pediatrics. The rate reported in this study may seem elevated because of our conservative definition of errors in the medication ordering process. Limited data are available on error rates associated with medication ordering in the pediatric critical care setting. With this study, we have established an error rate for a multidisciplinary PCCU that serves a patient population that is broad in both age and disease state.

Although CPOE offers significant advantages in almost eliminating MPEs and RVs, CPOE is not the sole solution for preventing potential ADEs. The addition of decision support has previously been shown to increase the effectiveness of CPOE in preventing medication errors in adult patients.6,18 Developing features that accommodate the wide range of ages and weights found in pediatric patients is complex. Incorporating pediatric-specific dosing guidelines and calculators for continuous infusions may prove to reduce the incidence of these types of errors. Additional evaluation is needed to determine the benefits of enhancing CPOE with additional decision support designed for the pediatric population. Specifically, the issues of gestational age, postnatal age, and rapid weight changes in neonatal patients are currently being incorporated into WizOrder in preparation for implementation in our neonatal intensive care unit. Unfortunately, pediatrics is a small portion of the overall CPOE market and limited financial rewards may prevent commercial vendors from committing the necessary resources for development of these tools.

CONCLUSIONS

In conclusion, CPOE significantly reduced and almost completely eliminated MPEs and RVs while still demonstrating a significant reduction in the frequency of potential ADEs. CPOE offers significant benefits, including ensuring legible and complete physician orders. Incorporation of pediatric-specific decision support tools into CPOE systems may result in even further reductions of potential ADEs leading to improved patient safety. Additional evaluation of these safety features is needed and will be the focus of future studies.

ACKNOWLEDGMENTS

We do not have any financial ties or obligations to the commercialization process of WizOrder. This study was not supported in any manner by McKesson (Atlanta GA). We acknowledge Fred R. Hargrove, RPh, for valuable technical assistance with the CPOE WizOrder system and data retrieval.

REFERENCES

Computerized Physician Order Entry and Medication Errors in a Pediatric Critical Care Unit

Amy L. Potts, Frederick E. Barr, David F. Gregory, Lorianne Wright and Neal R. Patel

Pediatrics 2004;113;59-63

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high-resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 12 articles, 11 of which you can access for free at:</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 58 HighWire-hosted articles:</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Office Practice</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/cgi/collection/office_practice</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/misc/Permissions.shtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/misc/reprints.shtml</td>
</tr>
</tbody>
</table>
Impact of a pediatric clinical pharmacist in the pediatric intensive care unit

Marianne I. Krupicka, PharmD; Susan L. Bratton, MD, MPH; Karen Sonnenthal, MS, FNP; Brahm Goldstein, MD, FAAP, FCCM

Objective: To study the impact of a clinical pharmacist in a pediatric intensive care unit. The goals of the study were to determine the type and quantity of patient care interventions recommended by a clinical pharmacist and to specifically examine cost savings (or loss) that resulted from clinical pharmacist recommendations.

Design: A prospective case series.

Setting: Ten-bed pediatric intensive care unit in a university-affiliated children’s hospital.

Patients: All patients admitted to the pediatric intensive care unit during the study period.

Interventions: None.

Measurements and Main Results: During the 24-wk study period, the pediatric clinical pharmacist documented all interventions that occurred during her shift. She rounded with the pediatric intensive care unit team approximately two times a week and reviewed medication lists daily. Drug acquisition costs were used to calculate drug cost savings. Demographic information was collected on all the patients in the pediatric intensive care unit during the study period.

There were 35 recommendations per 100 patient days. The most common interventions were dosage changes (28%), drug information (26%), and miscellaneous information (22%). The average time spent per day by the clinical pharmacist in the pediatric intensive care unit was 0.73 hrs or 0.02 full-time equivalent. The total cost direct savings for the study period was $1,977. Extrapolated to direct cost savings per year, the total amount saved was $9,135/year or 0.15 full-time equivalent. Indirect savings from educational activities, avoidance of medication errors, and optimization of medical therapies represent an additional nonquantifiable amount.

Conclusion: We conclude that a clinical pharmacist is an important and cost-effective member of the pediatric intensive care unit team. (Crit Care Med 2002; 30:919–921)

Key Words: pediatric clinical pharmacist; cost savings; pediatric intensive care

In recent years, changes in health care financing have necessitated that health care providers delineate and justify both a medical and an economic basis for their involvement in patient care. Numerous studies have evaluated the role of the clinical pharmacist in adult intensive care units (1–7). Few have addressed the role of the clinical pharmacist in the pediatric intensive care unit (ICU) (8). Our intent was to study the medical and economic impact of a clinical pharmacist in our pediatric ICU.

The goals of the study were to determine the type and quantity of patient care interventions recommended by a clinical pharmacist and to specifically examine cost savings (or loss) that resulted from clinical pharmacist recommendations in the pediatric ICU. We hypothesized that the pediatric ICU clinical pharmacist would have a positive impact on patient care and medical staff education and would prove to be cost effective.

METHODS

Doernbecher Children’s Hospital is a 124-bed comprehensive pediatric hospital, including pediatric intensive care, general medical/surgery, hematology/oncology, and newborn care units. Pharmacy services are provided 24 hrs a day, 7 days a week from a centralized pharmacy. Clinical pharmacy services are provided directly on the units 5 days a week by a pediatric clinical pharmacist who reviews medication records for all patients. Weekend services are provided in a centralized location. At the time of this study, the pediatric ICU pharmacist (MIIK) had worked at the institution as the pediatric clinical pharmacist for approximately 4 yrs.

The study took place in the 10-bed medical/surgical pediatric ICU at Doernbecher Children’s Hospital, OR Health Sciences University. The study was approved by the Institutional Review Board. The study was conducted from November 19, 1996, to May 6, 1997, and included 24 consecutive 4-day weeks (79 days), excluding days that the pediatric clinical pharmacist was off duty.

The following data were recorded for all pediatric ICU patients enrolled in the study: subject number, age, gender, daily Pediatric Risk of Mortality Index (PRISM) score (as a measure of severity of illness) (9), and total number and specific type of medications they received. During the study, the pediatric clinical pharmacist (MIIK) documented all interventions that occurred during the shift (7:00 am to 3:30 pm) attributable to recommendations made on rounds or from a private discussion with the physicians. The clinical pharmacist attended morning rounds with the pediatric ICU service approximately two times per week.

Drug acquisition costs were used to calculate drug cost savings. Drug acquisition costs were multiplied by 2,4 days of therapy (the average length of stay for pediatric ICU patients) to obtain the total cost savings for discontinued drugs if treatment began on day 1 of the patient’s pediatric ICU stay. If the...
patient had already stayed in the pediatric ICU >2.4 days, the cost was calculated for 1 day. If the drug was changed to a more or less expensive counterpart, the difference in drug costs before and after the change was determined. If the more expensive medication was therapeutically superior, then the costs was not added into the calculation. Labor, supplies, or any other indirect costs were not included.

The database was managed by using GraphPad Prism PPC (GraphPad Software, San Diego, CA). Descriptive statistics for the analysis including means, standard deviations, medians, and 25th and 75th quartiles were calculated. Subjects who received at least one recommendation from the pharmacist were compared with those who did not by using the Mann-Whitney U test for continuous data and the chi-square test for categorical data. We also examined correlations between patient diagnosis, severity of illness (PRISM), and total hospital days. We found the most common interventions were dosage changes, drug education. The average time spent providing the medical staff with important information to the physicians and general information to the physicians and nurses. Other reports on activities of a clinical pharmacist in adult ICUs also confirm the importance of staff education (10–11).

Two hundred and one children were admitted to the pediatric ICU during the study days. Twelve were readmitted to the pediatric ICU during the study, and one child was admitted three times during the study days for a total of 215 patient admissions to the pediatric ICU. Children who received recommendations during an admission had significantly longer pediatric ICU stays as well as total hospital stay (Table 1). They also tended to be more severely ill with higher median PRISM scores, although this was not statistically significant. The longer length of stay and PRISM scores suggest that the children with recommendations were more severely ill compared with the children who did not have pharmacy interventions.

RESULTS

Table 1. Selected demographic features of the study population

<table>
<thead>
<tr>
<th>Age, yrs, median (25th, 75th quartiles)</th>
<th>Admissions to the PICU With Rx Recommendations (n = 77)</th>
<th>Admissions to the PICU Without Rx Recommendations (n = 138)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n (%)</td>
<td>5.0 (0.1, 10.5)</td>
<td>3.5 (0.8, 10.7)</td>
</tr>
<tr>
<td>PRISM Score, median (25th, 75th quartiles)</td>
<td>4 (0.5)</td>
<td>2.5 (0, 4)</td>
</tr>
<tr>
<td>PICU days, median (25th, 75th quartiles)</td>
<td>3 (1, 6)</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Total hospital days, median (25th, 75th quartiles)</td>
<td>7 (3, 13)</td>
<td>5 (2, 11)</td>
</tr>
<tr>
<td>Pharmacist time in rounds, mins, median (25th, 75th quartiles)</td>
<td>2 (0, 5)</td>
<td>0 (0, 3)</td>
</tr>
<tr>
<td>Pharmacist total time in patient care, mins, median (25th, 75th quartiles)</td>
<td>7 (5, 13)</td>
<td>3.5 (2, 6)</td>
</tr>
</tbody>
</table>

PICU, pediatric intensive care unit; PRISM, Pediatric Risk of Mortality Index.
P<.05.

As expected, the pharmacist spent significantly more time in both rounds and in total time devoted to a patient in children who received a recommendation compared with those who did not have a recommendation from the pharmacist. Among children who received recommendations from the pharmacist, the median number of recommendations was 1 (25th and 75th quartiles, 1 and 2). The groups did not differ significantly by age or gender.

There were 493 total patient days studied. The pharmacist made 172 recommendations for 77 patients either during rounds or when reviewing their medication lists during the study period. There were 35 recommendations per 100 patient days. We found the most common interventions were dosage changes, drug information, and miscellaneous information (Table 2).

The average time spent per day by the clinical pharmacist in the pediatric ICU was 0.73 hrs. The total cost savings for the study period was $1,977. Extrapolated to cost savings per year, the total amount saved was $9,135/year if the pharmacist was employed full-time.

DISCUSSION

This study documents a major educational role for the clinical pharmacist in the pediatric ICU and demonstrates an economic savings from decreases in drug cost. Critically ill patients frequently require multiple drug therapy and may have multiple-system organ dysfunction that alters drug pharmacokinetics and pharmacodynamics. In addition to these challenges, patients in the pediatric ICU have a wide range of age and weight, adding to the complexity of pharmacy interventions compared with adult ICU patients.

Our study demonstrated that changes in drug dosing were the most common interventions that the clinical pharmacist made in our pediatric ICU. The potential medical benefit and economic savings from avoidance of medication error attributable to over- or underdosing, although not possible to accurately calculate, are likely substantial. The presence of a pediatric clinical pharmacist in the pediatric ICU also improved staff education regarding pharmacologic therapy.

Two of the most common recommendations involved drug information and general information to the physicians and nurses. Other reports on activities of a clinical pharmacist in adult ICUs also confirm the importance of staff education (10–11).

We found that even in a relatively small pediatric ICU (average census during the study, 4.9 patients), interventions by the clinical pharmacist resulted in substantial drug costs savings and provided the medical staff with important drug education. The average time spent per day was <1 hr, allowing the pharmacist time to attend to other duties.

The cost savings that we estimated are conservative because discontinued medication costs were calculated on 24-hr supply of drug; labor, materials, and other cost savings were not included. Furthermore, improvements in dosing efficiency were not included; the pharmacist did not round daily with the service (although the pharmacist did review patient medications daily), and the cost of errors that were avoided could not be accurately estimated. Even so, our results suggest that the direct cost savings from the pediatric ICU pharmacist activities may account for up to 0.15 full-time equivalent of the average starting salary for a hospital-based pharmacist in 1997 ($62,400) (12). This direct amount more than justifies the average time spent in the pediatric ICU of 0.73 hrs/day or 0.02 full-time equivalent. In addition, this calculation does not take into account the potential indirect savings/benefits from the avoidance of medical errors, benefits from ongoing education, and optimization of patient medical therapies. Avoidance of medical errors recently has received intense scrutiny by both the federal government and general public (13–15). Furthermore, the Society of Critical Care Medicine has endorsed the

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
need for subspecialty pharmacy expertise in the care of critically ill patients (16).

Our findings are similar to reports of adult ICUs (11, 12) and general medical wards (17–19) that have documented the important educational role of the pharmacist in addition to realized cost savings. Montazeri and Cook (10) reported that 575 interventions occurred over a 3-month period in a 15-bed medical-surgical ICU, resulting in a net savings of $10,010.60 (Canadian). Furthermore, the pharmacist played an important educational function by providing drug information to physicians and nurses. Miyagawa and Rivera (11) studied the impact of a clinical pharmacist in a 14-bed surgical ICU. Over a 13-wk period, a total of 322 interventions to improve drug therapy were made, resulting in an annual cost savings of >$72,000 (11). Another study found that 724 medication errors were averted over a 4-yr period in their ICUs because of pharmacist intervention (17). A more recent, prospective, epide
milogic study in two academic university hospitals found that although the preventable adverse drug event rate in children was similar to that of a previous adult hospital study, the potential adverse drug event rate was three-fold higher (15). Physician reviewers judged that ward-based clinical pharmacists could have prevented 94% of potential adverse drug events (15).

The activities of critical care pharmacists are expanding and evolving (6, 20). Critical care pharmacists in many institutions no longer primarily function in roles of drug preparation and dispensing. The new focuses are on monitoring drug dosages and interactions, making recommendations to the physician staff regarding changes in medication therapy, and developing pharmacotherapeutic plans to optimize drug therapy for ICU patients and avoid adverse medication interactions and errors (15).

There are a number of limitations to this study. First, although it was prospectively designed, it was not a controlled trial so there is no control population. Thus, benefits need be assumed rather than proven as causal. We have taken care to provide conservative estimates when required. Second, the patients’ clinical course was not factored into the potential savings or expenditures as a result of the pharmacist’s interventions. Third, we have no direct evidence of positive or lasting impact on medical staff education, only intuitive assumptions based on changes made in care. Fourth, it is possible that bias was introduced as a result of the clinical pharmacist being one of the authors (MIK), although this seems unlikely.

Even taking into account these real and potential limitations, we suggest that the results from this study are valid taken within the context of the study design. Our results add to the growing body of evidence that supports the use, safety, and cost-effectiveness of a clinical ICU pharmacist. It is clear that additional economically sophisticated studies are required to more completely evaluate the role of the clinical pharmacist in the ICU.

REFERENCES

A cardiopulmonary resuscitation (CPR) event can be chaotic and confusing if participants lack understanding of the roles of individual resuscitation team members and have inadequate training or education. The confusion may be aggravated by inadequate hospital policies on the content and location of the emergency drug cart. These factors are multiplied in an emergency situation involving a child. Children who suffer cardiopulmonary arrest have a very poor prognosis, with reported survival rates of 0–17%. Emergency care, which has traditionally focused on adult needs, may leave some institutions unprepared for pediatric cardiopulmonary arrests.

Pediatric patients include a diverse range of ages and sizes; therefore, medication dosages and fluid requirements also vary widely. Guidelines for pediatric advanced life support (PALS) provide instruction on the use of certain emergency medications but do not give information on which drugs should be available for resuscitation efforts. A large variety of drugs and concentrations would only encourage indecision and possibly delay action. Ideally, only one drug per critical category should be included in the emergency drug cart unless clinically significant differences exist among drugs in the same class. Pharmacy departments have the opportunity to play an important role in pediatric resuscitation and to influence which medications are included in the cart.

The purpose of this survey was to assess pharmaceutical services related to pediatric resuscitations, including medications routinely stored in pediatric emergency drug carts and pharmacist participation in resuscitation activities.

Methods. A 14-question, two-page questionnaire was developed and evaluated for content and clarity by several pharmacists involved in an
emergency resuscitation team. The survey was mailed in March 2000 to the directors of pharmacy at 558 institutions selected according to information found in the 1998–99 AHA Guide. Only institutions listing pediatric intensive care services and having ≥100 licensed beds were included. A cover letter explained the purpose of the study, and a postage-paid return envelope was provided. The pharmacy directors were invited to forward the survey to the most appropriate person in the department.

The survey asked for demographic data, such as the type of hospital, number of licensed pediatric beds and pediatric intensive care beds, and estimated number of pediatric emergency resuscitation attempts per year; a list of the medications included on the institution's emergency drug cart and how other drugs might be obtained during an emergency situation; and the extent and nature of pharmacist participation in resuscitation efforts. A list of possible pharmacist functions was provided, including preparing medications, administering medications, providing drug information, documenting drug administration, calculating doses, and performing CPR. The survey also asked whether the hospital had a special emergency drug cart for pediatric patients. All results are reported as means, medians, and in some instances ranges.

Results. One hundred forty-four surveys were returned, for a response rate of 25.8%. Surveys were received from 39 states and the District of Columbia. Of the questionnaires, 123 (85%) were returned by adult hospitals with some pediatric services, and 21 (15%) came from specialized pediatric institutions. Eighty-one (63%) reported having a separate pediatric cart. Respondents reported several mechanisms for obtaining medications not included in the cart. The most common mechanism was obtaining the medications from the central or a satellite pharmacy. Medications were also supplied by automated dispensing machines, through a pneumatic tube system, from floor stock, or by pharmacists participating in the resuscitation attempt.

Of the institutions surveyed, 91 (63%) reported pharmacist participation on resuscitation teams (Table 2). Pharmacist participation was either required or voluntary and either 24 hours a day or on certain shifts only. The most common duties of pharmacists during resuscitation efforts were calculating drug dosages (93% of respondents with pharmacist participation), providing drug information (93%), preparing medications (92%), and mixing intravenous fluids (91%). Other reported duties include timing and documenting drug administration (40% and 33%, respectively), setting up infusion pumps (13%), administering drugs (10%), and performing CPR (6%).

<table>
<thead>
<tr>
<th>Drug</th>
<th>No. (%) Responding Hospitals Including Drug in Emergency Carts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium bicarbonate</td>
<td>118 (100)</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>117 (99)</td>
</tr>
<tr>
<td>Atropine</td>
<td>115 (98)</td>
</tr>
<tr>
<td>Naloxone</td>
<td>115 (98)</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>114 (97)</td>
</tr>
<tr>
<td>Dextrose</td>
<td>112 (95)</td>
</tr>
<tr>
<td>Dopamine</td>
<td>109 (92)</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>106 (90)</td>
</tr>
<tr>
<td>Adenosine</td>
<td>87 (74)</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>86 (73)</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>72 (61)</td>
</tr>
<tr>
<td>Furosemide</td>
<td>71 (60)</td>
</tr>
<tr>
<td>Bretylium</td>
<td>70 (59)</td>
</tr>
<tr>
<td>Diphenhydraminea</td>
<td>65 (55)</td>
</tr>
<tr>
<td>Heparina</td>
<td>63 (53)</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>61 (52)</td>
</tr>
</tbody>
</table>

*Drug not mentioned in pediatric advanced life-support guidelines.

Table 2. Pharmacist Participation in Emergency Resuscitation by Type of Facility

<table>
<thead>
<tr>
<th>Facility</th>
<th>Total No.</th>
<th>No. (%) Participating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric teaching</td>
<td>21</td>
<td>13 (61.9)</td>
</tr>
<tr>
<td>Adult teaching</td>
<td>58</td>
<td>37 (63.8)</td>
</tr>
<tr>
<td>Adult nonteaching</td>
<td>57</td>
<td>35 (61.4)</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>6 (75.0)</td>
</tr>
<tr>
<td>All</td>
<td>144</td>
<td>91 (63.2)</td>
</tr>
</tbody>
</table>
Discussion. The PALS guidelines, although not specifically addressing which drugs should be included in emergency resuscitation carts, discuss the use of adenosine, alprostadil, atropine, bretylium, calcium chloride, dextrose, dobutamine, dopamine, epinephrine, isoproterenol, lidocaine, naloxone, and sodium bicarbonate. The results of this survey indicate that adenosine, isoproterenol, dobutamine, and bretylium are included in fewer than 75% of pediatric emergency carts. Alprostadil was included at less than 5% of the responding institutions. This finding is attributed to the refrigeration requirement for alprostadil, as well as the limited indications for its use during resuscitation efforts, such as maintaining a patent ductus arteriosus in an infant with cyanosis related to congenital heart disease.

The medications included in emergency carts represent a large investment for a pharmacy department. In areas with few pediatric resuscitation needs, these medications may expire without being used. Hospitals must determine the best combination of medications and formulations for emergency needs while complying with PALS guidelines.

The survey results indicate varied means for obtaining medications not included in the carts. Each institution should define the mechanism for obtaining such drugs or for obtaining additional stock when cart medications are depleted during resuscitation efforts. Automated dispensing machines and pharmacists bringing supplies may be the most efficient mechanisms.

In a previous survey of pharmacy directors, the rate of pharmacist participation in resuscitation attempts (nonspecified as adult or pediatric) was estimated at 30–33%. In the current survey, pharmacist participation was >60%. This may represent response bias; it is possible that institutions interested in this information or involved in a resuscitation program were more likely to respond to the survey. It is also possible that a broader definition of participation increased this percentage. The degree of participation was similar between children’s hospitals and adult institutions. Pharmacists are completing tasks ranging from calculating dosages and providing drug information to administering medications. Many of these skills are not specifically addressed in basic or advanced life support training. Inpatient pharmacists should be trained for these particular skills.

Ideally, duplicate letters should have been sent to all nonrespondents, and a telephone survey of nonresponders should have been performed. These interventions were not performed because of cost constraints.

Conclusion. Institutions differed in their choice of drugs stocked in pediatric emergency carts and mechanisms for obtaining necessary drugs not in the carts. A substantial percentage of pharmacists participated in resuscitation efforts.

Alprostadil (prostaglandin E) is not included in any PALS algorithms but is discussed in the PALS manual. We therefore included it in our list of drugs in the questionnaire.

References

Appendix G-3

ACPE PLAN
Programming
Live Forum
Knowledge Activity
<table>
<thead>
<tr>
<th>Title</th>
<th>UAN</th>
<th>Hours (CEUs)</th>
<th>City</th>
<th>Activity Type</th>
<th>Provider Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>26th Clinical Conference- The Team Approach to Pediatric Diabetes? It takes a Village</td>
<td>0180-0000-12-119-L04-P</td>
<td>0.25 (0.025)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>26th Clinical Conference- Transitioning from Pediatric to Adult Care</td>
<td>0239-0000-11-076-L01-P</td>
<td>0.83 (0.083)</td>
<td>http://professional.diabetes.org/cc</td>
<td>Knowledge</td>
<td>0239 - American Diabetes Association</td>
</tr>
<tr>
<td>26th Clinical Conference- Treatment and Diagnosis of Type 2 Diabetes in Children and Adolescents</td>
<td>0239-0000-11-090-L01-P</td>
<td>1.5 (0.15)</td>
<td>http://professional.diabetes.org/cc</td>
<td>Knowledge</td>
<td>0239 - American Diabetes Association</td>
</tr>
<tr>
<td>4th Annual VITALine Symposium: There's No Place Like</td>
<td>0266-0000-12-548-L01-P</td>
<td>6.5 (0.65)</td>
<td>Danville/www.geisinger.edu/800.272.6692</td>
<td>Knowledge</td>
<td>0266 - Geisinger Health System</td>
</tr>
<tr>
<td>A Cast Approach to Fluid, Electrolyte, Nutrition Management in a Preemie</td>
<td>0180-0000-10-021-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>A Cast Approach to Fluid, Electrolyte, Nutrition Management in a Preemie</td>
<td>0180-0000-10-021-L01-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>A Crash Course in Pediatric Pharmacotherapy</td>
<td>0136-0000-12-034-L01-P</td>
<td>2 (0.2)</td>
<td>Somerville</td>
<td>Knowledge</td>
<td>0136 - New Jersey Pharmacists Association</td>
</tr>
<tr>
<td>A Crash Course in Pediatric Pharmacotherapy</td>
<td>0136-0000-12-034-L01-T</td>
<td>2 (0.2)</td>
<td>Somerville</td>
<td>Knowledge</td>
<td>0136 - New Jersey Pharmacists Association</td>
</tr>
<tr>
<td>A Review of Antiemetic Therapy used for Chemotherapy Induced Nausea and Vomiting</td>
<td>0180-0000-11-003-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>A SURVEY OF CHILDREN'S HOSPITALS ON THE USE OF EXTEMPORANEOUS LIQUID</td>
<td>0180-0000-09-132-L04-P</td>
<td>0.25 (0.025)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>A Weighty Issue: Use of Medications in Overweight Children</td>
<td>0053-0000-11-030-L01-P</td>
<td>1 (0.1)</td>
<td>Oklahoma City</td>
<td>Knowledge</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500
Chicago, Illinois 60602-5109
Phone (312) 664-3575
Fax (312) 664-7008
http://www.acpe-accredit.org

A Weighty Issue: Use of Medications in Overweight Children	0053-0000-11-030-L01-P	1 (0.1)	Tulsa	Knowledge	0053 - University of Oklahoma College of Pharmacy
a. How Much is Too Much? The Use of Rasburicase in the Treatment of Tumor Lysis Syndrome	0180-0000-11-504-L01-P	1 (0.1)	St. Louis	Knowledge	0180 - Pediatric Pharmacy Advocacy Group
AACP11: Geriatric Pharmacy Education SIG: Pediatrics and Geriatrics: Integration or Specialization in the Curriculum?	0294-9999-11-069-L04-P	1.5 (0.15)	San Antonio	Knowledge	0294 - VCU School of Pharmacy, Office of Continuing Education
AAE Conference Day 2: Asthma Educators: Called to Encourage, Empower and Educate	0047-9999-10-130-L01-P	5 (0.5)	Orlando	Knowledge	0047 - North Dakota State University College of Pharmacy, Nursing, and Allied Sciences
Academia Workshop: The Changing Face of the Pediatric Faculty Member	0180-0000-10-014-L04-P	1.5 (0.15)	St. Charles	Knowledge	0180 - Pediatric Pharmacy Advocacy Group
Academia Workshop: The Changing Face of the Pediatric Faculty Member	0180-0000-10-014-L04-T	1.5 (0.15)	St. Charles	Knowledge	0180 - Pediatric Pharmacy Advocacy Group
Acetaminophen Poisoning: What's the FDA Thinking? How Would You Vote?	0204-0000-10-263-L01-P	2 (0.2)	Anaheim	Knowledge	0204 - American Society of Health-System Pharmacists
Addressing Trends in Pediatric Psychological Treatment	0106-9999-10-036-L01-P	1 (0.1)	Ledyard, CT	Knowledge	0106 - Connecticut Pharmacists Association
Addressing Trends in Pediatric Psychological Treatment	0106-9999-10-036-L01-T	1 (0.1)	Ledyard, CT	Knowledge	0106 - Connecticut Pharmacists Association
ADHD	0062-9999-12-096-L01-P	1 (0.1)	North Charleston (843-876-1925)	Knowledge	0062 - South Carolina College of Pharmacy
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education

20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109

Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
<th>Credits</th>
<th>City</th>
<th>Type</th>
<th>Knowledge Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD: Treatment Myths and Controversies</td>
<td>0204-0000-11-216-L01-P</td>
<td>1 (0.1)</td>
<td>New Orleans</td>
<td>Knowledge</td>
<td>0204 - American Society of Health-System Pharmacists</td>
</tr>
<tr>
<td>Adolescent Issues</td>
<td>0180-0000-09-115-L04-P</td>
<td>1.5 (0.15)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Advances in Antimicrobial Therapy in Pediatric Patients with Cystic Fibrosis in the Last 20 years. (The</td>
<td>0180-0000-10-033-L04-P</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Advances in Antimicrobial Therapy in Pediatric Patients with Cystic Fibrosis in the Last 20 years. (The</td>
<td>0180-0000-10-033-L04-T</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Adverse Drug Events in Children: Using Voluntary Reports to Measure the Impact of Medication Safety</td>
<td>0180-0000-12-116-L05-P</td>
<td>0.25 (0.025)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Adverse Effects of Antiepileptic Medications</td>
<td>0180-0000-10-203-L01-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Adverse Effects of Antiepileptic Medications</td>
<td>0180-0000-10-203-L01-T</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Adverse Events Associated with Parenteral Nutrition</td>
<td>0180-0000-11-029-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Advocacy Workshop: Getting Involved in a Child Health Initiative at the Local and International Levels</td>
<td>0180-0000-10-029-L04-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Advocacy Workshop: Getting Involved in a Child Health Initiative at the Local and International Levels</td>
<td>0180-0000-10-029-L04-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Advocacy Workshop: Healthcare Reform</td>
<td>0180-0000-10-013-L04-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Advocacy Workshop: Healthcare Reform</td>
<td>0180-0000-10-013-L04-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Agents of Change: Systems and Strategies to Address Family, Social, and Developmental Needs in the Type 1 Pediatric Populations</td>
<td>0069-9999-11-207-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0069 - American Association of Diabetes Educators</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
<td>Credit Hours</td>
<td>Location</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Ahhh-choo! Cough and cold medications in young children</td>
<td>0004-0000-11-063-L01-P</td>
<td>1.5 (0.15)</td>
<td>Little Rock & Fayetteville</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Antidepressants and Antipsychotics in Youth: do the Benefits Outweigh the Risks?</td>
<td>0180-0000-10-205-L04-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Anti-fungal Prophylaxis and Treatment Considerations in Neutropenic Patients</td>
<td>0180-9999-11-006-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial Stewardship in Pediatric Practices</td>
<td>0485-0000-12-008-L01-P</td>
<td>1.5 (0.15)</td>
<td>Orlando</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Application of Pharmacogenomics to the treatment of the Patient with Epilepsy</td>
<td>0180-0000-10-202-L01-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Approach to a Complicated Patient in the Pediatric Clinical Care Unit</td>
<td>0180-0000-10-004-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Approach to a Complicated Patient in the Pediatric Clinical Care Unit</td>
<td>0180-0000-10-004-L01-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Argatroban and Lepirudin Utilization in a Pediatric Population: A Five Year Experience</td>
<td>0180-0000-10-020-L04-P</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Argatroban and Lepirudin Utilization in a Pediatric Population: A Five Year Experience</td>
<td>0180-0000-10-020-L04-T</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Assuring Safe Technology Implementation in Specialty Areas: Pediatrics, Oncology, and Investigational Drug Services</td>
<td>0204-0000-10-235-L05-P</td>
<td>2 (0.2)</td>
<td>Anaheim</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Basics of Bone Marrow Transplant</td>
<td>0180-0000-11-005-L04-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Conference Name</td>
<td>Code</td>
<td>Number of Participants</td>
<td>City</td>
<td>Type of Knowledge</td>
<td>Organization</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Bedside Feeding Practices: Best Practice and Avoiding Morbidities</td>
<td>0263-0000-09-096-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Beyond the Basics: Vitamins and Pancreatic Enzymes in Cystic Fibrosis</td>
<td>0180-0000-10-010-L01-P</td>
<td>0.5 (0.05)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Blinded Volume Verification in a Pediatric Bar-code Medication Administration System (BCMA) to</td>
<td>0180-0000-09-128-L04-P</td>
<td>0.25 (0.025)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Blood Thinners in Babies: Anticoagulation in infants < 1 year of age</td>
<td>0180-0000-11-030-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Breaking News I: Patient Safety Issues</td>
<td>0202-0000-10-138-L01-P</td>
<td>1.5 (0.15)</td>
<td>Washington</td>
<td>Knowledge</td>
<td>0202 - American Pharmacists Association</td>
</tr>
<tr>
<td>Building A Standardized Approach to Acute Pediatric Care</td>
<td>0180-0000-10-007-L04-P</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Building A Standardized Approach to Acute Pediatric Care</td>
<td>0180-0000-10-007-L04-T</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Cardiometabolic Risk in Children</td>
<td>0239-0000-10-018-L01-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0239 - American Diabetes Association</td>
</tr>
<tr>
<td>Caring for Kids: Pediatric Therapeutic Update for Pharmacists</td>
<td>0038-0000-11-023-L04-P</td>
<td>3 (0.3)</td>
<td>Piscataway</td>
<td>Knowledge</td>
<td>0038 - Rutgers University Ernest Mario School of Pharmacy</td>
</tr>
<tr>
<td>Caring for Kids: Pediatric Therapeutic Update for Pharmacists</td>
<td>0038-0000-11-023-L04-T</td>
<td>3 (0.3)</td>
<td>Piscataway</td>
<td>Knowledge</td>
<td>0038 - Rutgers University Ernest Mario School of Pharmacy</td>
</tr>
<tr>
<td>Caring for our Tiniest Babies: Evidence-Based Practices for Better Outcomes</td>
<td>0263-0000-09-090-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>0180-0000-10-023-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>0180-0000-10-023-L01-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Course Title</td>
<td>Course Code</td>
<td>Hours (Credit)</td>
<td>City</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Challenges of Antimicrobial Dosing in Obese Pediatric Patients</td>
<td>0180-0000-12-138-L01-P</td>
<td>1 (0.1)</td>
<td>St. Louis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy Safety for You and the Patient</td>
<td>0180-0000-09-114-L01-P</td>
<td>1.5 (0.15)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy Safety-Processes and Technology</td>
<td>0180-0000-11-014-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Children's Health and Nutrition</td>
<td>0491-0000-09-008-L01-P</td>
<td>6 (0.6)</td>
<td>Albuquerque</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Children's Health and Nutrition</td>
<td>0491-0000-09-008-L01-P</td>
<td>6 (0.6)</td>
<td>Cincinnati</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Children's Health and Nutrition</td>
<td>0491-0000-09-008-L01-P</td>
<td>6 (0.6)</td>
<td>Columbus</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Children's Health and Nutrition</td>
<td>0491-0000-09-008-L01-P</td>
<td>6 (0.6)</td>
<td>Denver</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Children's Health and Nutrition</td>
<td>0491-0000-09-008-L01-P</td>
<td>6 (0.6)</td>
<td>Indianapolis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Children's Health and Nutrition</td>
<td>0491-0000-09-008-L01-P</td>
<td>6 (0.6)</td>
<td>Phoenix</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Chronic Dermatology</td>
<td>0180-0000-10-209-L04-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Chronic Dermatology</td>
<td>0180-0000-10-209-L04-T</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>CJW: NICU Updates</td>
<td>0294-9999-10-135-L04-P</td>
<td>1 (0.1)</td>
<td>Richmond</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Clinical Lecture 1: The Role of Biologics in Pediatric Rheumatology</td>
<td>0180-0000-09-107-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Clinical Lecture I: Medication Use during ECMO and Continuous Renal</td>
<td>0180-0000-09-119-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Clinical Lecture II: Management of Pediatric Chemical Casualties: Are We Prepared?</td>
<td>0180-0000-09-108-L04-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Clinical Pearls - Changing Times: Updates from the World of Poisonings</td>
<td>0180-0000-10-016-L04-P</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Clinical Pearls - Changing Times: Updates from the World of Poisonings</td>
<td>0180-0000-10-016-L04-T</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Clinical Pearls: Pediatrics, Pulmonary Arterial Hypertension, Refeeding Syndrome</td>
<td>0112-0000-12-106-L04-P</td>
<td>1.3 (0.13)</td>
<td>Detroit</td>
<td>Knowledge</td>
<td>0112 - Michigan Pharmacists Association</td>
</tr>
<tr>
<td>Community Acquired Methicillin-resistant Staphylococcus aureus (MRSA) in Pediatric Patients</td>
<td>0112-0000-11-146-L01-P</td>
<td>1.3 (0.13)</td>
<td>Detroit</td>
<td>Knowledge</td>
<td>0112 - Michigan Pharmacists Association</td>
</tr>
<tr>
<td>Community Acquired Pneumonia in the Critical Care Setting</td>
<td>0180-0000-11-035-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Comparison of Initial and Final Alprostadil Dose Needed to Maintain Patency of the Ductus Arteriosus:</td>
<td>0180-0000-09-130-L04-P</td>
<td>0.25 (0.025)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Complex Cases of Neonatal Resuscitation</td>
<td>0263-0000-11-255-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Continuous Infusion Beta-Lactam Therapy for Management of Acute Exacerbations in Cystic Fibrosis:</td>
<td>0180-0000-10-038-L01-P</td>
<td>0.5 (0.05)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Continuous Infusion Beta-Lactam Therapy for Management of Acute Exacerbations in Cystic Fibrosis:</td>
<td>0180-0000-10-011-L01-P</td>
<td>0.75 (0.075)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Continuous infusion versus scheduled antibiotics</td>
<td>0180-0000-12-113-L01-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Corticosteroids in Pediatric Hematology/Oncology: Clinical Applications, Toxicities, and Controversies</td>
<td>0465-0000-12-022-L01-P</td>
<td>0.5 (0.05)</td>
<td>Orlando</td>
<td>Knowledge</td>
<td>0465 - Hematology/Oncology Pharmacy Association (HOPA)</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
<td>Category</td>
<td>Location</td>
<td>Knowledge Area</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>CPOE and chemotherapy, The Implementation Process</td>
<td>0180-0000-11-013-L04-P</td>
<td>Knowledge</td>
<td>Memphis</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Cultural Considerations in Clinical Practice</td>
<td>0180-0000-11-023-L04-P</td>
<td>Knowledge</td>
<td>Memphis</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Cultural Diversity</td>
<td>0180-0000-10-207-L04-P</td>
<td>Knowledge</td>
<td>Salt Lake City</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Cultural Diversity</td>
<td>0180-0000-10-207-L04-T</td>
<td>Knowledge</td>
<td>Salt Lake City</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Current Advances in Neonatal Nutrition</td>
<td>0263-0000-09-087-L04-P</td>
<td>Knowledge</td>
<td>San Francisco</td>
<td>0263 - Contemporary Forums</td>
<td></td>
</tr>
<tr>
<td>Current Best Evidence for Education in the Type 2 Pediatric Population</td>
<td>0069-0000-11-149-L01-P</td>
<td>Knowledge</td>
<td>Las Vegas</td>
<td>0069 - American Association of Diabetes Educators</td>
<td></td>
</tr>
<tr>
<td>Current Issues in the Management of Pediatric patients with Cystic Fibrosis: Update 2009</td>
<td>0180-0000-09-126-L01-P</td>
<td>Knowledge</td>
<td>Cleveland</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>0173-0000-12-009-L04-P</td>
<td>Knowledge</td>
<td>Boise, 208-342-2581</td>
<td>0173 - Idaho Society of Health-System Pharmacists</td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis: Current Challenges and Implications for Drug Therapy</td>
<td>0180-0000-10-034-L01-P</td>
<td>Knowledge</td>
<td>St. Charles</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Development of Novel Therapies for the Treatment of RSV Infection</td>
<td>0180-0000-11-032-L01-P</td>
<td>Knowledge</td>
<td>Memphis</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Devices, Gadgets and Gizmos</td>
<td>0053-0000-11-032-L01-P</td>
<td>Knowledge</td>
<td>Oklahoma City</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Devices, Gadgets and Gizmos</td>
<td>0053-0000-11-032-L01-P</td>
<td>Knowledge</td>
<td>Tulsa</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Code</td>
<td>Hours</td>
<td>Location</td>
<td>Type</td>
<td>Institution</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>-------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Diabetes in Children and Adolescents</td>
<td>0062-9999-12-012-L01-P</td>
<td>1 (0.1)</td>
<td>North Charleston (843-876-0968)</td>
<td>Knowledge</td>
<td>0062 - South Carolina College of Pharmacy</td>
</tr>
<tr>
<td>DKA & HHS</td>
<td>0180-0000-09-100-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Dosing in ECMO and CRRT</td>
<td>0180-0000-10-022-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Drug Adherence in Adolescence</td>
<td>0180-0000-11-008-L04-P</td>
<td>0.25 (0.025)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Drugs in Pregnancy; Treating the Mother- Protecting the Unborn</td>
<td>0180-0000-12-115-L01-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Eculizumab in Paroxysmal Nocturnal Hemoglobinuria</td>
<td>0180-0000-11-009-L01-P</td>
<td>0.25 (0.025)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Educational Tours of Texas Children's Hospital</td>
<td>0180-0000-12-137-L04-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Efficacy of Bar-code Medication Administration (BCMA) on Errors in a Pediatric Medical Surgical Unit</td>
<td>0180-0000-09-131-L04-P</td>
<td>0.25 (0.025)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Eicosapentaenoic Acid Attenuates Bile Acid-Induced Apoptosis via the Fas and TRAIL-R2 Death Receptors</td>
<td>0180-0000-10-017-L04-P</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Eicosapentaenoic Acid Attenuates Bile Acid-Induced Apoptosis via the Fas and TRAIL-R2 Death Receptors</td>
<td>0180-0000-10-017-L04-T</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Emergency Medicine Update: Hot Topics 2010</td>
<td>0277-0000-10-146-L01-P</td>
<td>16.75 (1.675)</td>
<td>Wailea, Maui</td>
<td>Knowledge</td>
<td>0277 - University of California Davis Health System Department of Pharmacy</td>
</tr>
<tr>
<td>Evaluation and Management of Infants with Suspected Heart Disease</td>
<td>0263-0000-09-089-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Evaluation of the Incidence of Parenteral Nutrition-Associated Liver Disease in Infants Requiring</td>
<td>0180-0000-11-021-L01-P</td>
<td>0.25 (0.025)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109
Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
<th>Credit Hours (Lecture Hours)</th>
<th>Location</th>
<th>Delivery Method</th>
<th>Accreditation Council for Pharmacy Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of Vancomycin Dosing for Complicated Infections in Pediatric Patients</td>
<td>0180-0000-10-018-L04-P</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Evaluation of Vancomycin Dosing for Complicated Infections in Pediatric Patients</td>
<td>0180-0000-10-018-L04-T</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Evidence Based Neonatal Skin Care: Update on Bathing, Disinfectants, Adhesives and</td>
<td>0263-0000-09-086-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Extreme Dosing</td>
<td>0180-0000-09-116-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Fetal Care</td>
<td>0180-0000-10-035-L04-P</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Fetal Care</td>
<td>0180-0000-10-035-L04-T</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Fetus & Newborn-Main Conference</td>
<td>0263-0000-09-083-L04-P</td>
<td>7 (0.7)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Fundamental Updates in Pediatrics: Outpatient and Inpatient Pearls</td>
<td>0003-0000-10-123-L01-P</td>
<td>2 (0.2)</td>
<td>Tucson</td>
<td>Knowledge</td>
<td>0003 - University of Arizona College of Pharmacy, The</td>
</tr>
<tr>
<td>General Overview of Epilepsy</td>
<td>0180-0000-10-200-L01-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>General Overview of Epilepsy</td>
<td>0180-0000-10-200-L01-T</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Genetic Epidemiology of Early-Onset Depression and Alcohol Use Disorders</td>
<td>0284-0000-10-014-L01-P</td>
<td>1 (0.1)</td>
<td>San Antonio</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Glucarpidase for Methotrexate Toxicity</td>
<td>0180-0000-11-007-L01-P</td>
<td>0.25 (0.025)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Grant Writing</td>
<td>0180-0000-09-109-L04-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Event Description</td>
<td>Code</td>
<td>Score</td>
<td>Location</td>
<td>Presenter</td>
<td>Code Description</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>H2 blocker use and late onset sepsis in the neonate</td>
<td>0180-0000-11-039-L01-P</td>
<td>1.0</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Hawaii Pharmacists Annual Mtg 2010: Childhood Obesity</td>
<td>0168-0000-10-110-L04-P</td>
<td>1.0</td>
<td>Kapolei/Ihilani/ www.hippharm.org</td>
<td>Knowledge</td>
<td>0168 - Hawaii Pharmacists Association (HPhA)</td>
</tr>
<tr>
<td>Hawaii Pharmacists Annual Mtg 2010: Childhood Obesity</td>
<td>0168-0000-10-110-L04-T</td>
<td>1.0</td>
<td>Kapolei/Ihilani/ www.hippharm.org</td>
<td>Knowledge</td>
<td>0168 - Hawaii Pharmacists Association (HPhA)</td>
</tr>
<tr>
<td>Head, Shoulders, Knees and Toes (and Ears and Mouth and Nose and . . .): Antibiotic Essentials for Children</td>
<td>0096-0000-10-090-L01-P</td>
<td>1.0</td>
<td>TTUHSC SW Campus - Dallas</td>
<td>Knowledge</td>
<td>0096 - Texas Tech University Health Sciences Center School of Pharmacy</td>
</tr>
<tr>
<td>Helms Award</td>
<td>0180-0000-09-118-L01-P</td>
<td>1.0</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Helms Lecture Series</td>
<td>0180-0000-11-022-L04-P</td>
<td>1.0</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Help, I have Tricky-itis (Treatment of Tracheitis)</td>
<td>0180-0000-12-108-L01-P</td>
<td>0.25</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Hemophilia Workshop</td>
<td>0180-0000-10-212-L04-P</td>
<td>1.0</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Hemophilia Workshop</td>
<td>0180-0000-10-212-L04-T</td>
<td>1.0</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Hospital Pharmacy Technicians and the Pediatric Patient</td>
<td>0156-0000-10-096-L04-T</td>
<td>1 (0.1)</td>
<td>San Antonio</td>
<td>Knowledge</td>
<td>0156 - Texas Society of Health-System Pharmacists, The</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Hot Topics</td>
<td>0180-0000-09-124-L04-P</td>
<td>2 (0.2)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Hot Topics from the Neonatal-Perinatal Literature</td>
<td>0263-0000-09-092-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Hot Topics in Clinical Pediatric Practice: Antimicrobial Stewardship and Drug Disposition in ECMO</td>
<td>0204-0000-12-112-L01-P</td>
<td>2 (0.2)</td>
<td>Baltimore</td>
<td>Knowledge</td>
<td>0204 - American Society of Health-System Pharmacists</td>
</tr>
<tr>
<td>Hot Topics in Clinical Pediatric Practice: Ketogenic Diet and Update on Antiepileptic Agents</td>
<td>0204-0000-12-111-L01-P</td>
<td>2 (0.2)</td>
<td>Baltimore</td>
<td>Knowledge</td>
<td>0204 - American Society of Health-System Pharmacists</td>
</tr>
<tr>
<td>Hot Topics in Pediatrics</td>
<td>0278-0000-11-034-L01-P</td>
<td>2 (0.2)</td>
<td>Virginia Beach</td>
<td>Knowledge</td>
<td>0278 - Virginia Pharmaceutical Association</td>
</tr>
<tr>
<td>Hot Topics in Pediatrics</td>
<td>0278-0000-11-034-L01-T</td>
<td>2 (0.2)</td>
<td>Virginia Beach</td>
<td>Knowledge</td>
<td>0278 - Virginia Pharmaceutical Association</td>
</tr>
<tr>
<td>How a Tennessee pharmacist became CEO of the world's #1 pediatric cancer hospital</td>
<td>0180-0000-11-016-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Immunization update/Management of Pandemics</td>
<td>0180-0000-11-038-L01-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Immunization Update: Expanding the Pharmacist Role</td>
<td>0047-0000-11-136-L01-P</td>
<td>7 (0.7)</td>
<td>Fargo</td>
<td>Knowledge</td>
<td>0047 - North Dakota State University College of Pharmacy, Nursing, and Allied Sciences</td>
</tr>
<tr>
<td>Improvement or Reversal of Parenteral Nutrition Associated Liver Disease in Six Infants with Short</td>
<td>0180-0000-09-127-L04-P</td>
<td>0.25 (0.025)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
<td>Hours (Credit)</td>
<td>Institution</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>In a World of Their Own: Diagnosis and Treatment of Autism</td>
<td>0284-0000-10-002-L01-P</td>
<td>1 (0.1)</td>
<td>San Antonio</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>In Search of a Healthy America: Meeting Families Where They Begin</td>
<td>0022-9999-10-173-L01-P</td>
<td>0.75 (0.075)</td>
<td>Louisville</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Through Integrated Prenatal, Pediatric, and Behavioral Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorporating Pharmaceutical Care into Pediatric HIV</td>
<td>0180-0000-10-213-L02-P</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Incorporating Pharmaceutical Care into Pediatric HIV</td>
<td>0180-0000-10-213-L02-T</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Infant and Pediatric Formulas: History, Content and Indications</td>
<td>0180-0000-11-028-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Infectious Disease - CAMRSA</td>
<td>0180-0000-09-120-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Influenza: Strategies to Diagnose, Treat, and Reduce Risk in Community</td>
<td>0347-0000-09-065-L01-P</td>
<td>1 (0.1)</td>
<td>Tacoma, Western State Hospital, Grand Rounds, 8:00</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>and Patient Health Care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics 101</td>
<td>0180-0000-12-132-L04-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Initiative for Pediatric Palliative Care Educational Retreat</td>
<td>0298-9999-09-015-L01-P</td>
<td>16.5 (1.65)</td>
<td>Clearwater</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Intrauterine Infections, Prematurity, and Neonatal Sepsis: Strategies for</td>
<td>0263-0000-09-097-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Diagnosis and Prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravenous Lock Therapy</td>
<td>0180-0000-12-103-L01-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Irritability and Elation: The Consequences of Thinking about Pediatric</td>
<td>0284-9999-11-014-L04-P</td>
<td>1 (0.1)</td>
<td>Phoenix/cpnp.org/2011/402-476-1677</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Bipolar Disorder and Severe Mood Dysregulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Code</td>
<td>Credit</td>
<td>Location</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Issues in Pediatric Hematology/Oncology</td>
<td>0173-0000-11-009-L04-P</td>
<td>1 (0.1)</td>
<td>Boise www.ishp.shuttlepod.org</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Issues in Pediatric Infectious Diseases</td>
<td>0485-0000-11-005-L01-P</td>
<td>1.5 (0.15)</td>
<td>Orlando mid-id.org/registration.htm</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Keynote Address: National Commission on Children & Disasters</td>
<td>0180-0000-09-105-L04-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>KIDs are PEOPLE Too! Drug Therapy in Children</td>
<td>0499-9999-12-004-L01-T</td>
<td>1 (0.1)</td>
<td>Florence</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Late Breakers, II</td>
<td>0217-0000-11-090-L01-P</td>
<td>1.5 (0.15)</td>
<td>Pittsburgh-- www.accp.com/am</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Lean Management Stories from the Frontline</td>
<td>0180-0000-12-127-L04-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Little Hands, New Life: Complications and Pharmaceutical Care of Newborns</td>
<td>0124-0000-10-006-L01-T</td>
<td>1 (0.1)</td>
<td>Novi</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Live at LeBonheur Children’s Hospital</td>
<td>0180-0000-11-033-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Live at St. Jude Children’s Research Hospital</td>
<td>0180-0000-11-017-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Long Term Complications of Pediatric Chemotherapy</td>
<td>0043-0000-11-024-L01-P</td>
<td>1 (0.1)</td>
<td>Jamaica</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Mama Said Knock You Out: Innovative Sedation</td>
<td>0180-0000-11-037-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Management of Diabetes, Type I</td>
<td>0180-0000-09-102-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Code</td>
<td>Value (Level)</td>
<td>City</td>
<td>Type</td>
<td>Section/Group</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Management of Diabetes, Type II</td>
<td>0180-0000-09-104-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Management of Fluid & Electrolyte Disorders in the LBW Infant</td>
<td>0263-0000-09-095-L01-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Management of Pancreatic Insufficiency in Cystic Fibrosis</td>
<td>0180-0000-11-041-L01-P</td>
<td>1 (0.1)</td>
<td>Columbus</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Management of Pulmonary Hypertension - General Session</td>
<td>0180-0000-10-006-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Management of Pulmonary Hypertension - General Session</td>
<td>0180-0000-10-006-L01-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Management of the Neonate with Critical Congenital Heart Disease</td>
<td>0263-0000-11-259-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>From Birth Through Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Drug Shortages: A Panel Discussion</td>
<td>0180-0000-12-125-L04-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Managing GI Issues in Children</td>
<td>0107-0000-11-030-L01-P</td>
<td>1 (0.1)</td>
<td>Des Moines</td>
<td>Knowledge</td>
<td>0107 - Collaborative Education Institute</td>
</tr>
<tr>
<td>Managing the Treatment of Pediatric Patients</td>
<td>0042-0000-11-004-L01-P</td>
<td>5 (0.5)</td>
<td>E Elmhurst NY</td>
<td>Knowledge</td>
<td>0042 - Arnold and Marie Schwartz College of Pharmacy and Health Sciences of Long Island University</td>
</tr>
<tr>
<td>Mechanisms of Antibiotic Resistance & Strategies for Prevention</td>
<td>0180-0000-12-102-L01-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Medical-Legal Issues in Neonatal Care: Litigation Hot Spots</td>
<td>0263-0000-09-091-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Medication Adherence Workshop</td>
<td>0180-0000-10-211-L04-P</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Event</td>
<td>Code</td>
<td>Hours (Weight)</td>
<td>Location</td>
<td>Knowledge Area</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Medication Adherence Workshop</td>
<td>0180-0000-10-211-L04-T</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Medication Safety Issues in the Breastfeeding Mother</td>
<td>0096-0000-10-091-L04-P</td>
<td>1 (0.1)</td>
<td>TTUHSC SOP SW Campus - Dallas</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Medication Therapy Management in a Pediatric Medical Home</td>
<td>0180-0000-12-118-L04-P</td>
<td>0.25 (0.025)</td>
<td>Houston</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Meet the Professors</td>
<td>0485-0000-12-011-L01-P</td>
<td>2 (0.2)</td>
<td>Orlando Caribe Roylle</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Mending Tender Skin: Diaper Dermatitis, Ostomies, Excoriations and IV Infiltrates</td>
<td>0263-0000-09-093-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Meta-Analysis</td>
<td>0180-0000-09-121-L04-P</td>
<td>2 (0.2)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Mommy and Me: Medications in Pregnancy</td>
<td>0053-0000-11-033-L01-P</td>
<td>1 (0.1)</td>
<td>Oklahoma City</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Mommy and Me: Medications in Pregnancy</td>
<td>0053-0000-11-033-L01-P</td>
<td>1 (0.1)</td>
<td>Tulsa</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Narcotics/Sedation/NAS, etc.</td>
<td>0180-0000-09-123-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>NEC: The Road to Zero</td>
<td>0263-0000-11-253-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Neonatal Abstinence Syndrome</td>
<td>0180-0000-10-002-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Neonatal and Pediatric Hot Topics</td>
<td>0180-0000-10-027-L04-P</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>Neonatal and Pediatric Hot Topics</td>
<td>0180-0000-10-027-L04-T</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Neonatal and Pediatric Nutrition - Day One</td>
<td>0263-0000-11-219-L01-P</td>
<td>7 (0.7)</td>
<td>San Diego</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Neonatal Circulatory Support</td>
<td>0180-0000-10-005-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Neonatal Emergencies and Other Surprises in the Delivery Room: Case Studies of Complex Situations</td>
<td>0263-0000-09-085-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Neonatal Resuscitation: Evidence-Based Care</td>
<td>0263-0000-09-098-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>New Therapies in Neuroblastoma</td>
<td>0180-0000-11-011-L02-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Novel Strategies for Therapeutic Dilemmas -- Mental Health Across the Ages</td>
<td>0217-0000-09-088-L01-P</td>
<td>1.5 (0.15)</td>
<td>Anaheim, www.accp.com</td>
<td>Knowledge</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>Novel Strategies for Therapeutic Dilemmas -- The Problem with Lipids</td>
<td>0217-0000-09-112-L01-P</td>
<td>1.5 (0.15)</td>
<td>Anaheim, www.accp.com</td>
<td>Knowledge</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>Obesity in Pregnancy: Implications for Mother and Baby</td>
<td>0263-0000-11-258-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Off-Label Drug Use in Pediatric Patients: How Can We Change the System?</td>
<td>0180-0000-11-026-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>OSHP 2010 Annual Meeting: Residency Project Pearls - Session 2</td>
<td>0053-9999-10-028-L01-P</td>
<td>1 (0.1)</td>
<td>Oklahoma City</td>
<td>Knowledge</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
</tr>
<tr>
<td>OTC’s in Pediatrics</td>
<td>0154-0000-10-018-L04-P</td>
<td>1 (0.1)</td>
<td>www.rxcellence.org</td>
<td>Knowledge</td>
<td>0154 - Texas Pharmacy Association</td>
</tr>
<tr>
<td>OTC’s in Pediatrics</td>
<td>0154-0000-10-018-L04-T</td>
<td>1 (0.1)</td>
<td>www.rxcellence.org</td>
<td>Knowledge</td>
<td>0154 - Texas Pharmacy Association</td>
</tr>
<tr>
<td>Description</td>
<td>Code</td>
<td>Credits</td>
<td>Location</td>
<td>Knowledge Area</td>
<td>Institution</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Over-the-counter medications in young children; uses, misuses, and myths</td>
<td>0455-0000-09-006-L01-P</td>
<td>2 (0.2)</td>
<td>M Resort - Henderson, NV</td>
<td>Knowledge</td>
<td>0455 - Roseman University of Health Sciences</td>
</tr>
<tr>
<td>Palliative Care Advances in Pediatric Oncology</td>
<td>0180-0000-11-010-L04-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pathology, Diagnosis and Management of Type 1 Diabetes in Children and Adolescents</td>
<td>0046-9999-10-004-L01-P</td>
<td>3 (0.3)</td>
<td>Fayetteville</td>
<td>Knowledge</td>
<td>0046 - University of North Carolina Eshelman School of Pharmacy</td>
</tr>
<tr>
<td>Pathology, Diagnosis and Management of Type 1 Diabetes in Children and Adolescents</td>
<td>0046-9999-10-004-L01-T</td>
<td>3 (0.3)</td>
<td>Fayetteville</td>
<td>Knowledge</td>
<td>0046 - University of North Carolina Eshelman School of Pharmacy</td>
</tr>
<tr>
<td>Patient Assistant Programs 101</td>
<td>0180-0000-10-206-L04-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Patient Assistant Programs 101</td>
<td>0180-0000-10-206-L04-T</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pay Attention to This! Lessons Learned on Medications for ADHD</td>
<td>0096-0000-10-088-L01-P</td>
<td>1 (0.1)</td>
<td>TTUHSC SW Campus - Dallas</td>
<td>Knowledge</td>
<td>0096 - Texas Tech University Health Sciences Center School of Pharmacy</td>
</tr>
<tr>
<td>Pediatric & Neonatal Emergency Medications</td>
<td>0062-9999-11-133-L04-T</td>
<td>1 (0.1)</td>
<td>Columbia (PHR Resident Series)</td>
<td>Knowledge</td>
<td>0062 - South Carolina College of Pharmacy</td>
</tr>
<tr>
<td>Pediatric Clinical Controversies in Inhaled Therapy</td>
<td>0180-0000-11-001-L01-P</td>
<td>1 (0.1)</td>
<td>St. Louis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pediatric Clinical Controversies in Inhaled Therapy</td>
<td>0180-0000-11-001-L01-T</td>
<td>1 (0.1)</td>
<td>St. Louis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pediatric Clinical Pearls</td>
<td>0053-0000-11-034-L04-P</td>
<td>1.5 (0.15)</td>
<td>Oklahoma City</td>
<td>Knowledge</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
</tr>
<tr>
<td>P.L.A.N. Search Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accreditation Council for Pharmacy Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
<th>Credits (Hours)</th>
<th>Location</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric Clinical Pearls</td>
<td>0053-0000-11-034-L04-P</td>
<td>1.5 (0.15)</td>
<td>Tulsa</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Electronic Medical Record</td>
<td>0180-0000-10-030-L04-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Electronic Medical Record</td>
<td>0180-0000-10-030-L04-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric HIV/AIDS Treatment: Worlds Apart</td>
<td>0180-0000-12-124-L02-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Immunizations</td>
<td>0173-0000-12-002-L04-P</td>
<td>1 (0.1)</td>
<td>Boise, 208-342-2581</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Infectious Disease Update for the Outpatient Setting</td>
<td>0202-0000-10-206-L01-P</td>
<td>1 (0.1)</td>
<td>Chattanooga</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Infectious Disease Update for the Outpatient Setting</td>
<td>0202-0000-10-206-L01-T</td>
<td>1 (0.1)</td>
<td>Chattanooga</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Medication Adherence and Counseling</td>
<td>0179-9999-11-029-L04-P</td>
<td>1 (0.1)</td>
<td>Buffalo</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Medication Adherence and Counseling</td>
<td>0179-9999-12-006-L04-P</td>
<td>1 (0.1)</td>
<td>New Orleans</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Medication Adherence and Counseling</td>
<td>0179-9999-12-006-L04-T</td>
<td>1 (0.1)</td>
<td>New Orleans</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Medication Safety Across the Continuum</td>
<td>0134-0000-12-028-L05-P</td>
<td>1 (0.1)</td>
<td>Saratoga</td>
<td>Knowledge</td>
</tr>
</tbody>
</table>

Pediatric Clinical Pearls

Pediatric Electronic Medical Record

Pediatric HIV/AIDS Treatment: Worlds Apart

Pediatric Immunizations

Pediatric Infectious Disease Update for the Outpatient Setting

Pediatric Medication Adherence and Counseling

Pediatric Medication Safety Across the Continuum
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500
Chicago, Illinois 60602-5109
Phone (312) 664-3575
Fax (312) 664-7008
http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
<th>Score</th>
<th>Location</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric Medication Safety Across the Continuum</td>
<td>0134-0000-12-028-L05-T</td>
<td>1 (0.1)</td>
<td>Saratoga</td>
<td>0134 - New York State Council of Health-System Pharmacists</td>
</tr>
<tr>
<td>Pediatric Medicine</td>
<td>0060-9999-11-030-L01-P</td>
<td>5 (0.5)</td>
<td>Bar Harbor</td>
<td>0060 - University of Rhode Island College of Pharmacy</td>
</tr>
<tr>
<td>Pediatric Medicine</td>
<td>0060-9999-11-030-L01-T</td>
<td>5 (0.5)</td>
<td>Bar Harbor</td>
<td>0060 - University of Rhode Island College of Pharmacy</td>
</tr>
<tr>
<td>Pediatric Obesity</td>
<td>0046-9999-09-182-L04-P</td>
<td>1.5 (0.15)</td>
<td>Wilson</td>
<td>0046 - University of North Carolina Eshelman School of Pharmacy</td>
</tr>
<tr>
<td>Pediatric Obesity</td>
<td>0046-9999-09-182-L04-T</td>
<td>1.5 (0.15)</td>
<td>Wilson</td>
<td>0046 - University of North Carolina Eshelman School of Pharmacy</td>
</tr>
<tr>
<td>Pediatric Obesity: Clinical and Research Innovation</td>
<td>0022-9999-10-156-L01-P</td>
<td>0.75 (0.075)</td>
<td>Louisville</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Pediatric OTC Therapy Options</td>
<td>0136-0000-12-020-L01-P</td>
<td>1 (0.1)</td>
<td>Newark</td>
<td>0136 - New Jersey Pharmacists Association</td>
</tr>
<tr>
<td>Pediatric Pain</td>
<td>0173-0000-12-011-L04-P</td>
<td>1 (0.1)</td>
<td>Boise, 208-342-2581</td>
<td>0173 - Idaho Society of Health-System Pharmacists</td>
</tr>
<tr>
<td>Pediatric Pearls</td>
<td>0120-9999-12-007-L04-P</td>
<td>0.5 (0.05)</td>
<td>Fort Wayne</td>
<td>0120 - Indiana Pharmacists Alliance</td>
</tr>
<tr>
<td>Pediatric PET/CT ? Challenges, Pitfalls, and Normal Variants</td>
<td>0165-0000-10-074-L04-P</td>
<td>1 (0.1)</td>
<td>Orlando</td>
<td>0165 - Florida Pharmacy Association</td>
</tr>
<tr>
<td>Pediatric PET/CT ? Challenges, Pitfalls, and Normal Variants</td>
<td>0165-0000-10-074-L04-T</td>
<td>1 (0.1)</td>
<td>Orlando</td>
<td>0165 - Florida Pharmacy Association</td>
</tr>
<tr>
<td>Training Area</td>
<td>Code</td>
<td>Credits</td>
<td>Location</td>
<td>Type</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Pediatric Pharmacology and Therapeutics</td>
<td>0180-0000-10-037-L04-P</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacology and Therapeutics</td>
<td>0180-0000-10-037-L04-T</td>
<td>1 (0.1)</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacotherapy Update for Pharmacists and Nurse Practitioners</td>
<td>0499-0000-11-025-L01-P</td>
<td>3 (0.3)</td>
<td>Charleston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy Practice: Past Present and Future (What is old is new)</td>
<td>0180-0000-12-120-L04-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy Update</td>
<td>0499-0000-11-010-L01-P</td>
<td>2 (0.2)</td>
<td>Charleston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy Update</td>
<td>0499-0000-11-010-L01-P</td>
<td>2 (0.2)</td>
<td>Greenville</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy Update</td>
<td>0499-0000-11-010-L01-T</td>
<td>2 (0.2)</td>
<td>Charleston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy Update</td>
<td>0499-0000-11-010-L01-T</td>
<td>2 (0.2)</td>
<td>Greenville</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Procedural sedation</td>
<td>0180-0000-11-036-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Septic Shock</td>
<td>0180-0000-11-034-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Subject</td>
<td>Code</td>
<td>Score</td>
<td>Location</td>
<td>Type</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Pediatric Sickle Cell Disease</td>
<td>0202-0000-11-176-L01-P</td>
<td>1 (0.1)</td>
<td>Dallas</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Sickle Cell Disease</td>
<td>0202-0000-11-176-L01-T</td>
<td>1 (0.1)</td>
<td>Dallas</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Thrombosis</td>
<td>0282-0000-10-018-L01-P</td>
<td>1 (0.1)</td>
<td>Gillette, WY</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Thrombosis</td>
<td>0282-0000-10-018-L01-T</td>
<td>1 (0.1)</td>
<td>Gillette, WY</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Update</td>
<td>0266-0000-11-531-L04-P</td>
<td>6 (0.6)</td>
<td>Danville</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Update</td>
<td>0266-0000-12-549-L04-P</td>
<td>6.5 (0.65)</td>
<td>Danville</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Updates: 1, 2, 3 of Pediatric Assessment & Sports Related Injuries in School-Age Children</td>
<td>0097-0000-10-027-L04-P</td>
<td>3 (0.3)</td>
<td>Wilkes-Barre</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics 1</td>
<td>0465-0000-12-013-L01-P</td>
<td>1 (0.1)</td>
<td>Orlando</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics 3</td>
<td>0465-0000-12-024-L01-P</td>
<td>1 (0.1)</td>
<td>Orlando</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics for the Non-Pediatric Practitioner: Practicing Evidence-Based Medicine without the Evidence</td>
<td>0204-0000-10-256-L04-P</td>
<td>1.75 (0.175)</td>
<td>Anaheim</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics Part I</td>
<td>0163-9999-12-088-L01-P</td>
<td>1 (0.1)</td>
<td>Gainesville</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Program Name</td>
<td>Code</td>
<td>credit hours</td>
<td>City</td>
<td>knowledge</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Pediatrics Part II</td>
<td>0163-9999-12-093-L01-P</td>
<td>1 (0.1)</td>
<td>Gainesville</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics Primer</td>
<td>0178-0000-11-013-L04-P</td>
<td>1.5 (0.15)</td>
<td>Destin</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics Primer</td>
<td>0178-0000-11-013-L04-T</td>
<td>1.5 (0.15)</td>
<td>Destin</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatrics: How to Knock ’em Out and Lock ’em Out</td>
<td>0204-0000-11-227-L01-P</td>
<td>2.5 (0.25)</td>
<td>New Orleans</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Personal and Organizational Greatness</td>
<td>0180-0000-10-204-L04-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Personal and Organizational Greatness</td>
<td>0180-0000-10-204-L04-T</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Perturbations in Blood Glucose: Causes and Concerns</td>
<td>0263-0000-11-257-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pharmacist Development, General Workshop</td>
<td>0180-0000-10-026-L04-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pharmacist Development, General Workshop</td>
<td>0180-0000-10-026-L04-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pharmacist in ED</td>
<td>0180-0000-09-122-L01-P</td>
<td>2 (0.2)</td>
<td>Cleveland</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pharmacist Role in SIDS Risk Reduction</td>
<td>0282-9999-11-011-L05-P</td>
<td>1 (0.1)</td>
<td>Casper, WY 307-688-6009</td>
<td>Knowledge</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education

20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109

Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Program Title</th>
<th>Course Code</th>
<th>Credits (Hours)</th>
<th>City</th>
<th>Knowledge Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacist Validation of Doses Outside Smart Pump Limits</td>
<td>0180-0000-09-129-L04-P</td>
<td>0.25 (0.025)</td>
<td>Cleveland</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pharmacist’s involvement in Multi-Centered, Clinical Trials in a Pediatric Hospital</td>
<td>0180-0000-11-024-L04-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pharmacogenomics-Applications in Pediatric Oncology</td>
<td>0180-0000-11-002-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pharmacology of New Agents in Pediatric Oncology</td>
<td>0180-0000-11-015-L01-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pharmacy Practice Pearls</td>
<td>0144-9999-12-017-L01-P</td>
<td>1 (0.1)</td>
<td>Ocean City / 410-727-0746</td>
<td>Knowledge 0144 - Maryland Pharmacy Continuing Education Coordinating Council</td>
</tr>
<tr>
<td>Pharmacy Practice Pearls</td>
<td>0144-9999-12-017-L01-T</td>
<td>1 (0.1)</td>
<td>Ocean City / 410-727-0746</td>
<td>Knowledge 0144 - Maryland Pharmacy Continuing Education Coordinating Council</td>
</tr>
<tr>
<td>Physiological and Pharmacokinetic Differences between Adults and Children</td>
<td>0173-0000-12-006-L04-P</td>
<td>1 (0.1)</td>
<td>Boise, 208-342-2581</td>
<td>Knowledge 0173 - Idaho Society of Health-System Pharmacists</td>
</tr>
<tr>
<td>PK/PD</td>
<td>0180-0000-09-112-L01-P</td>
<td>1.5 (0.15)</td>
<td>Cleveland</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>PK/PD differences in infants and children with Acyanotic and Cyanotic Congenital Heart Disease</td>
<td>0180-0000-11-031-L01-P</td>
<td>1.5 (0.15)</td>
<td>Memphis</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0485-0000-12-004-L01-P</td>
<td>1.5 (0.15)</td>
<td>Orlando mad-id-11th-annual-meeting</td>
<td>Knowledge 0485 - MAD-ID, Inc.</td>
</tr>
<tr>
<td>PPHN: Causes, Care and Controversies</td>
<td>0263-0000-09-099-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge 0263 - Contemporary Forums</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109

Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Preceptor Development: Mentorship</th>
<th>0180-0000-11-025-L04-P</th>
<th>1.5 (0.15)</th>
<th>Memphis</th>
<th>Knowledge</th>
<th>0180 - Pediatric Pharmacy Advocacy Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors of Hepatotoxicity in Pediatric Patients Receiving Voriconazole</td>
<td>0180-0000-12-117-L04-P</td>
<td>0.25 (0.025)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Prevailing Ethical Issues in Neonatal Care: Viability and Other Challenges</td>
<td>0263-0000-09-094-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Preventing Infectious Diseases: Update on Pediatric Vaccines</td>
<td>0053-0000-11-029-L01-P</td>
<td>1 (0.1)</td>
<td>Oklahoma City</td>
<td>Knowledge</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
</tr>
<tr>
<td>Preventing Infectious Diseases: Update on Pediatric Vaccines</td>
<td>0053-0000-11-029-L01-P</td>
<td>1 (0.1)</td>
<td>Tulsa</td>
<td>Knowledge</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
</tr>
<tr>
<td>Pro-Calci what? (Procalcitonin Use in Infectious Disease)</td>
<td>0180-0000-12-107-L01-P</td>
<td>0.25 (0.025)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Pumps, Pens, & Other Devices</td>
<td>0180-0000-09-103-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Reducing the Burden of RSV Infection through Recommended Prevention and Treatment</td>
<td>0022-9999-10-009-L01-P</td>
<td>1 (0.1)</td>
<td>Dallas/Fort Worth TBD</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Reducing the Burden of RSV Infection through Recommended Prevention and Treatment</td>
<td>0022-9999-10-009-L01-P</td>
<td>1 (0.1)</td>
<td>Los Angeles Wilshire Hotel</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Reducing the Burden of RSV Infection through Recommended Prevention and Treatment</td>
<td>0022-9999-10-009-L01-P</td>
<td>1 (0.1)</td>
<td>NYC, TBD</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
<td>Credit Hours</td>
<td>Location</td>
<td>Type</td>
<td>Institution</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Reducing the Burden of RSV Infection through Recommended Prevention and Treatment</td>
<td>0022-9999-10-009-L01-P</td>
<td>1 (0.1)</td>
<td>Orlando Peabody Hotel</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Reducing the Burden of RSV Infection through Recommended Prevention and Treatment</td>
<td>0022-9999-10-009-L01-P</td>
<td>1 (0.1)</td>
<td>Philadelphia TBD</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Reducing the Burden of RSV Infection through Recommended Prevention and Treatment</td>
<td>0022-9999-10-009-L01-P</td>
<td>1 (0.1)</td>
<td>Washington, TBD</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Reducing your Infection Rate and Risk: A Total Body Approach</td>
<td>0263-0000-09-088-L04-P</td>
<td>1.5 (0.15)</td>
<td>San Francisco</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Relationship of caffeine dosing with serum alkaline phosphatase levels in extremely low birth-weight infants</td>
<td>0180-0000-11-020-L01-P</td>
<td>0.25 (0.025)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Research Workshop: How to Get Your Residency Project Done in One Year</td>
<td>0180-0000-10-028-L04-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Research Workshop: How to Get Your Residency Project Done in One Year</td>
<td>0180-0000-10-028-L04-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Research Workshop: Pharmacogenomics Impact on Pediatric Pharmacy Practice</td>
<td>0180-0000-10-012-L04-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Research Workshop: Pharmacogenomics Impact on Pediatric Pharmacy Practice</td>
<td>0180-0000-10-012-L04-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Residency Project Pearls (2)</td>
<td>0053-9999-12-032-L01-P</td>
<td>1 (0.1)</td>
<td>Tulsa</td>
<td>Knowledge</td>
<td>0053 - University of Oklahoma College of Pharmacy</td>
</tr>
<tr>
<td>Resuscitation and RSI Pharmacotherapy - Level 1 (PICU)</td>
<td>0180-0000-10-001-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Resuscitation and RSI Pharmacotherapy - Level 1 (PICU)</td>
<td>0180-0000-10-001-L01-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Topic</td>
<td>Code</td>
<td>Credits</td>
<td>Location</td>
<td>Type</td>
<td>Institution</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Safety First: The In?s and Out?s of Medications in Pediatrics</td>
<td>0088-9999-11-041-L01-P</td>
<td>1 (0.1)</td>
<td>Myrtle Beach</td>
<td>Knowledge</td>
<td>0088 - Campbell University College of Pharmacy and Health Sciences</td>
</tr>
<tr>
<td>SCCM11: Year in Review Pediatrics</td>
<td>0294-9999-11-101-L04-P</td>
<td>0.5 (0.05)</td>
<td>Roanoke</td>
<td>Knowledge</td>
<td>0294 - VCU School of Pharmacy, Office of Continuing Education</td>
</tr>
<tr>
<td>Selection of Antibiotics, Dosing and Length of Therapy</td>
<td>0180-0000-10-036-L01-P</td>
<td>0.5 (0.05)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Sepsis and Septic Shock</td>
<td>0180-0000-10-025-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Shots for Tots: A Pharmacist's Refresher</td>
<td>0060-9999-11-031-L04-P</td>
<td>1 (0.1)</td>
<td>Bar Harbor</td>
<td>Knowledge</td>
<td>0060 - University of Rhode Island College of Pharmacy</td>
</tr>
<tr>
<td>Shots for Tots: A Pharmacist's Refresher</td>
<td>0060-9999-11-031-L04-T</td>
<td>1 (0.1)</td>
<td>Bar Harbor</td>
<td>Knowledge</td>
<td>0060 - University of Rhode Island College of Pharmacy</td>
</tr>
<tr>
<td>Should Kernicterus Be a "Never Event"?</td>
<td>0263-0000-11-251-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Sickle Cell Workshop</td>
<td>0180-0000-10-210-L04-P</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Sickle Cell Workshop</td>
<td>0180-0000-10-210-L04-T</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Simplifying Leadership Complexities in Pediatric Pharmacy Patient Care</td>
<td>0180-0000-09-111-L04-P</td>
<td>2 (0.2)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Skin Breakdown and Wound Care in the NICU Patient</td>
<td>0263-0000-11-256-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Solid Organ Transplant ? Long Term Considerations</td>
<td>0180-0000-10-214-L04-P</td>
<td>1.5 (0.15)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>P.L.A.N. Search Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accreditation Council for Pharmacy Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Title</th>
<th>Code</th>
<th>Hours</th>
<th>Location</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Organ Transplant ? Long Term Considerations</td>
<td>0180-0000-10-214-L04-T</td>
<td>1.5</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Successful Mentoring: Students, Residents, New Practitioners</td>
<td>0180-0000-12-126-L04-P</td>
<td>1.5</td>
<td>Houston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Super Session: Clinical Microbiology Review</td>
<td>0180-0000-10-031-L01-P</td>
<td>1</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Super Session: Clinical Microbiology Review</td>
<td>0180-0000-10-031-L01-T</td>
<td>1</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The 411 on New Drugs in 2011</td>
<td>0414-0000-11-214-L01-P</td>
<td>1</td>
<td>Wingate</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Art and Science of Transition - Transition Nuts & Bolts</td>
<td>0453-9999-12-116-L01-P</td>
<td>1.5</td>
<td>Boston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Art and Science of Transition - Transition: Collaboration</td>
<td>0453-9999-12-117-L01-P</td>
<td>1.5</td>
<td>Boston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Childhood Cancer Survivor Study: Defining Risks Among Long-term Survivors</td>
<td>0180-0000-11-004-L04-P</td>
<td>1.5</td>
<td>Memphis</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Complexity of Transplant Care-Partnering with the Medical</td>
<td>0453-9999-12-126-L01-P</td>
<td>1.5</td>
<td>Boston</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Fetus & Newborn: State-of-the-Art Care - Day 3</td>
<td>0263-0000-11-260-L01-P</td>
<td>4.25</td>
<td>Las Vegas</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Impact of a Pharmacist-Managed RSV Prevention Clinic on Palivizumab Compliance and RSV</td>
<td>0180-0000-10-009-L01-P</td>
<td>1</td>
<td>St. Charles</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Late Preterm</td>
<td>0263-0000-11-250-L01-P</td>
<td>1.5</td>
<td>Las Vegas</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Late Pre-Term Infant</td>
<td>0018-9999-11-140-L04-P</td>
<td>1</td>
<td>Lafayette</td>
<td>Knowledge</td>
</tr>
</tbody>
</table>

Solid Organ Transplant ? Long Term Considerations

- **Code:** 0180-0000-10-214-L04-T
- **Hours:** 1.5
- **Location:** Salt Lake City
- **Type:** Knowledge

Successful Mentoring: Students, Residents, New Practitioners

- **Code:** 0180-0000-12-126-L04-P
- **Hours:** 1.5
- **Location:** Houston
- **Type:** Knowledge

Super Session: Clinical Microbiology Review

- **Code:** 0180-0000-10-031-L01-P
- **Hours:** 1
- **Location:** St. Charles
- **Type:** Knowledge
- **Code:** 0180-0000-10-031-L01-T
- **Hours:** 1
- **Location:** St. Charles
- **Type:** Knowledge

The 411 on New Drugs in 2011

- **Code:** 0414-0000-11-214-L01-P
- **Hours:** 1
- **Location:** Wingate
- **Type:** Knowledge

The Art and Science of Transition - Transition Nuts & Bolts

- **Code:** 0453-9999-12-116-L01-P
- **Hours:** 1.5
- **Location:** Boston
- **Type:** Knowledge

The Art and Science of Transition - Transition: Collaboration

- **Code:** 0453-9999-12-117-L01-P
- **Hours:** 1.5
- **Location:** Boston
- **Type:** Knowledge

The Childhood Cancer Survivor Study: Defining Risks Among Long-term Survivors

- **Code:** 0180-0000-11-004-L04-P
- **Hours:** 1.5
- **Location:** Memphis
- **Type:** Knowledge

The Complexity of Transplant Care-Partnering with the Medical

- **Code:** 0453-9999-12-126-L01-P
- **Hours:** 1.5
- **Location:** Boston
- **Type:** Knowledge

The Fetus & Newborn: State-of-the-Art Care - Day 3

- **Code:** 0263-0000-11-260-L01-P
- **Hours:** 4.25
- **Location:** Las Vegas
- **Type:** Knowledge

The Impact of a Pharmacist-Managed RSV Prevention Clinic on Palivizumab Compliance and RSV

- **Code:** 0180-0000-10-009-L01-P
- **Hours:** 1
- **Location:** St. Charles
- **Type:** Knowledge

The Late Preterm

- **Code:** 0263-0000-11-250-L01-P
- **Hours:** 1.5
- **Location:** Las Vegas
- **Type:** Knowledge

The Late Pre-Term Infant

- **Code:** 0018-9999-11-140-L04-P
- **Hours:** 1
- **Location:** Lafayette
- **Type:** Knowledge
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109
Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<p>| The Late Preterm Infant: A National Epidemic | 0263-0000-09-084-L04-P | 1.5 (0.15) | San Francisco | Knowledge | 0263 - Contemporary Forums |
| The Role of Pediatric School Psychology in Integrated Health Care | 0022-9999-10-155-L01-P | 0.75 (0.075) | Louisville | Knowledge | 0022 - University of Kentucky College of Pharmacy |
| The Skinny of Childhood Obesity and the Cardiovascular Consequences | 0165-0000-10-090-L01-P | 1.5 (0.15) | Orlando | Knowledge | 0165 - Florida Pharmacy Association |
| The Skinny of Childhood Obesity and the Cardiovascular Consequences | 0165-0000-10-090-L01-T | 1.5 (0.15) | Orlando | Knowledge | 0165 - Florida Pharmacy Association |
| The Treatment of Diabetes From Pediatrics to Geriatrics: A Focus on Outpatient and Inpatient Management | 0042-0000-09-015-L01-P | 5 (0.5) | LaGuardia Marriott Hotel, E. Elmhurst | Knowledge | 0042 - Arnold and Marie Schwartz College of Pharmacy and Health Sciences of Long Island University |
| Time to Appropriate Antimicrobial Use for Pediatric Pneumonia | 0180-0000-12-109-L01-P | 0.25 (0.025) | Houston | Knowledge | 0180 - Pediatric Pharmacy Advocacy Group |
| Topics in Pediatric Anticoagulation - General Session | 0180-0000-10-003-L01-P | 1.5 (0.15) | St. Charles | Knowledge | 0180 - Pediatric Pharmacy Advocacy Group |
| Topics in Pediatric Anticoagulation - General Session | 0180-0000-10-003-L01-T | 1.5 (0.15) | St. Charles | Knowledge | 0180 - Pediatric Pharmacy Advocacy Group |
| Transfusion-Based Practices in the NICU: What's the Evidence? | 0263-0000-11-243-L01-P | 1.5 (0.15) | Las Vegas | Knowledge | 0263 - Contemporary Forums |
| Transitioning Points in Students Lives - Navigating the Journey with Diabetes | 0069-0000-11-140-L01-P | 1.5 (0.15) | Las Vegas | Knowledge | 0069 - American Association of Diabetes Educators |
| Treatment of Mycobacterium Infections | 0180-0000-12-105-L01-P | 1.5 (0.15) | Houston | Knowledge | 0180 - Pediatric Pharmacy Advocacy Group |</p>
<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
<th>Score</th>
<th>Location</th>
<th>Knowledge Level</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of Pediatric Asthma</td>
<td>0154-0000-10-222-L01-P</td>
<td>1 (0.1)</td>
<td>Austin</td>
<td>Knowledge</td>
<td>0154 - Texas Pharmacy Association</td>
</tr>
<tr>
<td>Treatment of Pediatric Neurological Disorders</td>
<td>0289-0000-11-044-L01-P</td>
<td>6 (0.6)</td>
<td>Asheville</td>
<td>Knowledge</td>
<td>0289 - PESI HealthCare</td>
</tr>
<tr>
<td>Treatment of Pediatric Neurological Disorders</td>
<td>0289-0000-11-044-L01-P</td>
<td>6 (0.6)</td>
<td>Charleston</td>
<td>Knowledge</td>
<td>0289 - PESI HealthCare</td>
</tr>
<tr>
<td>Treatment of Pediatric Neurological Disorders</td>
<td>0289-0000-11-044-L01-P</td>
<td>6 (0.6)</td>
<td>Frederick</td>
<td>Knowledge</td>
<td>0289 - PESI HealthCare</td>
</tr>
<tr>
<td>Treatment of Pediatric Neurological Disorders</td>
<td>0289-0000-11-044-L01-P</td>
<td>6 (0.6)</td>
<td>Knoxville</td>
<td>Knowledge</td>
<td>0289 - PESI HealthCare</td>
</tr>
<tr>
<td>Treatment of Pediatric Neurological Disorders</td>
<td>0289-0000-11-044-L01-P</td>
<td>6 (0.6)</td>
<td>Morgantown</td>
<td>Knowledge</td>
<td>0289 - PESI HealthCare</td>
</tr>
<tr>
<td>Treatment of Pediatric Neurological Disorders</td>
<td>0289-0000-11-044-L01-P</td>
<td>6 (0.6)</td>
<td>Nashville</td>
<td>Knowledge</td>
<td>0289 - PESI HealthCare</td>
</tr>
<tr>
<td>Treatment of Status Epilepticus</td>
<td>0180-0000-10-201-L01-P</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Treatment of Status Epilepticus</td>
<td>0180-0000-10-201-L01-T</td>
<td>1 (0.1)</td>
<td>Salt Lake City</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Troubled Teenager 101</td>
<td>0007-0000-12-006-L01-P</td>
<td>1.5 (0.15)</td>
<td>Ojai, California</td>
<td>Knowledge</td>
<td>0007 - University of Southern California School of Pharmacy</td>
</tr>
<tr>
<td>Turning Your Clinical Observations into Publications</td>
<td>0180-0000-11-027-L04-P</td>
<td>1 (0.1)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Type 1 Diabetes in Children and Adolescents</td>
<td>0062-9999-11-115-L01-P</td>
<td>1.5 (0.15)</td>
<td>Greenville ((864-560-6265)</td>
<td>Knowledge</td>
<td>0062 - South Carolina College of Pharmacy</td>
</tr>
<tr>
<td>Update in Endocrinology and Metabolism: New Therapies for Obesity, Diabetes and Cardiovascular Disease</td>
<td>0277-0000-09-140-L01-P</td>
<td>8.5 (0.85)</td>
<td>Monterey</td>
<td>Knowledge</td>
<td>0277 - University of California Davis Health System Department of Pharmacy</td>
</tr>
<tr>
<td>Updates in Neonatology: Infant Vaccination and Neonatal Abstinence Syndrome</td>
<td>0112-9999-11-313-L01-P</td>
<td>1 (0.1)</td>
<td>Internet</td>
<td>Knowledge</td>
<td>0112 - Michigan Pharmacists Association</td>
</tr>
<tr>
<td>Updates in Pediatric Self-Care</td>
<td>0046-9999-09-087-L04-P</td>
<td>1.5 (0.15)</td>
<td>Wilmington</td>
<td>Knowledge</td>
<td>0046 - University of North Carolina Eshelman School of Pharmacy</td>
</tr>
<tr>
<td>Updates in Pediatric Self-Care</td>
<td>0046-9999-10-029-L04-P</td>
<td>2 (0.2)</td>
<td>Wilmington</td>
<td>Knowledge</td>
<td>0046 - University of North Carolina Eshelman School of Pharmacy</td>
</tr>
<tr>
<td>Use of Dexmedetomidine for Sedation in Critically Ill Pediatric Patients</td>
<td>0033-0000-09-051-L01-P</td>
<td>1 (0.1)</td>
<td>St. Louis</td>
<td>Knowledge</td>
<td>0033 - St. Louis College of Pharmacy</td>
</tr>
<tr>
<td>Use of subcutaneous catheters for enoxaparin administration</td>
<td>0180-0000-11-019-L04-P</td>
<td>0.25 (0.025)</td>
<td>Memphis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>UVA: Being the Pharmacist at a Pediatric Code</td>
<td>0294-9999-10-128-L04-P</td>
<td>1 (0.1)</td>
<td>Charlottesville</td>
<td>Knowledge</td>
<td>0294 - VCU School of Pharmacy, Office of Continuing Education</td>
</tr>
<tr>
<td>UVA: Don’t You Know that I’m Toxic? A Review of Pediatric Toxic Exposures</td>
<td>0294-9999-11-037-L04-T</td>
<td>1 (0.1)</td>
<td>Charlottesville</td>
<td>Knowledge</td>
<td>0294 - VCU School of Pharmacy, Office of Continuing Education</td>
</tr>
<tr>
<td>Vaccine Update</td>
<td>0180-0000-12-110-L01-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Vaccines in the Neonatal Intensive Care Unit</td>
<td>0180-0000-11-043-L01-P</td>
<td>1 (0.1)</td>
<td>St. Louis</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Validation of a Set of Asthma Illustrations in Children with Chronic Asthma in the Emergency</td>
<td>0180-0000-10-019-L04-P</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Validation of a Set of Asthma Illustrations in Children with Chronic Asthma in the Emergency</td>
<td>0180-0000-10-019-L04-T</td>
<td>0.25 (0.025)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Vancomycin Dosing & Monitoring: Applying the IDSA Guidelines to Pediatric Patients</td>
<td>0180-0000-09-110-L01-P</td>
<td>2 (0.2)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500
Chicago, Illinois 60602-5109
Phone (312) 664-3575
Fax (312) 664-7008
http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Title</th>
<th>Code</th>
<th>Hours</th>
<th>Location</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VASPEN10: The microbiome and probiotics in the pediatric patient</td>
<td>0294-9999-10-153-L01-P</td>
<td>1 (0.1)</td>
<td>Wintergreen</td>
<td>Knowledge</td>
<td>0294 - VCU School of Pharmacy, Office of Continuing Education</td>
</tr>
<tr>
<td>Viability and Ethics</td>
<td>0263-0000-11-252-L01-P</td>
<td>1.5 (0.15)</td>
<td>Las Vegas</td>
<td>Knowledge</td>
<td>0263 - Contemporary Forums</td>
</tr>
<tr>
<td>Warning: Pregnant or Nursing Mom</td>
<td>0180-0000-10-024-L01-P</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Warning: Pregnant or Nursing Mom</td>
<td>0180-0000-10-024-L01-T</td>
<td>1.5 (0.15)</td>
<td>St. Charles</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>What Do I Say Now? OTC Cough & Cold Products in the Pediatric Patient</td>
<td>0278-0000-10-012-L01-P</td>
<td>1 (0.1)</td>
<td>Hampton</td>
<td>Knowledge</td>
<td>0278 - Virginia Pharmaceutical Association</td>
</tr>
<tr>
<td>What the Pharmacist Needs to Know About Pediatric Emergencies</td>
<td>0062-0000-11-137-L01-P</td>
<td>2 (0.2)</td>
<td>Columbia (SCCP Fall Seminar Call 803-777-9979 for</td>
<td>Knowledge</td>
<td>0062 - South Carolina College of Pharmacy</td>
</tr>
<tr>
<td>What’s New with RSV and Palivizumab Usage</td>
<td>0180-0000-09-125-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Yaffe Award Lecture:</td>
<td>0180-0000-09-106-L01-P</td>
<td>1 (0.1)</td>
<td>Cleveland</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>YES! Youth Education and Screening in Primary Care</td>
<td>0022-9999-10-160-L01-P</td>
<td>0.75 (0.075)</td>
<td>Louisville</td>
<td>Knowledge</td>
<td>0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>You Are What You Eat: Guidelines for Adult and Pediatric Nutrition</td>
<td>0202-0000-10-232-L01-P</td>
<td>1 (0.1)</td>
<td>Chattanooga</td>
<td>Knowledge</td>
<td>0202 - American Pharmacists Association</td>
</tr>
<tr>
<td>Support in the Critically Ill</td>
<td>0202-0000-10-232-L01-T</td>
<td>1 (0.1)</td>
<td>Chattanooga</td>
<td>Knowledge</td>
<td>0202 - American Pharmacists Association</td>
</tr>
</tbody>
</table>
Appendix G-4

ACPE PLAN
Programming
Live Forum
Application Activity
P.L.A.N. Search Results

Title	**UAN**	**Hours (CEUs)**	**City**	**Activity Type**	**Provider Information**
"PharmaTECHonomics" Implementing Technology in the Pediatric Setting | 0180-0000-12-121-L04-P | 1 (0.1) | Houston | Application | 0180 - Pediatric Pharmacy Advocacy Group
2011 Oncology Pharmacy Preparatory Review Course | 0217-9999-11-047-L01-P | 23 (2.3) | San Antonio/ www.accp.com | Application | 0217 - American College of Clinical Pharmacy
2012 Oncology Pharmacy Preparatory Review Course: Pediatric Malignancies | 0217-9999-12-065-L01-P | 1.5 (0.15) | Denver/www.accp.com | Application | 0217 - American College of Clinical Pharmacy
Antimicrobial Stewardship Programs: What works and what doesn't | 0180-0000-12-111-L01-P | 1.5 (0.15) | Houston | Application | 0180 - Pediatric Pharmacy Advocacy Group
Application of Adult Vancomycin Guidelines to the Pediatric Population | 0033-0000-09-054-L01-P | 1 (0.1) | St. Louis | Application | 0033 - St. Louis College of Pharmacy
Clinical Considerations for Drug Dosing in Obesity | 0204-0000-10-267-L01-P | 2.5 (0.25) | Anaheim | Application | 0204 - American Society of Health-System Pharmacists
Common Infections in Pediatrics | 0097-0000-09-045-L01-P | 1 (0.1) | Wilkes-Barre | Application | 0097 - Nesbitt School of Pharmacy at Wilkes University
Communication Strategies for Inside and Outside Your Department | 0180-0000-12-131-L04-P | 1.5 (0.15) | Houston | Application | 0180 - Pediatric Pharmacy Advocacy Group
Community Acquired Pneumonia-Evidence for Changes in Practice | 0180-0000-12-101-L01-P | 1 (0.1) | Houston | Application | 0180 - Pediatric Pharmacy Advocacy Group
Controversies in Difficult to Treat Gram-negative Infections | 0180-0000-12-106-L01-P | 1 (0.1) | Houston | Application | 0180 - Pediatric Pharmacy Advocacy Group
Current Concepts in Pediatric Critical Care | 0236-0000-11-01-L04-P | 15 (1.5) | | Application | 0236 - Society of Critical Care Medicine
Decision Support in EMR: How Much is Enough (or Too Much)? | 0180-0000-12-128-L04-P | 1.5 (0.15) | Houston | Application | 0180 - Pediatric Pharmacy Advocacy Group
<table>
<thead>
<tr>
<th>Event Name</th>
<th>Code</th>
<th>Credits (Hours)</th>
<th>Location</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovering and Developing Your Strengths</td>
<td>0180-0000-12-134-L04-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Application</td>
</tr>
<tr>
<td>Fostering Wellness and Safe Nonprescription Medication Use in Pediatric Patients</td>
<td>0202-0000-10-141-L04-P</td>
<td>1.5 (0.15)</td>
<td>Washington</td>
<td>Application</td>
</tr>
<tr>
<td>How Sweet It Is: Sucrose Analgesia in Infants</td>
<td>0112-0000-10-148-L01-P</td>
<td>1.3 (0.13)</td>
<td>Detroit</td>
<td>Application</td>
</tr>
<tr>
<td>How to Be a Great Journal Reviewer</td>
<td>0180-0000-12-123-L04-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Application</td>
</tr>
<tr>
<td>How to Have Successful (and Meaningful) Resident or Student Projects for Your Department</td>
<td>0180-0000-12-136-L04-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Application</td>
</tr>
<tr>
<td>Infections You Thought You Would Never See</td>
<td>0180-0000-12-114-L01-P</td>
<td>1 (0.1)</td>
<td>Houston</td>
<td>Application</td>
</tr>
<tr>
<td>Kids and Drugs: The Changing Landscape of Substance Abuse</td>
<td>0165-0000-10-009-L01-P</td>
<td>2 (0.2)</td>
<td>Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Kids and Drugs: The Changing Landscape of Substance Abuse</td>
<td>0165-0000-10-009-L01-T</td>
<td>2 (0.2)</td>
<td>Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Lifelong Protection: A Focus on Pediatric and Geriatric Vaccinations</td>
<td>0165-0000-10-006-L01-P</td>
<td>1.5 (0.15)</td>
<td>Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Lifelong Protection: A Focus on Pediatric and Geriatric Vaccinations</td>
<td>0165-0000-10-006-L01-T</td>
<td>1.5 (0.15)</td>
<td>Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Managing the Use of Propofol for Procedural Sedation in the Emergency Department</td>
<td>0204-0000-10-274-L01-P</td>
<td>2 (0.2)</td>
<td>Anaheim</td>
<td>Application</td>
</tr>
<tr>
<td>Neuro Workshop</td>
<td>0180-0000-09-113-L01-P</td>
<td>1.5 (0.15)</td>
<td>Cleveland</td>
<td>Application</td>
</tr>
<tr>
<td>New Developments in Pediatric Cardiac Care</td>
<td>0236-0000-11-56-L01-P</td>
<td>1 (0.1)</td>
<td></td>
<td>Application</td>
</tr>
<tr>
<td>Overview of Autism: Definitions and Treatments</td>
<td>0484-0000-09-014-L04-P</td>
<td>3.5 (0.35)</td>
<td>Kenilworth Inn, Kenilworth</td>
<td>Application</td>
</tr>
<tr>
<td>Overview of Autism: Definitions and Treatments</td>
<td>0484-0000-09-014-L04-P</td>
<td>3.5 (0.35)</td>
<td>Woodcliff Lake Hilton, Woodcliff Lake</td>
<td>Application</td>
</tr>
<tr>
<td>Overview of Autism: Definitions and Treatments</td>
<td>0484-0000-09-014-L04-T</td>
<td>3.5 (0.35)</td>
<td>Kenilworth Inn, Kenilworth</td>
<td>Application</td>
</tr>
<tr>
<td>Overview of Autism: Definitions and Treatments</td>
<td>0484-0000-09-014-L04-T</td>
<td>3.5 (0.35)</td>
<td>Woodcliff Lake Hilton, Woodcliff Lake</td>
<td>Application</td>
</tr>
<tr>
<td>Patient and Caregiver Communications for Pediatric and Geriatric Populations</td>
<td>0009-0000-12-030-L04-P</td>
<td>1 (0.1)</td>
<td>Storrs</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric HIV Refresher</td>
<td>0180-0000-12-112-L02-P</td>
<td>1.5 (0.15)</td>
<td>Houston</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Interactive Cases</td>
<td>0236-0000-11-28-L01-P</td>
<td>2 (0.2)</td>
<td></td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Medication Adherence and Counseling</td>
<td>0133-9999-10-016-L04-P</td>
<td>1 (0.1)</td>
<td>New Orleans</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Medication Adherence and Counseling</td>
<td>0133-9999-10-016-L04-T</td>
<td>1 (0.1)</td>
<td>New Orleans</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Pharmacology: A Primer</td>
<td>0097-0000-09-044-L01-P</td>
<td>1 (0.1)</td>
<td>Wilkes-Barre</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Pharmacotherapy Pearls</td>
<td>0163-9999-10-037-L04-P</td>
<td>1 (0.1)</td>
<td>Orlando</td>
<td>Application</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results
Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109
Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Approval</th>
<th>Location</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric Pharmacotherapy Pearls</td>
<td>0163-9999-10-037-L04-T</td>
<td>1 (0.1) Orlando</td>
<td>Application</td>
</tr>
<tr>
<td>PEDIATRIC PHARMACY CLINICAL PEARLS</td>
<td>0163-0000-10-052-L04-T</td>
<td>1 (0.1) Ft. Myers</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Pneumonia Pharmacotherapy</td>
<td>0163-9999-11-174-L01-P</td>
<td>1 (0.1) Orlando</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Pneumonia Pharmacotherapy</td>
<td>0163-9999-11-174-L01-T</td>
<td>1 (0.1) Orlando</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Poisonings: Pearls and Perils</td>
<td>0165-0000-10-010-L01-P</td>
<td>1.5 (0.15) Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric Poisonings: Pearls and Perils</td>
<td>0165-0000-10-010-L01-T</td>
<td>1.5 (0.15) Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatric PRN Focus Session</td>
<td>0217-0000-10-123-L01-P</td>
<td>2 (0.2) Austin, www.accp.com/am</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatrics for the Non-Pediatric Practitioner: Timely Topics in Caring for Tots</td>
<td>0204-0000-11-256-L04-P</td>
<td>1.75 (0.175) New Orleans</td>
<td>Application</td>
</tr>
<tr>
<td>Pediatrics PRN Focus Session</td>
<td>0217-0000-11-082-L01-P</td>
<td>2 (0.2) Pittsburgh -- www.accp.com/am</td>
<td>Application</td>
</tr>
<tr>
<td>Pharmacy Practice Model Initiative</td>
<td>0180-0000-12-130-L04-P</td>
<td>1 (0.1) Houston</td>
<td>Application</td>
</tr>
<tr>
<td>Practice-Based Research Networks</td>
<td>0180-0000-12-122-L04-P</td>
<td>1 (0.1) Houston</td>
<td>Application</td>
</tr>
</tbody>
</table>

Pediatric Pharmacotherapy Pearls

Pediatric Pneumonia Pharmacotherapy

Pediatric Poisonings: Pearls and Perils

Pediatric PRN Focus Session

Pediatrics for the Non-Pediatric Practitioner: Timely Topics in Caring for Tots

Pediatrics PRN Focus Session

Pharmacy Practice Model Initiative

Practice-Based Research Networks
<table>
<thead>
<tr>
<th>Program Description</th>
<th>Code</th>
<th>Credits</th>
<th>City</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy and Lactation</td>
<td>0097-0000-09-043-L01-P</td>
<td>0.1</td>
<td>Wilkes-Barre</td>
<td>Application</td>
</tr>
<tr>
<td>Preventing Medication Errors in Children</td>
<td>0053-0000-11-028-L05-P</td>
<td>0.1</td>
<td>Oklahoma City</td>
<td>Application</td>
</tr>
<tr>
<td>Preventing Medication Errors in Children</td>
<td>0053-0000-11-028-L05-P</td>
<td>0.1</td>
<td>Tulsa</td>
<td>Application</td>
</tr>
<tr>
<td>Promoting Resiliency: Recognizing and Preventing Burnout</td>
<td>0180-0000-12-135-L04-P</td>
<td>0.1</td>
<td>Houston</td>
<td>Application</td>
</tr>
<tr>
<td>Recurrent Infections in Children</td>
<td>0107-0000-11-015-L01-P</td>
<td>0.1</td>
<td>Des Moines</td>
<td>Application</td>
</tr>
<tr>
<td>Responding to Pediatric Poisonings</td>
<td>0097-0000-09-046-L01-P</td>
<td>0.1</td>
<td>Wilkes-Barre</td>
<td>Application</td>
</tr>
<tr>
<td>Small People in Big Trouble: Pharmacotherapy of Common Pediatric Emergencies</td>
<td>0163-9999-10-138-L01-P</td>
<td>0.1</td>
<td>Jacksonville</td>
<td>Application</td>
</tr>
<tr>
<td>Small People in Big Trouble: Pharmacotherapy of Common Pediatric Emergencies</td>
<td>0163-9999-10-138-L01-T</td>
<td>0.1</td>
<td>Jacksonville</td>
<td>Application</td>
</tr>
<tr>
<td>Sniffling, Sneezing and Coughing: Best OTC Treatments for Pediatrics</td>
<td>0053-0000-11-031-L01-P</td>
<td>0.1</td>
<td>Oklahoma City</td>
<td>Application</td>
</tr>
<tr>
<td>Sniffling, Sneezing and Coughing: Best OTC Treatments for Pediatrics</td>
<td>0053-0000-11-031-L01-P</td>
<td>0.1</td>
<td>Tulsa</td>
<td>Application</td>
</tr>
<tr>
<td>Special Considerations in Pediatric Patients</td>
<td>0165-0000-10-008-L01-P</td>
<td>0.1</td>
<td>Tampa</td>
<td>Application</td>
</tr>
<tr>
<td>Special Considerations in Pediatric Patients</td>
<td>0165-0000-10-008-L01-T</td>
<td>1 (0.1)</td>
<td>0165 - Florida Pharmacy Association</td>
<td></td>
</tr>
<tr>
<td>Statistical Process Control: What It Is and Why You Should Be Using It</td>
<td>0180-0000-12-133-L04-P</td>
<td>1.5 (0.15)</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>Symposium on Coagulation and Cardiovascular: Pediatric Hemostasis</td>
<td>0294-9999-11-044-L01-P</td>
<td>1 (0.1)</td>
<td>0294 - VCU School of Pharmacy, Office of Continuing Education</td>
<td></td>
</tr>
<tr>
<td>The Emergence of Adolescent and Young Adult Oncology</td>
<td>0465-9999-12-028-L01-P</td>
<td>1 (0.1)</td>
<td>0465 - Hematology/Oncology Pharmacy Association (HOPA)</td>
<td></td>
</tr>
<tr>
<td>The Pharmacotherapy Preparatory Review and Recertification Course -- Pediatrics, Geriatrics, and</td>
<td>0217-0000-11-013-L01-P</td>
<td>3 (0.3)</td>
<td>0217 - American College of Clinical Pharmacy</td>
<td></td>
</tr>
<tr>
<td>The Pharmacotherapy Preparatory Review and Recertification Course -- Pediatrics, Geriatrics, and</td>
<td>0217-0000-12-019-L01-P</td>
<td>3 (0.3)</td>
<td>0217 - American College of Clinical Pharmacy</td>
<td></td>
</tr>
<tr>
<td>The Ripple Effect: Systems-Level Interventions to Ameliorate Pediatric</td>
<td>0451-0000-12-010-L04-P</td>
<td>1.5 (0.15)</td>
<td>0451 - American Pain Society</td>
<td></td>
</tr>
<tr>
<td>Treatment Controversies in Pediatric Pharmacotherapy: RSV, Antiepileptic Agents, and Dexmedetomidine</td>
<td>0204-0000-10-245-L04-P</td>
<td>2.5 (0.25)</td>
<td>0204 - American Society of Health-System Pharmacists</td>
<td></td>
</tr>
<tr>
<td>Treatment of Gastrointestinal Infectious in the Pediatric Patient</td>
<td>0180-0000-12-104-L01-P</td>
<td>1.5 (0.15)</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>What Makes a Great Residency Program</td>
<td>0180-0000-12-129-L04-P</td>
<td>1.5 (0.15)</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
<td></td>
</tr>
<tr>
<td>What?s New in Pediatric Sepsis?</td>
<td>0236-0000-11-16-L04-P</td>
<td>1 (0.1)</td>
<td>0236 - Society of Critical Care Medicine</td>
<td></td>
</tr>
<tr>
<td>Year in Review: Pediatrics</td>
<td>0236-0000-11-72-L01-P</td>
<td>1 (0.1)</td>
<td>0236 - Society of Critical Care Medicine</td>
<td></td>
</tr>
</tbody>
</table>
Appendix G-5

ACPE PLAN
Programming
Home Study
Knowledge Activity
P.L.A.N. Search Results

Accreditation Council for Pharmacy
Education
20 North Clark Street, Suite 2500
Chicago, Illinois 60602-5109
Phone (312) 664-3575
Fax (312) 664-7008
http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Title</th>
<th>UAN</th>
<th>Hours (CEUs)</th>
<th>Activity Type</th>
<th>Provider Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAP: Big Jump in Knee Injuries in Kids (29069)</td>
<td>0052-9999-11-2293-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: CPR Yields Low in Hospitalized Kids With CVD (29053)</td>
<td>0052-9999-11-2301-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: Don’t Use Sensory Disorder Diagnosis (33018)</td>
<td>0052-9999-12-1306-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: Gun Injuries in Kids Up Sharply (29103)</td>
<td>0052-9999-11-2295-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: Low Back Pain in Kids Rarely Serious (29064)</td>
<td>0052-9999-11-2297-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: More Kids Going to ED for Psych Care (29057)</td>
<td>0052-9999-11-2300-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: Need to Re-Do Circumcision Rises, Reasons Unclear (29075)</td>
<td>0052-9999-11-2315-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: New SIDS Guideline Says No to Bumper Pads (29091)</td>
<td>0052-9999-11-2318-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: One Course of Spinosad Exterminates Lice, Nits (29065)</td>
<td>0052-9999-11-2296-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: SIDS Messages Miss the Mark for Some Parents (29070)</td>
<td>0052-9999-11-2291-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>AAP: Urinary Stones in Kids on the Rise (29119)</td>
<td>0052-9999-11-2337-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Access: Enteral and Parenteral</td>
<td>0180-0000-10-100-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>ACNP: Mom’s Baby Blues Linked to Child’s Psych Issues (30110)</td>
<td>0052-9999-11-2871-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Active Video Games No Fix for Kids’ Fitness (31374)</td>
<td>0052-9999-12-464-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Acupuncture Safe for Kids (29817)</td>
<td>0052-9999-11-2719-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Adolescent Issues</td>
<td>0180-0000-09-115-H04-P</td>
<td>1.5 (0.15)</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Adults No Drain on Pediatric Heart Centers (29121)</td>
<td>0052-9999-11-2366-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
<td>Credit</td>
<td>Type</td>
<td>Institution</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Agents of Change: Systems and Strategies to Address Family, Social, and Developmental Needs in the Type 1 Pediatric Populations</td>
<td>0069-9999-11-207-H01-P</td>
<td>1.5 (0.15)</td>
<td>Knowledge</td>
<td>P.L.A.N. - AACR</td>
</tr>
<tr>
<td>Air Pollution Tied to Behavior Issues in Kids (31791)</td>
<td>0052-9999-12-682-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>ASBMR: Exercise Builds Kids' Bones, Insulin Sensitivity (28687)</td>
<td>0052-9999-11-2096-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Assessment and Diagnosis of Pediatric Pain</td>
<td>0530-0000-10-052-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0530 - Global Education Group</td>
</tr>
<tr>
<td>Autism Drags on Family's Earning Power (31708)</td>
<td>0052-9999-12-634-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Autism May Have Link to Low Birth Weight (29068)</td>
<td>0052-9999-11-2292-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Autistic Children Slower to Integrate Multiple Stimuli (21789)</td>
<td>0052-9999-10-1631-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Autistic Youth Face Hardship in Post-School Years (32661)</td>
<td>0052-9999-12-1096-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Baby-Led Weaning Improves Food Choices Later (31059)</td>
<td>0052-9999-12-310-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Baby's Flat Head Rarely Requires Helmet, Surgery (29948)</td>
<td>0052-9999-11-2783-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>BCPP Examination Review and Recertification Course-Pediatric Psychiatric Issues or Disorders Usually First Diagnosed in</td>
<td>0284-0000-12-037-H01-P</td>
<td>1.5 (0.15)</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Binky, Sippy Cup Can be Source of Trip to the ER (32662)</td>
<td>0052-9999-12-1095-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Birth Certificate Problematic With International Adoption (30373)</td>
<td>0052-9999-11-3018-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Birth Control and ADHD Meds Top Rx for Kids (33321)</td>
<td>0052-9999-12-1430-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Breast Diseases May Manifest in Young Drinkers (32080)</td>
<td>0052-9999-12-821-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>‘Breastfeed Only’ Goal Missed by Many New Moms (33029)</td>
<td>0052-9999-12-1310-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Breastfeeding Is ‘Health, Not Lifestyle’ Choice (31444)</td>
<td>0052-9999-12-499-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Breastfeeding Linked to Better Lung Function (31011)</td>
<td>0052-9999-12-296-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
<td>Score</td>
<td>Type</td>
<td>Link</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Caffeine Benefits for Preemies Mostly Gone by Age 5 (30715)</td>
<td>0052-9999-12-152-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Chemotherapy Safety for You and the Patient</td>
<td>0180-0000-09-114-H01-P</td>
<td>1.5</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Chewing Gum Cuts Ear Infection Risk in Kids (29564)</td>
<td>0052-9999-11-2573-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Child Abuse in One Year Costs Billions in Long Run (31002)</td>
<td>0052-9999-12-300-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Child Safety Takes a Back Seat During Carpooling (30910)</td>
<td>0052-9999-12-236-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Childhood Type 2 Diabetes:</td>
<td>0372-0000-11-009-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0372 - Rx School</td>
</tr>
<tr>
<td>Childhood Type 2 Diabetes:</td>
<td>0372-0000-11-009-H01-T</td>
<td>1</td>
<td>Knowledge</td>
<td>0372 - Rx School</td>
</tr>
<tr>
<td>Choking for Fun Tied to Other Dicey Teen Acts (32188)</td>
<td>0052-9999-12-872-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Clinical and Economic Considerations in the Use of Inhaled Anesthesia from the Perspective of Health-System Pharmacists and</td>
<td>0204-0000-10-414-H01-P</td>
<td>2</td>
<td>Knowledge</td>
<td>0204 - American Society of Health-System Pharmacists</td>
</tr>
<tr>
<td>Clinical Lecture 1: The Role of Biologics in Pediatric Rheumatology</td>
<td>0180-0000-09-107-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Clinical Lecture I: Medication Use during ECMO and Continuous Renal</td>
<td>0180-0000-09-119-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Clinical Lecture II: Management of Pediatric Chemical Casualties: Are We Prepared?</td>
<td>0180-0000-09-108-H04-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Combating Childhood Obesity</td>
<td>0826-9999-10-028-H01-P</td>
<td>3</td>
<td>Knowledge</td>
<td>0826 - MED2000, Inc.</td>
</tr>
<tr>
<td>Combating Childhood Obesity</td>
<td>0826-9999-10-028-H01-T</td>
<td>3</td>
<td>Knowledge</td>
<td>0826 - MED2000, Inc.</td>
</tr>
<tr>
<td>Combo Tx Checks Blood Sugar in Diabetic Kids (32412)</td>
<td>0052-9999-12-975-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Community Care Keeps Autistic Kids Out of Hospital (30483)</td>
<td>0052-9999-12-021-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Concussion Symptoms Linger in Kids (31501)</td>
<td>0052-9999-12-543-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Topic</td>
<td>Code</td>
<td>Weight</td>
<td>Type</td>
<td>Source</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Confronting the Challenges of Neonatal and Pediatric Medication Safety</td>
<td>0761-0000-12-006-H05-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0761 - Educational Review Systems, Inc.</td>
</tr>
<tr>
<td>Confronting the Challenges of Neonatal and Pediatric Medication Safety</td>
<td>0761-0000-12-006-H05-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0761 - Educational Review Systems, Inc.</td>
</tr>
<tr>
<td>Consequences in Not Treating Pain in Children</td>
<td>0530-0000-10-053-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0530 - Global Education Group</td>
</tr>
<tr>
<td>CPNP 2010 BCPP Literature Analysis: Childhood Anxiety and Generalized Anxiety</td>
<td>0284-0000-10-024-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Current Best Evidence for Education in the Type 2 Pediatric Population</td>
<td>0069-0000-11-149-H01-P</td>
<td>1.5 (0.15)</td>
<td>Knowledge</td>
<td>0069 - American Association of Diabetes Educators</td>
</tr>
<tr>
<td>Current Issues in the Management of Pediatric patients with Cystic Fibrosis: Update 2009</td>
<td>0180-0000-09-126-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Deaf Kids Benefit from Implants in Both Ears (30709)</td>
<td>0052-9999-12-133-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Depressed Dads May Foster Troubled Kids (29473)</td>
<td>0052-9999-11-2510-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Diagnosis of Autism Hit or Miss Along the Spectrum (29490)</td>
<td>0052-9999-11-2527-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Dispensing Pediatric Antibiotic Suspensions</td>
<td>0422-0000-11-410-H01-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0422 - Pharmacist's Letter Therapeutic Research Center</td>
</tr>
<tr>
<td>DKA & HHS</td>
<td>0180-0000-09-100-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Drug May Protect Kids After Stem Cell Transplant (31333)</td>
<td>0052-9999-12-456-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Early Cochlear Implant Best for Deaf Kids (30498)</td>
<td>0052-9999-12-023-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Extreme Dosing in CF: Aminoglycodies</td>
<td>0180-0000-10-103-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy
20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109
Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Title</th>
<th>Code Number</th>
<th>Score</th>
<th>Knowledge Category</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Dosing in Overweight/Obese Children - Focus on DVT Prophylaxis</td>
<td>0180-0000-10-105-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Extreme Dosing: Case Studies in Pediatric Transplantation</td>
<td>0180-0000-10-104-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Facebook Posts Can ID Problem Drinkers (28856)</td>
<td>0052-9999-11-2203-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Factors Predict Post-NICU Death in Tiniest Babies (31098)</td>
<td>0052-9999-12-341-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Fewer Drownings Among Kids, Teens (30673)</td>
<td>0052-9999-12-112-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Fewer Newborns Being Circumcised (28374)</td>
<td>0052-9999-11-1937-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Frequent Moves as Kid Take Toll Later (31135)</td>
<td>0052-9999-12-363-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Gender Uncertainty Risky for Kids (31268)</td>
<td>0052-9999-12-427-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Genetic Epidemiology of Early-Onset Depression and Alcohol Use Disorders</td>
<td>0284-0000-10-014-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Global Infant Mortality Ranking Called Compromised (31250)</td>
<td>0052-9999-12-418-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Go Slow With Drug Tx for Addicted Newborns (30924)</td>
<td>0052-9999-12-249-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>H. Pylori Not a Factor in Adenoid Hyperplasia in Kids (29096)</td>
<td>0052-9999-11-2331-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Hard Times Lead to Hard Knocks for Kids (28587)</td>
<td>0052-9999-11-2028-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Health Risks as Kids High for 'Old' Preemies (31454)</td>
<td>0052-9999-12-507-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Helms Award</td>
<td>0180-0000-09-118-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>High School Kids Report Early Pain Pill Abuse (32557)</td>
<td>0052-9999-12-1042-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Hormone Effect May Be Why Boys Talk Later than Girls (30890)</td>
<td>0052-9999-12-230-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Hospital Volume Linked to Care of Stomach Flu in Kids (28364)</td>
<td>0052-9999-11-1917-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
<td>Score</td>
<td>Type</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Hospitalized Kids Often Receive Multiple Meds (28362)</td>
<td>0052-9999-11-1921-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Hot Topics</td>
<td>0180-0000-09-124-H04-P</td>
<td>2</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>HSV Drug Boosts Babies’ Mental Progress (28896)</td>
<td>0052-9999-11-2222-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Hypothermia Cut Deaths in Infant Encephalopathy (32990)</td>
<td>0052-9999-12-1283-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Idiopathic Chronic Pain Syndromes in Children</td>
<td>0530-0000-10-111-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0530 - Global Education Group</td>
</tr>
<tr>
<td>In a World of Their Own: Diagnosis and Treatment of Autism</td>
<td>0284-0000-10-002-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Infant Brain Yields Autism Clues (30875)</td>
<td>0052-9999-12-226-H05-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Infectious Disease - CAMRSA</td>
<td>0180-0000-09-120-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Injury Rates from Stairs Tumble but Kids Still at Risk (31606)</td>
<td>0052-9999-12-612-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Iron in Formula No Help for Babies With High Hbg (29501)</td>
<td>0052-9999-11-2538-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Irritability and Elation: The Consequences of Thinking about Pediatric Bipolar Disorder and Severe Mood Dysregulation</td>
<td>0284-9999-11-014-H04-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Keynote Address: National Commission on Children & Disasters</td>
<td>0180-0000-09-105-H04-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Kids’ Cognition May be Harmed by Fired Up Cartoons (28455)</td>
<td>0052-9999-11-1967-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Kids’ Language Skills Tied to Mom’s Vitamin D (31145)</td>
<td>0052-9999-12-355-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Kids Overlooked for Inclusion in Drug Trials (32406)</td>
<td>0052-9999-12-979-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Kids Still Getting Too Many Antibiotics (29470)</td>
<td>0052-9999-11-2511-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Kids Who Survive Cancer at Risk Later, Too (33063)</td>
<td>0052-9999-12-1319-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Item Description</td>
<td>Code</td>
<td>Weight</td>
<td>Knowledge</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lead Exposure High in Refugee Camps (30676)</td>
<td>0052-9999-12-111-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Lipitor No Help in Kids With SLE (30470)</td>
<td>0052-9999-12-016-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Long Pregnancy Tied to Kids’ Behavior Issues (32488)</td>
<td>0052-9999-12-1019-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Long Term Effect of In-Utero Exposure to Psychotropic Medications</td>
<td>0284-0000-10-008-H05-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>Management of Chronic Daily Headache in Children</td>
<td>0530-0000-10-110-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0530 - Global Education Group</td>
</tr>
<tr>
<td>Management of Diabetes, Type I</td>
<td>0180-0000-09-102-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Management of Diabetes, Type II</td>
<td>0180-0000-09-104-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Medical Home Model Serves Children Well (30290)</td>
<td>0052-9999-11-2958-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Mom’s Meth Use May Affect Kids’ Behavior (31704)</td>
<td>0052-9999-12-636-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Moms Often Blind to Toddler’s Weight (32555)</td>
<td>0052-9999-12-1044-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Mortality High in Native Alaskan Infants (30646)</td>
<td>0052-9999-12-101-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Narcotics/Sedation/NAS, etc.</td>
<td>0180-0000-09-123-H01-P</td>
<td>1</td>
<td>Knowledge</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Neuro Impairment Among Kids More Common (30751)</td>
<td>0052-9999-12-162-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>No Outdoor Play for Many Kids (31977)</td>
<td>0052-9999-12-782-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Older Dads Likely to Sire ‘Couch Potato’ Kids (33445)</td>
<td>0052-9999-12-1492-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>OTC Medications for Children with Allergies: A Review for Pharmacy Technicians</td>
<td>0422-0000-12-404-H01-T</td>
<td>1</td>
<td>Knowledge</td>
<td>0422 - Pharmacist’s Letter Therapeutic Research Center</td>
</tr>
</tbody>
</table>

P.L.A.N. Search Results

Accreditation Council for Pharmacy

20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109

Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org
<table>
<thead>
<tr>
<th>Title</th>
<th>Code</th>
<th>Level</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTC Options for Treating Pediatric Allergic Rhinitis</td>
<td>0422-0000-12-205-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pain Management in Babies and Children: Practical Considerations for Pharmacy Technicians</td>
<td>0422-0000-10-403-H01-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pandemic Response Strategies</td>
<td>0022-0000-12-017-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Parasite Duo to Blame in Infant Toxoplasmosis (32184)</td>
<td>0052-9999-12-874-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-Based Competency: Anatomic and Physiologic Differences Between Children and</td>
<td>0180-0000-11-500-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-Based Competency: Anatomic and Physiologic Differences Between Children and</td>
<td>0180-0000-11-500-H01-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-Based Competency: Fluids, Electrolytes, and Dehydration in Children</td>
<td>0180-0000-11-502-H01-P</td>
<td>0.75 (0.075)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-Based Competency: Fluids, Electrolytes, and Dehydration in Children</td>
<td>0180-0000-11-502-H01-T</td>
<td>0.75 (0.075)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-based Competency: Pharmacokinetic Differences between Children and Adults</td>
<td>0180-0000-11-501-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-based Competency: Pharmacokinetic Differences between Children and Adults</td>
<td>0180-0000-11-501-H01-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Aged-Based Competency: Physiologic and Pharmacokinetic Differences in Children, Fluids and</td>
<td>0180-0000-11-040-H01-P</td>
<td>2.5 (0.25)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Asthma: A Disease and Treatment Review for Technicians</td>
<td>0422-0000-11-407-H01-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
<td>Score</td>
<td>Domain</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Pediatric Asthma: Disease Review and Treatment</td>
<td>0422-0000-11-209-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Medication Safety: The Physician and Pharmacist Perspective</td>
<td>0761-9999-11-081-H05-P</td>
<td>1.5 (0.15)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Parental Nutrition</td>
<td>0180-0000-10-101-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy Practice: An Introduction for Pharmacists</td>
<td>0422-0000-11-205-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pediatric Pharmacy: An Introduction for Pharmacy Technicians</td>
<td>0422-0000-11-404-H04-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Peer Counseling Helps Parents and Kids (31679)</td>
<td>0052-9999-12-625-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pharmacy's Role in the Fight Against Childhood Obesity</td>
<td>0422-0000-10-319-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Pharmacy's Role in the Fight Against Childhood Obesity</td>
<td>0422-0000-10-319-H04-T</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Physical Child Abuse Sends Thousands to Hospitals (31022)</td>
<td>0052-9999-12-289-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Planning and Coordination for Child-Focused Pandemic Response</td>
<td>0022-0000-12-014-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Play Ball, but Be Safe, Say Pediatricians (31376)</td>
<td>0052-9999-12-463-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Playgrounds Too Safe to Keep Little Kids Active (30493)</td>
<td>0052-9999-12-026-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Playtime is More than Fun and Games (30390)</td>
<td>0052-9999-11-3017-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
</tr>
</tbody>
</table>
Practical Considerations for Pediatric Pain Management

<table>
<thead>
<tr>
<th>Title</th>
<th>Code Number</th>
<th>Score (Knowledge)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preemies Breathe Easier With Less Invasive Therapy (28827)</td>
<td>0052-9999-11-2191-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Preemies Have Higher Mortality Risk as Young Adults (28639)</td>
<td>0052-9999-11-2067-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Prevention and Management of RSV Bronchiolitis</td>
<td>0096-0000-09-033-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge 0096 - Texas Tech University Health Sciences Center School of Pharmacy</td>
</tr>
<tr>
<td>Program Puts Smackdown on Bullying (31040)</td>
<td>0052-9999-12-303-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Pulse-Ox Works as Heart Defect Screen (32460)</td>
<td>0052-9999-12-1003-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Pumps, Pens, & Other Devices</td>
<td>0180-0000-09-103-H01-P</td>
<td>1 (0.1)</td>
<td>Knowledge 0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Repeat Anesthesia for Tots May Lead to Learning Disabilities</td>
<td>0052-9999-11-2184-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Repeat UTI in Kids May Not Up Risk of Kidney Disease (28962)</td>
<td>0052-9999-11-2256-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Risk Communication for Child-Focused Pandemic Response</td>
<td>0022-0000-12-015-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge 0022 - University of Kentucky College of Pharmacy</td>
</tr>
<tr>
<td>Roaoke Carillon: Pediatric Advanced Life Support: What Pharmacists Need to Know</td>
<td>0294-9999-11-126-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge 0294 - VCU School of Pharmacy, Office of Continuing Education</td>
</tr>
<tr>
<td>Second-Hand Smoke Worsens Asthma in Kids (32430)</td>
<td>0052-9999-12-991-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge 0052 - Projects In Knowledge, Inc.</td>
</tr>
<tr>
<td>Self Assessment Online Module V V.2: Considerations in Nutrition Support of the Pediatric Patient</td>
<td>0216-0000-10-075-H01-P</td>
<td>2 (0.2)</td>
<td>Knowledge 0216 - American Society for Parenteral and Enteral Nutrition, Inc.</td>
</tr>
<tr>
<td>Title</td>
<td>Record Number</td>
<td>Cost</td>
<td>Type</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Sexting’ Not Very Widespread Among Kids, Teens (30009)</td>
<td>0052-9999-11-2798-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Shhh! The Kids Need More Sleep -- Or Do They? (31143)</td>
<td>0052-9999-12-356-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Short or Long, Parents Like Well-Child Visits (28568)</td>
<td>0052-9999-11-2027-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Shy Teens May Be More than Wallflowers (29073)</td>
<td>0052-9999-11-2290-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Sids Risk Reduction: A Continuing Education Program for Pharmacists</td>
<td>0144-9999-11-027-H04-P</td>
<td>1.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Signs of Autism Show Up on MRI at 6 Months of Age (31242)</td>
<td>0052-9999-12-409-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Ski Helmets Not Best for Sledding (30826)</td>
<td>0052-9999-12-196-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Snoring Tots More Likely to Turn into Troubled Kids (31477)</td>
<td>0052-9999-12-512-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Social Ties Move Kids to Exercise (32951)</td>
<td>0052-9999-12-1272-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Some Autistic Kids Make Gains as Late 'Bloomers' (31963)</td>
<td>0052-9999-12-770-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Soy Formula Has No Effect on Baby's Cognition (32960)</td>
<td>0052-9999-12-1280-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Spanking No Help in Child-Rearing (31030)</td>
<td>0052-9999-12-285-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Study Shows Even Little Kids Can Be Cutters (33184)</td>
<td>0052-9999-12-1382-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Teen Binging Tied to Drinking on Silver Screen (31484)</td>
<td>0052-9999-12-511-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Teens Drink, Smoke Less in 'Caring' Communities (28891)</td>
<td>0052-9999-11-2227-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Texting May Turn Teens Off Alcohol (30285)</td>
<td>0052-9999-11-2962-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The ABCs of OTCs in Children</td>
<td>0096-0000-10-056-H04-P</td>
<td>1 (0.1)</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
<td>Value</td>
<td>Category</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>The Prevention and Treatment of Whooping Cough</td>
<td>0430-0000-11-006-H01-P</td>
<td>2</td>
<td>Knowledge</td>
</tr>
<tr>
<td>The Terrible Twos: Type 2 Diabetes in Children</td>
<td>0096-0000-10-069-H01-P</td>
<td>1</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Title: Over-the-counter Treatment of Pediatric Allergic Rhinitis: Review of Traditional and Natural Approaches</td>
<td>0430-0000-11-021-H01-P</td>
<td>2</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Transitioning Points in Students Lives - Navigating the Journey with Diabetes</td>
<td>0069-0000-11-140-H01-P</td>
<td>1.5</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Treatment of Otitis Media</td>
<td>0430-0000-10-042-H01-P</td>
<td>2</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Truancy Signals Depression in Kids (30364)</td>
<td>0052-9999-11-3006-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>TV Ads Linked to Unhealthy Diets in Young Adults (32408)</td>
<td>0052-9999-12-977-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>UPdated Clinical Practice Guideline on the Management of Head Lice Infestation in Children</td>
<td>0144-9999-11-075-H01-P</td>
<td>1</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Urine Odor Signals UTI in Infants (31966)</td>
<td>0052-9999-12-768-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Vitamin D Not Tied to School Performance (32143)</td>
<td>0052-9999-12-852-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Workforce Development and Care in Pandemic Planning</td>
<td>0022-0000-12-016-H04-P</td>
<td>1</td>
<td>Knowledge</td>
</tr>
<tr>
<td>World's Smallest Newborns Still Small, but Fine (30185)</td>
<td>0052-9999-11-2899-H04-P</td>
<td>0.25</td>
<td>Knowledge</td>
</tr>
</tbody>
</table>
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education
20 North Clark Street, Suite 2500
Chicago, Illinois 60602-5109
Phone (312) 664-3575
Fax (312) 664-7008
http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Yaffe Award Lecture:</th>
<th>0180-0000-09-108-H01-P</th>
<th>1 (0.1)</th>
<th>Knowledge</th>
<th>0180 - Pediatric Pharmacy Advocacy Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yanking Adenoids Won't Cut Colds in Kids (28379)</td>
<td>0052-9999-11-1941-H04-P</td>
<td>0.25 (0.025)</td>
<td>Knowledge</td>
<td>0052 - Projects In Knowledge, Inc.</td>
</tr>
</tbody>
</table>
Appendix G-6

ACPE PLAN Programming Home Study Application Activity
P.L.A.N. Search Results

Accreditation Council for Pharmacy Education

20 North Clark Street, Suite 2500 Chicago, Illinois 60602-5109

Phone (312) 664-3575 Fax (312) 664-7008 http://www.acpe-accredit.org

<table>
<thead>
<tr>
<th>Title</th>
<th>UAN</th>
<th>Hours (CEUs)</th>
<th>Activity Type</th>
<th>Provider Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 Oncology Pharmacy Preparatory Review Course for Home Study and Other Cancers</td>
<td>0217-9999-11-042-H01-P</td>
<td>8.75 (0.675)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>2012 BCPP Recertification Literature Analysis</td>
<td>0284-0000-12-053-H01-P</td>
<td>1.5 (0.15)</td>
<td>Application</td>
<td>0284 - College of Psychiatric and Neurologic Pharmacists</td>
</tr>
<tr>
<td>2012 Oncology Pharmacy Preparatory Review Course for Home Study and Other Cancers</td>
<td>0217-9999-12-035-H01-P</td>
<td>7.25 (0.725)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>Approach to the Pediatric Prescription in a Community Pharmacy</td>
<td>0180-0000-12-001-H01-P</td>
<td>1 (0.1)</td>
<td>Application</td>
<td>0180 - Pediatric Pharmacy Advocacy Group</td>
</tr>
<tr>
<td>Medication Treatment Alternatives for Autism Spectrum Disorders</td>
<td>0798-0000-10-006-H01-P</td>
<td>1.25 (0.125)</td>
<td>Application</td>
<td>0798 - PharmCon, Inc.</td>
</tr>
<tr>
<td>Medication Treatment Alternatives for Autism Spectrum Disorders</td>
<td>0798-0000-10-006-H01-T</td>
<td>1.25 (0.125)</td>
<td>Application</td>
<td>0798 - PharmCon, Inc.</td>
</tr>
<tr>
<td>PSAP VII -- Pediatrics, I</td>
<td>0217-0000-10-010-H01-P</td>
<td>5 (0.5)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>PSAP VII -- Pediatrics, II</td>
<td>0217-0000-10-011-H01-P</td>
<td>6 (0.6)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>PSAP VII -- Pediatrics, III</td>
<td>0217-0000-10-012-H01-P</td>
<td>5 (0.5)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>The Pharmacotherapy Preparatory Review and Recertification Course -- Pediatrics, Geriatrics, and</td>
<td>0217-0000-11-013-H01-P</td>
<td>3 (0.3)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
<tr>
<td>The Pharmacotherapy Preparatory Review and Recertification Course -- Pediatrics, Geriatrics, and</td>
<td>0217-0000-12-019-H01-P</td>
<td>3 (0.3)</td>
<td>Application</td>
<td>0217 - American College of Clinical Pharmacy</td>
</tr>
</tbody>
</table>
Appendix G-7

Sample Educational Program Materials
18th Pediatric Pharmacy Conference Educational Handouts

The 18th Pediatric Pharmacy Conference and PPAG Annual Meeting is a paper-lite conference. We encourage you to bring your laptop computers to view your handouts during each lecture. "Re-charging" stations will be available throughout the lecture ballroom. We also encourage you to print any materials you need PRIOR to coming to the Conference.

Important Conference Downloads:

- Session Learning Objectives
- Printable Agenda with Room Assignments
- Document of Attendance and Conference evaluation
- Below, session handouts are linked to the Presentation title. Please note: If there is no link, we have not yet received materials from the speaker.

<table>
<thead>
<tr>
<th>Thursday, September 24, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Conference Symposium: Diabetes, Aged-based Competencies for Pediatric Pharmacists</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>12:30-1:30 pm</td>
</tr>
<tr>
<td>1:30-2:30 pm</td>
</tr>
<tr>
<td>2:30-2:45 pm</td>
</tr>
<tr>
<td>2:45-3:45 pm</td>
</tr>
<tr>
<td>3:45-4:45 pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18th Pediatric Pharmacy Conference and PPAG Annual Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>4:45-5:00 pm</td>
</tr>
<tr>
<td>5:00-6:00 pm</td>
</tr>
<tr>
<td>6:00-6:30 pm</td>
</tr>
<tr>
<td>6:30-8:00 pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Friday, September 25, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>7:00am-5:00pm</td>
</tr>
<tr>
<td>7:00-8:00am</td>
</tr>
<tr>
<td>8:00-9:00am</td>
</tr>
<tr>
<td>9:00-10:00am</td>
</tr>
<tr>
<td>10:00-10:15am</td>
</tr>
<tr>
<td>10:15-11:15am</td>
</tr>
<tr>
<td>11:15-12:15pm</td>
</tr>
</tbody>
</table>

11/20/2012
Workshops

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
<th>Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:15am - 12:15pm</td>
<td>Workshops</td>
<td>Research: Grant Writing</td>
<td>Michael Reed, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advocacy: Vancomycin Dosing & Monitoring: Applying the IDSA Guidelines to Pediatric Patients</td>
<td>Kristin Klein, PharmD & Jennifer Girotto, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership: Simplifying Leadership Complexities in Pediatric Pharmacy Patient Care</td>
<td>John Clark, PharmD</td>
</tr>
<tr>
<td>2:00 - 3:30 pm</td>
<td>Clinical Workshops</td>
<td>PK/PD</td>
<td>Marc Scheetz, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neuro/Vaccine Safety</td>
<td>Lizbeth Hansen, PharmD & Johanna Goldfarb, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handout 1</td>
<td>Handout 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oncology/Chemo Safety</td>
<td>William Humphrey, PharmD</td>
</tr>
<tr>
<td>3:30 - 3:45 pm</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:45 - 5:15 pm</td>
<td>Super Session</td>
<td>Adolescent Issues</td>
<td>Veenod Chulani, MD</td>
</tr>
<tr>
<td>6:00 - 7:30 pm</td>
<td>Dinner Symposium</td>
<td>What's New with RSV and Palivizumab Usage (Funded by MedImmune)</td>
<td>James Dice, PharmD</td>
</tr>
<tr>
<td>7:45 - 9:30 pm</td>
<td>Exhibition and Dessert Reception</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saturday, September 26, 2009

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation Type</th>
<th>Presentation Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00am - 5:00 pm</td>
<td>Registration Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00 - 8:00 am</td>
<td>Breakfast Pearls</td>
<td>Extreme Dosing (CF, Renal, Obesity, ELBW)</td>
<td>Peter Johnson, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handout 1</td>
<td>Handout 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handout 3</td>
<td>Heidi Hoopingarner, PharmD</td>
</tr>
<tr>
<td>8:00 - 9:00 pm</td>
<td>Scientific Platform Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Marcia Buck</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Jared Cash</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Ralph Lugo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 - 11:30 am</td>
<td>Scientific and Practice Poster Sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30am - 1:00 pm</td>
<td>PPAG Town Hall Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 - 2:00 pm</td>
<td>Helms Award Lecture</td>
<td></td>
<td>Milap Nahata, PharmD</td>
</tr>
<tr>
<td>2:00 - 2:15 pm</td>
<td>Research Awards Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:15 - 2:30 pm</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30 - 3:30 pm</td>
<td>Lecture</td>
<td>ECMO</td>
<td>Brenda Dodson, PharmD</td>
</tr>
<tr>
<td>3:30 - 4:30 pm</td>
<td>Lecture</td>
<td>Infectious Disease - CAMRSA</td>
<td>Kristin Klein, PharmD</td>
</tr>
<tr>
<td>2:30 - 4:30 pm</td>
<td>Workshops</td>
<td>Research: Meta-Analysis</td>
<td>Craig Coleman, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advocacy: Vancomycin Dosing & Monitoring: Applying the IDSA Guidelines to Pediatric Patients</td>
<td>Kristin Klein, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leadership: Pharmacists in ED</td>
<td>Christopher Shaffer, PharmD</td>
</tr>
<tr>
<td>Time</td>
<td>Presentation Type</td>
<td>Presentation Title</td>
<td>Presentation Speaker</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>7:00-10:00 am</td>
<td>Breakfast Pearls</td>
<td>Narcotics/Sedation/NAS</td>
<td>Mary Temple Cooper, PharmD</td>
</tr>
<tr>
<td>8:00-9:30 am</td>
<td>Clinical Workshops</td>
<td>PK/PD</td>
<td>Marc Scheetz, PharmD</td>
</tr>
<tr>
<td></td>
<td>(Repeat)</td>
<td>Neuro/Vaccine Safety</td>
<td>Elizabeth Hanson, PharmD &</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Johanna Goldfarb, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oncology/Chemo Safety</td>
<td>William Humphrey, PharmD</td>
</tr>
<tr>
<td>9:40-11:40 am</td>
<td>Super Session</td>
<td>Hot Topics</td>
<td>Jeffrey Ceis, PharmD and Betsy Walters, PharmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handout 1</td>
<td>Handout 2</td>
</tr>
</tbody>
</table>
2010 Pediatric Pharmacy Conference | 19th PPAG Annual Meeting

Agenda and Schedule

St. Charles Convention Center
October 7-10, 2010

Thursday, October 7, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic and Speaker</th>
<th>Room Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30am-7:00pm</td>
<td>Registration Desk Open</td>
<td>Grand Ballroom D Foyer</td>
</tr>
</tbody>
</table>
| 7:00am-1:00pm | **Pre-Conference Symposium**
Beyond the Basics
Funded in part by: Abbott Pharmaceutical Products Division and Gilead Healthcare | Grand Ballroom D Foyer|
| 7:00-7:30am | Preconference Breakfast (for preconference participants only) | Grand Ballroom AB |
| 7:30-7:35am | Overview and Introduction | Grand Ballroom AB |
| 7:35-8:05am | **CF: Current Challenges and Implications for Drug Therapy** | Grand Ballroom AB |
| 8:05-8:40am | **Pancreatic Enzymes, Vitamins and the Liver** | Grand Ballroom AB |
| 8:40-9:15am | **Selection of Antibiotics, Dosing and Length of Therapy** | Grand Ballroom AB |
| 9:15-9:30am | Break | Grand Ballroom AB |
| 9:30-10:15am | **How To Do Continuous Infusion Antibiotics: Lessons Learned** | Grand Ballroom AB |
| 10:15-10:50am | **Aerosol Drug Therapy in CF; Current Status** | Grand Ballroom AB |
| 10:50-11:30am | Case Reviews; Panel Question and Answer | Grand Ballroom AB |
| 11:30 am-1:00pm | Lunch (for Preconference participants only) | Grand Ballroom D2-D3 |
| 11:30am-1:00pm | New Practitioner Networking Lunch | Meeting Room 103 |

19th Pediatric Pharmacy Conference and Annual Meeting Begins

<table>
<thead>
<tr>
<th>Time</th>
<th>Level 1 – PICU</th>
<th>Level 2 – NICU</th>
</tr>
</thead>
</table>
| 1:30-3:00pm | **Resuscitation and RSI Pharmacotherapy** | **Neonatal Abstinence Syndrome**
Melissa Hunt, PharmD | Peter Gal, PharmD |
| | **Anticoagulation in Pediatric Patients** | Cyrine Haidar, PharmD |
| 3:00-3:15pm | Break | |
| 3:15-4:45pm | **Pediatric ICU: An Approach to the Complicated Patient** | **Neonatal Circulatory Support**
Kelly Kopec, PharmD | Christopher McPherson, PharmD |
| | **Management of Pediatric Pulmonary Hypertension** | Cyrtney Rogers, PharmD |
| 4:45-5:00pm | Break | |
| 5:00-6:00pm | **Keynote Address** | |
| | James Broselow, MD | Grand Ballroom AB |
| 6:00-6:30pm | **PPAG Fellows in Pediatric Pharmacy Advocacy Group (FPPAG) Ceremony** | |
| | Richard Helms, PharmD, FPPAG | Grand Ballroom AB |
| | Robert Kuhn, PharmD, FPPAG | |
| 6:30-7:30pm | **Opening Reception in honor of Fellows** | |

Level 1 programs provide a review of current practices in the topic identified and are appropriate for both new practitioners and those seeking to update their knowledge base.

Level 2 programs provide an advanced review of the identified topic and new developments in the field. Level 2 programs are appropriate for the advanced level practitioner.
<table>
<thead>
<tr>
<th>Time</th>
<th>Topic and Speaker</th>
<th>Room Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30am-7:30pm</td>
<td>Registration Desk Open</td>
<td>Grand Ballroom D Foyer</td>
</tr>
<tr>
<td>7:30am-9:30am</td>
<td>Continental Breakfast Snacks</td>
<td>Grand Ballroom AB Foyer</td>
</tr>
<tr>
<td>8:00-9:00am</td>
<td>Summer J. Yaffe Award Lecture Michael Reed, PharmD</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>9:00-10:00am</td>
<td>Best Practice Award Presentation The Impact of a Pharmacist-Managed RSV Prevention Clinic on Palivizumab Compliance and RSV Associated Hospitalization Jennifer Chow, PharmD</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>10:00-10:15am</td>
<td>Break</td>
<td>Grand Ballroom AB Foyer</td>
</tr>
<tr>
<td>10:15-11:45am</td>
<td>Research Wrkshp Pharmacogenomics Impact on Pediatric Pharmacy Practice Mary Kennedy, PharmD</td>
<td>Junior Ballroom B</td>
</tr>
<tr>
<td></td>
<td>Advocacy Wrkshp Healthcare Reform: Pharmacy and Advocacy John McGlew, MA</td>
<td>Junior Ballroom C</td>
</tr>
<tr>
<td></td>
<td>Academia Wrkshp The Changing Face of the Pediatric Faculty Member – Faculty Panel Discussion Lea Eiland, PharmD; Sherry Luedtke, PharmD; Timothy Todd, PharmD; and Rachel Meyers, PharmD</td>
<td>Junior Ballroom D</td>
</tr>
<tr>
<td>12:00-2:00pm</td>
<td>Lunch and Committee Meetings</td>
<td>Grand Ballroom CD</td>
</tr>
<tr>
<td>2:00-3:00pm</td>
<td>Super Session Fetal Care Ed Yang, MD</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>3:15-4:00pm</td>
<td>PPAG Special Interest Group (SIG) Interest Meeting</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>4:30-7:30pm</td>
<td>Hospital Tours (must be preregistered to participate) St. Johns Mercy Children's Hospital / Ranken Jordan Children's Rehabilitation Hospital</td>
<td>Meet in Hotel Lobby</td>
</tr>
<tr>
<td></td>
<td>Exhibits and PPAG Celebration! Reception</td>
<td>Grand Ballroom CD and Foyer</td>
</tr>
</tbody>
</table>

Our Sponsors and Exhibitors
Saturday, October 9, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic and Speaker</th>
<th>Room Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00am-5:00pm</td>
<td>Registration Desk Open</td>
<td>Grand Ballroom D</td>
</tr>
<tr>
<td>7:30-9:30am</td>
<td>Continental Breakfast Snacks</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>8:00-9:00am</td>
<td>Clinical Pearls: Changing Times: Updates from the World of Poisonings</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td></td>
<td>Rebecca Tominack, MD</td>
<td></td>
</tr>
<tr>
<td>9:00-10:00am</td>
<td>Scientific Platform Presentations</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td></td>
<td>Evaluation of Vancomycin Dosing for Complicated Infections in Pediatric Patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spencer Durham, PharmD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validation of a Set of Asthma Illustrations in Children with Chronic Asthma in the Emergency Department</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td></td>
<td>Danica Irwin, B.Sc.Phm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Argatroban and lepirudin Utilization in a Pediatric Population: A Five Year Experience</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emma Thone, PharmD Candidate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eicosapentaenoic Acid Attenuates Bile Acid-Induced Apoptosis Via the Fas and TRAIL-R2 Death Receptors in HepG2 Cells</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td></td>
<td>Emma Tillman, PharmD</td>
<td></td>
</tr>
<tr>
<td>10:00-12:00pm</td>
<td>Scientific and Practice Poster Session</td>
<td>Grand Ballroom ABCD</td>
</tr>
<tr>
<td>12:00-2:00pm</td>
<td>PPAG Town Hall Lunch</td>
<td>Grand Ballroom CD</td>
</tr>
<tr>
<td>2:00-3:00pm</td>
<td>Richard A. Helms Award Lecture</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>3:00-3:15pm</td>
<td>Research Awards Presentations</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>3:15-3:30pm</td>
<td>Break</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>3:30-5:00pm</td>
<td>Level 1 – NICU</td>
<td>Junior Ballroom B</td>
</tr>
<tr>
<td></td>
<td>Kendall’s Journey: A Case Approach to Fluid, Electrolyte, Nutrition Management in a Preemie</td>
<td>Junior Ballroom B</td>
</tr>
<tr>
<td></td>
<td>Rita Chrivia, RD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 2 – PICU</td>
<td>Junior Ballroom C</td>
</tr>
<tr>
<td></td>
<td>Dosing in ECMO and CRRT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rita Jew, PharmD and Morgan Cole, PharmD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Wkshp</td>
<td>Junior Ballroom D</td>
</tr>
<tr>
<td></td>
<td>Cerebral Palsy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mary Worthington, PharmD</td>
<td></td>
</tr>
<tr>
<td>5:00-5:15pm</td>
<td>Break</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>5:15-6:45pm</td>
<td>Level 1 – NICU</td>
<td>Junior Ballroom B</td>
</tr>
<tr>
<td></td>
<td>Warning: Pregnant or Nursing Mom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carla Christensen, PharmD and Kay Kyllonen, PharmD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 2 – PICU</td>
<td>Junior Ballroom C</td>
</tr>
<tr>
<td></td>
<td>Management of Pediatric Septic Shock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kara Kriiska, PharmD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Wkshp</td>
<td>Junior Ballroom D</td>
</tr>
<tr>
<td></td>
<td>Pharmacist Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melissa Heigham, PharmD</td>
<td></td>
</tr>
<tr>
<td>11:00am-12:00pm</td>
<td>Super Session</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td></td>
<td>Pediatric Clinical Microbiology Update</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David Hunstad, MD and Carey-Ann Burnham, PhD</td>
<td></td>
</tr>
</tbody>
</table>

Sunday, October 10, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30am-12:00pm</td>
<td>Registration Desk Open</td>
<td>Grand Ballroom D</td>
</tr>
<tr>
<td>8:00-9:00am</td>
<td>Clinical Pearls</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>9:00-9:15am</td>
<td>Break</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td>9:15-10:45am</td>
<td>Research Wkshp</td>
<td>Junior Ballroom B</td>
</tr>
<tr>
<td></td>
<td>How to get Your Residency Research Project Done in One Year</td>
<td>Elizabeth Farrington, PharmD; Bob Kuhn, PharmD; and Emma Tillman, PharmD</td>
</tr>
<tr>
<td>9:15-10:45am</td>
<td>Advocacy Wkshp</td>
<td>Junior Ballroom C</td>
</tr>
<tr>
<td></td>
<td>Getting Involved in Child Health Initiatives at the Local and International Levels</td>
<td>Tracy Hagemann, PharmD; Brooke Honey, PharmD; and Peter Johnson, PharmD</td>
</tr>
<tr>
<td>9:15-10:45am</td>
<td>Management Wkshp</td>
<td>Junior Ballroom D</td>
</tr>
<tr>
<td></td>
<td>Pediatric Electronic Medical Record</td>
<td>Beth Carberry, MBA</td>
</tr>
<tr>
<td>11:00am-12:00pm</td>
<td>Super Session</td>
<td>Grand Ballroom AB</td>
</tr>
<tr>
<td></td>
<td>Pediatric Clinical Microbiology Update</td>
<td></td>
</tr>
</tbody>
</table>
PPAG CELEBRATION 2010

In honor of our members, donors, and volunteers

October 8, 2010
4:30 pm
St. Charles Convention Center
Grand Ballroom Foyer
Friday, April 16, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Conference Symposium: Pediatric Core Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00-2:00pm</td>
<td>General Overview of Epilepsy</td>
<td>Kim Tallian, PharmD</td>
</tr>
<tr>
<td>2:00-3:00pm</td>
<td>Treatment of Status Epilepticus</td>
<td>Elizabeth Farrington, PharmD</td>
</tr>
<tr>
<td>3:00-3:15pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:15-4:15pm</td>
<td>Adverse Effects of Antiepileptic Medications</td>
<td>Stephanie Phelps, PharmD</td>
</tr>
<tr>
<td>4:15-5:15pm</td>
<td>Application of Pharmacogenomics to the Treatment of the Patient with Epilepsy</td>
<td>Collin Hovinga, PharmD</td>
</tr>
<tr>
<td>6:00-7:30pm</td>
<td>Keynote Address</td>
<td>Stephen Covey</td>
</tr>
<tr>
<td>7:30-9:00pm</td>
<td>Opening Reception</td>
<td></td>
</tr>
</tbody>
</table>

Saturday, April 17, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00-8:00am</td>
<td>Antidepressants and Antipsychotics in Youth: do the Benefits Outweigh the Risks?</td>
<td>Julie Dopheide, PharmD</td>
</tr>
<tr>
<td>8:00-9:00am</td>
<td>Our Patients Can't Afford Their Medications - What Happens Now?</td>
<td>Kristin Fox-Smith, PharmD</td>
</tr>
<tr>
<td>9:00-9:15am</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>9:15-10:15am</td>
<td>Cultural Diversity and Me References</td>
<td>Helen Fiechtner, PharmD</td>
</tr>
<tr>
<td>10:15-11:15am</td>
<td>Chronic Dermatology</td>
<td>Kim Benner, PharmD</td>
</tr>
<tr>
<td>11:15-12:30pm</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>12:30-2:00pm</td>
<td>Sickle Cell Workshop</td>
<td>Tracy Hagemann, PharmD</td>
</tr>
<tr>
<td>12:30-2:00pm</td>
<td>Medication Adherence Workshop</td>
<td>Jim Thigpen, PharmD</td>
</tr>
<tr>
<td>2:00-2:15pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:15-4:00pm</td>
<td>Residency Project Presentations</td>
<td>Various</td>
</tr>
<tr>
<td>4:00-5:30pm</td>
<td>Sickle Cell Workshop</td>
<td>Tracy Hagemann, PharmD</td>
</tr>
<tr>
<td>4:00-5:30pm</td>
<td>Medication Adherence Workshop</td>
<td>Jim Thigpen, PharmD</td>
</tr>
</tbody>
</table>

Sunday, April 18, 2010

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-9:00am</td>
<td>Hemophilia Workshop</td>
<td>Hassan Yaish, MD</td>
</tr>
<tr>
<td>9:00-10:30am</td>
<td>Incorporating Pharmaceutical Care into Pediatric HIV</td>
<td>Leslie Briars, PharmD</td>
</tr>
<tr>
<td>9:00-10:30am</td>
<td>Solid Organ Transplant – Long Term Considerations</td>
<td>Sabrina Boehme, PharmD</td>
</tr>
<tr>
<td>10:30-10:45am</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:45-12:15pm</td>
<td>Incorporating Pharmaceutical Care into Pediatric HIV</td>
<td>Leslie Briars, PharmD</td>
</tr>
<tr>
<td>10:45-12:15pm</td>
<td>Solid Organ Transplant – Long Term Considerations</td>
<td>Sabrina Boehme, PharmD</td>
</tr>
</tbody>
</table>
20th Pediatric Pharmacy Conference HANDOUTS

Wednesday, March 16, 2011 Handouts

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Workshop</th>
<th>CEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am – 4:00 pm</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>9:00 am – 10:00 am</td>
<td>General Session
Pharmacogenomics-Applications in Pediatric Oncology
0180-0000-11-002-L04-P; 0.1 CEU</td>
<td></td>
</tr>
<tr>
<td>10:00 am - 11:30 pm</td>
<td>Level 1 Small Session/Workshop
A Review of Antiemetic Therapy used for Chemotherapy Induced Nausea and Vomiting
0180-0000-11-003-L01-P; 0.15 CEU</td>
<td></td>
</tr>
<tr>
<td>11:30 am – 1:00 pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1:00 pm – 2:30 pm</td>
<td>Level 1 Small Session/Workshop
Basics of Bone Marrow Transplant
0180-0000-11-005-L04-P; 0.15 CEU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 2 Small Session/Workshop
The Childhood Cancer Survivor Study: Defining Risks Among Long-term Survivors
0180-0000-11-004-L04-P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 2 Small Session/Workshop
Anti-fungal Prophylaxis and Treatment Considerations in Neutropenic Patients
0180-0000-11-006-L01-P; 0.15 CEU</td>
<td></td>
</tr>
</tbody>
</table>

Thursday, March 17, 2011 Handouts

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Workshop</th>
<th>CEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am – 4:00 pm</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>8:00 am – 9:00 am</td>
<td>Clinical Pearls with Continental Breakfast
1. Glucarpidase for Methotrexate Toxicity
0180-0000-11-007-L01-P; 0.025 CEU
2. Drug Adherence in Adolescents
0180-0000-11-008-L04-P; 0.025 CEU
3. Eculizumab in Paroxysmal Nocturnal Hemoglobinuria
0180-0000-11-009-L01-P; 0.025 CEU</td>
<td></td>
</tr>
<tr>
<td>9:00 am – 10:30 am</td>
<td>Level 1 Small Session/Workshop
Palliative Care Advances in Pediatric Oncology
0180-0000-11-010-L04-P; 0.15 CEU</td>
<td></td>
</tr>
<tr>
<td>10:30 am - 12:00 pm</td>
<td>Level 1 Small Session/Workshop
Venous Thromboembolism in Children with Cancer
0180-0000-012-L01-P; 0.15 CEU</td>
<td></td>
</tr>
<tr>
<td>12:00 pm – 1:30 pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1:30 pm – 2:30 pm</td>
<td>General Session
Chemotherapy Safety-Processes and Technology
0180-0000-014-L04-P; 0.1 CEU</td>
<td></td>
</tr>
<tr>
<td>2:30 pm - 3:30 pm</td>
<td>General Session
Pharmacology of New Agents in Pediatric Oncology
0180-0000-015-L01-P; 0.1 CEU</td>
<td></td>
</tr>
<tr>
<td>3:30 pm - 4:30 pm</td>
<td>Keynote Address
How a Tennessee Pharmacist Became CEO of the World's #1 Pediatric Cancer Hospital
0180-0000-016-L04-P; 0.1 CEU</td>
<td></td>
</tr>
<tr>
<td>4:30 pm - 6:30 pm</td>
<td>Live at St. Jude Children's Research Hospital (and Reception)
0180-0000-017-L04-P; 0.1 CEU</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7:00 am – 4:00 pm</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>7:00 am – 8:00 am</td>
<td>Continental Breakfast</td>
<td></td>
</tr>
</tbody>
</table>
| 8:00 am – 9:00 am | **Sumner J. Yaffe Award Lecture and Presentation**
| | 0180-0000-11-018-L04-P |
| | **Scientific Platform Presentations** |
| | **Use of subcutaneous catheters for enoxaparin administration** |
| | 0180-0000-11-019-L04-P (0.025 CEU) |
| | **Relationship of caffeine dosing with serum alkaline phosphatase levels in extremely low birth-weight infants** |
| | 0180-0000-11-020-L01-P |
| 9:00 am – 10:00 am | **Evaluation of the Incidence of Parenteral Nutrition-Associated Liver Disease in Infants Requiring Long-term Parenteral Nutrition** |
| | 0180-0000-11-021-L01-P |
| 10:00 am – 12:00 pm | **Scientific and Best Practice Poster Session** |
| | Sponsored by [Lexi-Comp](#) |
| 12:00 pm – 1:30 pm | **PPAG Fellows Program and Lunch** |
| | **PPAG Town Hall** |
| 1:30 pm – 2:30 pm | **Helms Award Lecture and Presentation** |
| | 0180-0000-11-022-L04-P |
| 2:30 pm – 3:30 pm | **Committee Meetings** |
| 3:45 pm – 5:30 pm | **Pediatric Pharmacy Resident Presentations** NEW |
| | **Advocacy Workshop** |
| | **Cultural Considerations in Clinical Practice** |
| | 0180-0000-11-023-L04-P (0.015 CEU) |
| | **Research Workshop** |
| | **Pharmacist’s involvement in Multi-Centered, Clinical Trials in a Pediatric Hospital** |
| | Handout 1 |
| | **Pharmacist’s involvement in Multi-Centered, Clinical Trials in a Pediatric Hospital** |
| | Handout 2 NEW |
| | 0180-0000-11-024-L04-P |
| | **Teaching Leadership Workshop** |
| | **Preceptor Development: Mentorship** |
| | 0180-0000-11-025-L04-P |
| 5:30 pm – 6:45 pm | **Networking Reception and Exhibition** |
| 6:45 pm – 7:45 pm | **Advocacy Workshop** |
| | **Cultural Considerations in Clinical Practice** |
| | 0180-0000-11-023-L04-P (0.015 CEU) |
| | **Research Workshop** |
| | **Pharmacist’s involvement in Multi-Centered, Clinical Trials in a Pediatric Hospital** |
| | Handout 1 |
| | **Pharmacist’s involvement in Multi-Centered, Clinical Trials in a Pediatric Hospital** |
| | Handout 2 NEW |
| | 0180-0000-11-024-L04-P |
| | **Teaching Leadership Workshop** |
| | **Preceptor Development: Mentorship** |
| | 0180-0000-11-025-L04-P |
| | **Networking Reception and Exhibition** |
Saturday, March 19, 2011 Handouts

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am – 4:00 pm</td>
<td>Registration</td>
</tr>
<tr>
<td>8:00 am – 9:00 am</td>
<td>General Session
Off-Label Drug Use in Pediatric Patients: How Can We Change the System?
0180-0000-11-026-L04-P (0.1 CEU)</td>
</tr>
<tr>
<td>9:00 am – 10:00 am</td>
<td>General Session
Turning your clinical observations into publications
018-0000-11-027-L04-P</td>
</tr>
<tr>
<td>10:00 am – 11:30 pm</td>
<td>Level 1 Small Session/Workshop
Infant and Pediatric Formulas: History, Content and Indications
0180-0000-11-028-L01-P (0.15 CEU)</td>
</tr>
<tr>
<td>11:30 am – 1:00 pm</td>
<td>Exhibits/Lunch Break</td>
</tr>
<tr>
<td>1:00 pm – 2:30 pm</td>
<td>Open
Level 1 Small Session/Workshop
Blood Thinners in Babies: Anticoagulation in infants < 1 year of age NEW
0180-0000-11-030-L01-P (0.15 CEU)</td>
</tr>
<tr>
<td>3:30 pm – 4:30 pm</td>
<td>Keynote Address:
Development of Novel Therapies for the Treatment of RSV Infection
0180-0000-11-032-L01-P (0.1 CEU)</td>
</tr>
<tr>
<td>4:30 pm – 6:30 pm</td>
<td>Live at LeBonheur Children’s Hospital (and Reception)
0180-0000-11-033-L04-P</td>
</tr>
</tbody>
</table>

Sunday, March 20, 2011 Handouts

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 am – 11:15 pm</td>
<td>Registration</td>
</tr>
<tr>
<td>7:00 am – 7:30 am</td>
<td>Continental Breakfast</td>
</tr>
<tr>
<td>7:30 am – 9:00 am</td>
<td>Level 1
Pediatric Septic Shock
0180-0000-11-034-L01-P (0.15 CEU)</td>
</tr>
<tr>
<td>9:00 am – 10:30 pm</td>
<td>Level 1
Pediatric Procedural sedation
(Handout with cases)
0180-0000-11-036-L01-P (0.15 CEU)</td>
</tr>
<tr>
<td>10:45 am – 11:45 pm</td>
<td>General Session
Immunization update/Management of Pandemics
0180-0000-11-038-L01-P (0.1 CEU)</td>
</tr>
<tr>
<td>11:45 am – 12:45 pm</td>
<td>General Session
H2 blocker use and late onset sepsis in the neonate
0180-0000-11-039-L01-P (0.1 CEU)</td>
</tr>
</tbody>
</table>
Signatures of Support
Board of Pharmacy Specialties
Speciality in Pediatric Pharmacy Practice
Signatures of Support

Audrey Kennedy, PharmD, BCPS
Clinical Pharmacy Specialist, Cardiology
Children's Mercy Hospitals and Clinics
2401 Gillham Road
Kansas City, Missouri 64108

Susan Byler, RPh
Clinical Pharmacy Specialist NICU
Stormont Vail Regional Healthcare
1500 SW 10th
Topeka, Kansas 66606

Miriam Chehab, PharmD
Medication Safety and Practice Pharmacist
Frederick Memorial Hospital
400 West 7th Street
Frederick, Maryland 21701

Christina Piro, PharmD
Assistant Professor - Pediatrics
South Carolina College of Pharmacy
715 Sumter Street
Columbia, South Carolina 29208

Heidi Trinkman, PharmD
Clinical Pharmacy Specialist
Cook Children's Medical Center
801 7th Avenue
Fort Worth, Texas 76104

Coleen Nelson, PharmD, RPh
Pharmacist
Children's Hospital Pharmacy
2525 Chicago Ave.
Minneapolis, Minnesota 55455

Carol Mahon
Staff Pharmacist
Nationwide Children's Hospital
700 Childrens Drive
Columbus, Ohio

Kara Sink, B.S., RPh
Pediatric Pharmacist
Cleveland Clinic Children's Hospital Pharmacy
9500 Euclid Ave., Mail Code HB105
Cleveland, Ohio 44195

Michelle Phan, PharmD
Pharmacist
Children's Hospital of Orange County California
455 S. Main St.
Orange, California 92868

Francisca Sarfo, PharmD, MBA, MHA
Director of Pharmacy
Mt. Washington Peds Hospital
1708 West Rogers Avenue
Baltimore, Maryland 21209

Jason Blauwet, PharmD, BCPS
Assistant Director/Residency Program Director
Rocky Mountain Hospital for Children
1719 East 19th Ave
Denver, Colorado 80218

Sarah Eagleston, PharmD
Pediatric Clinical Pharmacist
Sparrow Hospital
1215 E Michigan Avenue
Lansing, Michigan 48909

Nerissa Alday, PharmD
PGY2 Pharmacy Practice Resident
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

Beth Carberry, RPh, MBA, PLA
Director of Pharmacy
All Children's Hospital
501 6th Ave S
St. Petersburg, Florida 33776
Claire Mowbray, PharmD
Pediatric Clinical Pharmacist- Intensive Care
Lucile Packard Children's Hospital at Stanford
725 Welch Rd.
Palo Alto, California 94304

Suzanne Baertsch, PharmD
NICU Pharmacy Clinical Coordinator
Alta Bates Summit Medical Center
2450 Ashby Ave.
Berkeley, California 94705

David Gregornik, PharmD
Manager, Pediatric Clinical Pharmacy Services
Memorial Sloan - Kettering Cancer Center
1275 York Ave, Mail Stop: 55
New York, New York 10065

Sandra Moorhouse, PharmD
PGY2 Pediatric Pharmacy Resident
Children's Hospital of Orange County
455 S. Main St.
Orange, California 92868

Rita Jew, PharmD
Executive Director, Pharmacy & Clinical Nutrition Services
Children's Hospital of Orange County
455 S. Main Street
Orange, California 92868

Katie Meyers, PharmD
Clinical Staff Pharmacist
Children's Hospitals and Clinics of Minnesota
345 Smith Ave N
St. Paul, Minnesota 55102

Andrew Knoll
Staff Pharmacist
St. Francis Health System
6160 S Yale
Tulsa, Oklahoma 74136

Mose Lorngurum, BPharm, MHPM, PGDS
University of Lagos, Nigeria
Idi-Araba, Suru-Lere
Lagos, 101014

Kristin Held, PharmD, BCOP
Clinical Pharmacy Specialist
Children's Mercy Hospital
2401 Gillham Road
Kansas City, Missouri 64108

Cindy Hanson, PharmD
Pediatric Critical Care Clinical Pharmacist
Le Bonheur Children's Hospital
50 N. Dunlap
Memphis, Tennessee 38103

Emily Diehl, PharmD
Director of Clinical Pharmacy Services
MedAssets
5001 Tennyson Pkwy
Plano, Texas 75024

Blythe Duane, PharmD, BCPS
Pediatric Critical Care Pharmacist
Children's Mercy Hospital
2401 Gillham Rd.
Kansas City, Missouri 64108

Jessica Forster, PharmD
Clinical Pharmacist
Kaweah Delta Healthcare District
400 W Mineral King
Visalia, California 93291

Adriana Gonzales, PharmD
Clinical Pharmacist- PICU
Driscoll Children's Hospital
3353 S. Alameda
Corpus Christi, Texas 78411

Dawn Bunton, PharmD, BCPS
Clinical Pharmacist CICU
St. Louis Children's Hospital
1 Children's Place
St. Louis, Missouri 63127

Jason Evans, PharmD
Advanced Pharmacist
Cook Children's Medical Center
801 7th Avenue
Fort Worth, Texas 76028
Kristen Gawronski, PharmD
Women and Infants Specialty Practice
Wexner Medical Center at The Ohio State University
Room 368 Doan Hall/410 W. 10th Ave
Columbus, Ohio 43210

Liza Li, PharmD, BCPS
Clinical Pharmacist
Boston Children’s Hospital
300 Longwood Ave., Pharmacy Dept
Boston, Massachusetts 02116

Matthew Wiggins, PharmD
Inpatient Pharmacist
Nationwide Children’s Hospital
700 Children’s Drive
Columbus, Ohio 43221

Teresa Mansur, PharmD
Clinical Pharmacist
Children’s Hospitals and Clinics of Minnesota
2525 Chicago Ave S
Minneapolis, Minnesota 55404

Carrie Liebtag, PharmD
Inpatient Staff Pharmacist
Nationwide Children’s Hospital
700 Children’s Dr.
Columbus, Ohio 43215

Polina Lipnik, PharmD
Primary Pharmacist for the Cardiovascular Critical Care Unit
Children’s Hospitals and Clinics of Minnesota
2525 Chicago Ave S
Minneapolis, Minnesota 55404

Chris Young, PharmD
Nationwide Children’s Hospital
700 Children’s Dr
Columbus, Ohio 43205

Max Koepsell, PharmD
Clinical Pharmacist
Children’s Medical Ctr., Dallas
1935 Medical District Dr.
Dallas, Texas 75235

Michelle Brinker, PharmD
Clinical Pharmacy Specialist-NICU
St. Joseph Mercy Hospital
5301 East Huron River Drive
Ann Arbor, Michigan 48106

Hanna Phan, PharmD, BCPS
Assistant Professor, Clinical Pharmacy Specialist,
Pediatric Pulmonary Medicine
University of Arizona
1295 N Martin Ave
Tucson, Arizona 85721

Jackie Stakston, PharmD, BCPS
Clinical Pharmacist
Gundersen Lutheran Medical Center
1900 South Ave.
La Crosse, Wisconsin 54601

Bonnie Riddle, RPh, MS
Pediatric Staff Pharmacist
Wake Forest University Baptist Medical Center
Medical Center Blvd.
Winston-Salem, North Carolina 27012

Jennifer Yen, PharmD
PGY2 Pediatric Pharmacy Resident
Children’s Hospital of Orange County
455 South Main Street
Orange, California 92868

Katie Tu, PharmD, BCPS
Pharmacy Educator
CHOC Children’s Hospital of Orange County
455 S Main St.
Orange, California 92868

Natalie Pavek, PharmD
Children’s Hospital
345 N Smith Ave
St. Paul, Minnesota 55102

Hallie Barr, PharmD
Pediatric Oncology Clinical Pharmacy Specialist
Memorial Sloan-Kettering Cancer Center
1275 York Ave
New York, New York 10065
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason Corcoran, PharmD, BCPS</td>
<td>Clinical Specialist</td>
<td>Children's National Medical Center</td>
<td>111 Michigan Avenue NW, Washington, Washington DC 20010</td>
</tr>
<tr>
<td>Michelle Guild, PharmD</td>
<td>Clinical Staff Pharmacist</td>
<td>All Children's Hospital</td>
<td>St. Petersburg, Florida</td>
</tr>
<tr>
<td>Liana Mark, PharmD</td>
<td>Pharmacotherapy Clinical Coordinator, Pediatric Oncology</td>
<td>NYU Langone Medical Center</td>
<td>New York, New York</td>
</tr>
<tr>
<td>Elizabeth Sinclair, PharmD, BCPS</td>
<td>Clinical Pharmacist - Pediatric Critical Care</td>
<td>Riley Hospital for Children</td>
<td>705 Riley Hospital Drive, SFT W6111, Indianapolis, Indiana 46202</td>
</tr>
<tr>
<td>Laura Broome, PharmD</td>
<td>Pediatric Critical Care Pharmacist</td>
<td>Le Bonheur Children's Hospital</td>
<td>50 North Dunlap Street, Memphis, Tennessee 38103</td>
</tr>
<tr>
<td>Laura Tietz, PharmD</td>
<td>Pediatric Staff Pharmacist</td>
<td>Cleveland Clinic Children's Hospital</td>
<td>Cleveland, OH 44195</td>
</tr>
<tr>
<td>Derek Rhodes, PharmD</td>
<td>Point of Care Pharmacist - Pediatrics</td>
<td>The Johns Hopkins Hospital</td>
<td>1800 Orleans St., Baltimore, Maryland 21287</td>
</tr>
<tr>
<td>Arthur Allen, RPh</td>
<td>Pharmacist</td>
<td>Children's Hospitals and Clinics of Minnesota</td>
<td>2525 Chicago Avenue South, Minneapolis, Minnesota 55404</td>
</tr>
<tr>
<td>Kara Kniska, PharmD</td>
<td>PICU Clinical Specialist</td>
<td>St. Louis Children's Hospital</td>
<td>One Children's Place, St. Louis, Missouri 63110</td>
</tr>
<tr>
<td>Denise Pinal, PharmD</td>
<td>Pharmacist</td>
<td>Cook Children's Medical Center</td>
<td>Fort Worth, Texas 76104</td>
</tr>
<tr>
<td>Paul Viscione, PharmD, MS</td>
<td>Clinical Pharmacist</td>
<td>CHOC Children's Hospital</td>
<td>455 S. Main Street, Orange, California 92868</td>
</tr>
<tr>
<td>Holly Hoffmaster, PharmD</td>
<td>Pediatric Inpatient Pharmacist</td>
<td>Cleveland Clinic Foundation</td>
<td>9500 Euclid Ave, Cleveland, Ohio 44195</td>
</tr>
<tr>
<td>Kyle Mays, PharmD</td>
<td>Children's Hospital of Illinois / OSF Saint Francis Medical Center</td>
<td>530 Northeast Glen Oak Avenue, Peoria, Illinois 61637</td>
<td></td>
</tr>
<tr>
<td>Laura Hayn, PharmD, BCPS</td>
<td>Pediatric Pharmacist</td>
<td>WakeMed Hospital</td>
<td>Raleigh, NC</td>
</tr>
<tr>
<td>Patrick Loo, PharmD</td>
<td>Clinical Pediatric Pharmacist</td>
<td>Children's Hospital of Orange County</td>
<td>455 Main Street, Orange, California</td>
</tr>
<tr>
<td>Cassie Billings, PharmD</td>
<td>Clinical Pharmacy Specialist-Pediatrics</td>
<td>Vidant Medical Center</td>
<td>2100 Stantonsburg Road, Greenville, North Carolina 27835</td>
</tr>
<tr>
<td>Patric Mays, PharmD</td>
<td>Pharmacists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laura Hayn, PharmD, BCPS</td>
<td>Pediatric Pharmacist</td>
<td>WakeMed Hospital</td>
<td>Raleigh, NC</td>
</tr>
</tbody>
</table>
Abashamo Lencho, PharmD
Staff Pharmacist
Nationwide Children’s Hospital
700 Children’s Drive
Columbus, Ohio 43205

Jennifer Bergman, RPh
Staff Pharmacist
OSF St. Francis Medical Center
530 NE Glen Oak
Peoria, Illinois 61637

Thomas Collins, PharmD
Inpatient Pharmacist
Nationwide Children's Hospital
700 Children’s Drive
Columbus, Ohio 43205

Ritu Desai, PharmD
Pediatric Clinical Pharmacist
Cleveland Clinic
Cleveland, OH

Christine Berger, PharmD
Pediatric Clinical Pharmacist
Children's Mercy Hospital
24th at Gillham
Kansas City, Missouri

Jodie Van Diest, BS, PharmD
Pediatric Inpatient Pharmacist
The Cleveland Clinic Children's Hospital
9500 Euclid Ave
Cleveland, Ohio

Amanda Gansen, PharmD
Pediatric Critical Care Pharmacist
Children's Mercy Hospital
2401 Gillham Road
Kansas City, Missouri 64108

Katherine Smith, PharmD, BCPS
Associate Professor of Pharmacy Practice,
Director of Continuing Education
Roseman University of Health Sciences
10920 S. River Front Parkway
South Jordan, Utah 84095

Denise Schiff, PharmD
Associate Professor of Pharmacy & Pediatrics;
Clinical Pharmacy Specialist - Oncology
University of Pittsburgh School of Pharmacy;
Children's Hospital of Pittsburgh of UPMC
Pittsburgh, Pennsylvania 15261

Jeffrey Cies, PharmD, MPH, BCPS
Pharmacy Clinical Coordinator, Critical Care and
Infectious Diseases Clinical Pharmacist
St. Christopher's Hospital for Children
3601 A Street
Philadelphia, Pennsylvania 19134-1095

Allison Jun, PharmD
Clinical Pharmacy Manager
CHOC Children's Hospital
455 S. Main Street
Orange, California 92868

David Knoppert, MScPhm, FCCP, FCSHP
London Health Sciences Centre
800 Commissioners Road East
London, England N6A 5W9

Tanya Gore, PharmD
Clinical Pharmacy Special-Maternal Child Health
Saint Vincent Health Center
232 West 25th Street
Erie, Pennsylvania 16544

Jessica Smith, PharmD
Pharmacist
OSF Saint Francis Medical Center
530 NE Glen Oak
Peoria, Illinois

Kara Krzan, PharmD, RPh
Administrative Pharmacy Practice Resident
Nationwide Children's Hospital
700 Children's Way
Columbus, Ohio 43207

Gina Rosito, PharmD
Neonatal & Pediatric Clinical Pharmacist
CPMC
3700 California Street
San Francisco, California 94941
Titilola Afolabi, PharmD
Clinical Pharmacy Resident
Children's Hospitals and Clinics of Minnesota
2525 Chicago Ave. S.
Minneapolis, Minnesota 55404

Bradley Miyashiro, PharmD
PGY1 Pharmacy Practice Resident
Seattle Children's Hospital
4800 Sand Point Way NE
Seattle, Washington 98105

Lisa Strader, PharmD
Pediatric Staff Pharmacist
Wake Forest Baptist Medical Center
Medical Center Blvd
Winston-Salem, North Carolina 27157

Roel Basaldua, PharmD
Pediatric Hematology-Oncology Clinical Pharmacist
Driscoll Children's Hospital
3533 S Alameda
Corpus Christi, Texas 78411

Betsy Poon, PharmD, FCCP
Assistant Director of Pharmacy, Pediatric Hematology/Oncology/Stem Cell Transplant Clinical Specialist
Florida Hospital for Children
601 E Rollins St.
Orlando, Florida 32803

Rupal Patel, PharmD
Infectious Diseases Pharmacy Specialist
Lurie Children's Hospital of Chicago
Chicago, Illinois

Sarah Engberg, PharmD
Pediatric Pharmacist
OSF St. Francis Medical Center - Children’s Hospital of Illinois
530 NE Glen Oak Avenue
Peoria, Illinois 61637

Sandra Irvin, B.S.
Staff Pharmacist
Wake Forest Baptist Medical Center, Brenner Children's Hospital
949 Arbor Road
Winston-Salem, North Carolina 27157

Alison Grisso, PharmD
Pediatric Clinical Pharmacist
Monroe Carell, Jr Children's Hospital at Vanderbilt
Nashville, Tennessee

Desiree Duman, PharmD
Clinical Staff Pharmacist
Women & Children’s Hospital of Buffalo
219 Bryant Street
Buffalo, New York 14222

Ashely Nebbia, PharmD
Clinical Pharmacy Specialist
Cincinnati Children's Hospital
3333 Burnet Avenue
Cincinnati, Ohio 45202

Sherry Luedtke, PharmD, FPPAG
Associate Professor, Pharmacy Practice
Texas Tech HSC School of Pharmacy
1300 S. Coulter
Amarillo, Texas 79119

Deborah Pritchett, PharmD, BCPS
NICU Clinical Pharmacist
Sanford Children's Hospital
1600 W 22nd St
Sioux Falls, South Dakota 57117

Katherine Malloy, PharmD, BCPS
Clinical Pharmacist
Riley Hospital for Children at IU Health
705 Riley Hospital Drive
Indianapolis, Indiana 46202

Herbert Mathews III, PharmD
Pharmacy Operations Manager
Carroll Hospital Center
200 Memorial Ave.
Westminster, Maryland 21157
Lisa Stay, PharmD
Children's Hospitals and Clinics of Minnesota
2525 Chicago Ave. S
Minneapolis, Minnesota 55404

Lauren Faragalli, PharmD
NICU Clinical Pharmacy Generalist
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

Amanda Berger, PharmD
PGY2 Pediatric Pharmacy Resident
Monroe Carell Jr. Children's Hospital at Vanderbilt
2200 Children's Way
Nashville, Tennessee 37232

Lindsay Trout, PharmD
Pediatric Clinical Pharmacy Specialist
Hershey Medical Center
500 University Drive
Hershey, Pennsylvania 17033

Kevin Drewes, PharmD
Nationwide Children’s Hospital
700 Children's Drive
Columbus, Ohio 43205

Rose Winkel, BCPS
Maternal Child Clinical Pharmacist
Landstuhl Regional Medical Center
Landstuhl, Germany, 09180

Tsz-Yin So, PharmD
Pediatric Clinical Pharmacist
Moses H. Cone Memorial Hospital
1200 N. Elm St.
Greensboro, North Carolina 27401

Patricia Christoff, PharmD
Clinical Pharmacist
Dayton Children's Hospital
One Children's Plaza
Dayton, Ohio 45404

David Hutchinson, PharmD, BCPS
Assistant Prof of Pharmacy Practice
St. John Fisher College
3690 East Avenue
Rochester, New York 14564

Shannon Draus, PharmD
Clinical Pharmacist
Geisinger Medical Center
100 N Academy Ave
Danville, Pennsylvania 17822

Nicole Even, PharmD
Clinical Staff Pharmacist
University of Arizona Medical Center/ Diamond Children's Medical Center
1501 N Campbell Ave
Tucson, Arkansas 85724

Elizabeth Farrington, PharmD
Pharmacist III - Pediatrics
New Hanover Regional Medical Center
2131 S. 17th Street
Wilmington, North Carolina 28402

Brian Gardner, PharmD
Clinical Pharmacy Specialist
UK Children's Hospital
800 Rose Street
Lexington, Kentucky 40536

Lindsay Svehla, PharmD
Pediatric Intensive Care Clinical Pharmacist
Ronald McDonald Children's Hospital at Loyola
2160 S. First Ave.
Maywood, Illinois 60153

Mallary Wood, PharmD
PGY2 Pharmacy Resident - Pediatrics
Nationwide Children's Hospital
700 Children's Dr.
Columbus, Ohio 43205

Teresa Lewis, PharmD, BCPS
Assistant Professor
University of Oklahoma College of Pharmacy
1110 North Stonewall Ave
Oklahoma City, Oklahoma 73117
Kay Kyllonen, PharmD, FPPAG
Clinical Specialist in Neonatal Intensive Care
Cleveland Clinic
9500 Euclid Ave
Cleveland, Ohio 55195

Zachery Halford, PharmD
Clinical Oncology Pharmacist and
Immunocompromised Team Leader
Primary Children's Medical Center
100 N Mario Capecchi Dr.
Salt Lake City, Utah 84113

Jenny Mason, PharmD
Pediatric Emergency Medicine Pharmacist
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

Eric Harvey, PharmD, MBA
Pharmacy Quality Manager
Seattle Children's Hospital
4800 Sand Point Way NE
Seattle, Washington 98105

Terry King, PharmD, BCPS
Clinical Pharmacist
East Tennessee Children's Hospital
2018 Clinch Avenue
Knoxville, Tennessee 37916

Trenika Mitchell, PharmD, BCPS
Clinical Assistant Professor/Clinical Staff
Pharmacist
University of Kentucky College of
Pharmacy/University of Kentucky Chandler
Medical Center
789 S. Limestone
Lexington, Kentucky 40536

Christelle Polaski, PharmD
Pharmacy Supervisor
Memorial Health System
1400 E. Boulder St.
Colorado Springs, CO

Amanda Memken, PharmD
PGY2 Pediatric Pharmacy Resident
All Children's Hospital
501 6th Avenue South
St. Petersburg, Florida 33701

Julie Miller, PharmD
Clinical Pharmacy Specialist
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43017

Randall Atkison, PharmD
Clinical Pharmacist, Pediatrics
Central Dupage Hospital
25 N. Winfield Rd.
Winfield, Illinois 60190

Kimberly Novak, PharmD, BCPS
Clinical Pharmacy Coordinator, Clinical
Pharmacy Specialist-Cystic Fibrosis, Residency
Director-PGY2 Pharmacy Residency-Pediatrics
Nationwide Children's Hospital, Department of
Pharmacy
700 Children's Drive
Columbus, Ohio 43205

Lisa Musick, PharmD, BCPS
Pediatric Clinical Pharmacist
UCSF Medical Center
521 Parnassus Avenue
San Francisco, California 94110

Chrys Jallo, BS Pharm
Specialty Lead, Oncology/Stem Cell Transplant
Phoenix Children's Hospital
1919 E. Thomas Rd
Phoenix, Arizona 85016

Deborah Ferguson, PharmD
Pharmacy Manager
Children's Hospital of Los Angeles
4650 Sunset Blvd
Los Angeles, California 90027
Michelle Caruso, PharmD, BCPS
Clinical Pharmacy Specialist, Emergency Medicine
Cincinnati Children’s Hospital Medical Center
3333 Burnet Avenue
Cincinnati, Ohio 45229

Patricia Brown, BS, RPh
Staff Clinical Pharmacist
McLaren Northern Michigan
416 Connable Ave.
Petoskey, Michigan 49770

Brandy Zeller, PharmD
Clinical Pharmacist, Neonatal Intensive Care
St. Louis Children’s Hospital
1 Children’s Place
St. Louis, Missouri 63110

Jill Moses Tangeman, PharmD
PGY1 Pharmacy Practice Resident
The Children’s Hospital at Saint Francis
6161 S. Yale Ave.
Tulsa, Oklahoma 74136

Kathleen Doan, PharmD
Pediatric Clinical Pharmacist
Riley Hospital for Children at IU Health
705 Riley Hospital Drive
Indianapolis, Indiana 46202

Lauren Haney, PharmD
Pediatric Clinical Pharmacy Specialist
Medical University of South Carolina
150 Ashley Ave
Charleston, South Carolina 29425

Andrea Gerwin, PharmD
Pediatric Clinical Pharmacist
Children’s Hospital at Erlanger
910 Blackford Street
Chattanooga, Tennessee 37403

Nausheen Hasan, PharmD
Pediatric Clinical Pharmacist
Mercy Children’s Hospital
615 S. New Dallas Road
St. Louis, Missouri 63005

Eloise Woodruff, PharmD
Clinical Pharmacist, Neonatal Intensive Care Unit
Children's Hospital of The King's Daughters
601 Children's Lane
Norfolk, Virginia 23507

Jeremy Stultz, PharmD
Pediatric Pharmacotherapy Fellow
The Ohio State University College of Pharmacy
500 W. 12th Avenue, Parks Hall 129E
Columbus, Ohio 43204

Katherine Pham, PharmD, BCPS
NICU Clinical Specialist
Children’s National Medical Center
111 Michigan Ave NW
Washington, Washington DC 20010

Ann Marie Turner, PharmD
Clinical Coordinator
Women and Children's Hospital of Buffalo
219 Bryant Street
Buffalo, New York 14223

Kristie Williams, PharmD
Specialist in Poison Information
Oklahoma Poison Center
940 NE 13th St/Ste 3850 Nicholson Tower
Oklahoma City, Oklahoma 73104

Kara Murray, PharmD, BCPS
Manager, Clinical Therapeutics and Pharmacy
HCA Management Services, LP
One Park Plaza; Building 2-4W
Nashville, Tennessee 37203

Nick Weaver, PharmD
Emergency Department Clinical Pharmacist
Primary Children's Medical Center
100 North Mario Capecchi Way
Salt Lake City, Utah 84113
Sonya Stacey, BPharm, GDip(Child Hlth), GCert(Hlth Mgt)
Pharmacist Consultant (Pediatric Pharmacy Practice)
Royal Children's Hospital, Children's Health Queensland
Herston Road
Herston, Australia 4060

Corinne Dustan, PharmD
Pediatric Clinical Pharmacist
OHSU
Portland, Oregon

Kevin Diller, PharmD
Clinical Staff Pharmacist
Children's Hospital at St. Francis
6161 S. Yale Ave.
Tulsa, Oklahoma 74136

Aspen Wall, PharmD
Clinical Staff Pharmacist- NICU
Children's Hospital of San Antonio
333 N. Santa Rosa
San Antonio, Texas 78207

Stacie Lampkin, PharmD
Clinical Assistant Professor
D'Youville College
320 Porter Avenue
Buffalo, New York 14201

Allison Weddington, PharmD
PGY2 Hematology/Oncology Clinical Pharmacy Resident
St. Jude Children's Hospital
262 Danny Thomas Place
Memphis, Tennessee 38105

Jennifer Schultz, PharmD, BCPS
Pediatric Pharmacist
Bronson Methodist Hospital
601 John St
Kalamazoo, Michigan 49007

Robin Labrecque Stotka, PharmD
Clinical Pharmacist
WakeMed Health and Hospitals
3000 New Bern Ave.
Raleigh, North Carolina 27510

Kristin Held, PharmD, BCOP
Clinical Pharmacy Specialist
Children's Mercy Hospital
2401 Gillham Road
Kansas City, Missouri 64108

Regina Cregin, BSPharm, MS, BCPS, PharmD
Clinical Pharmacist
New York Hospital Queens
56-45 Main Street
Flushing, New York 11355

David Donald, PharmD
Children's Hospital Pharmacy
Manager/Pediatric Clinical Specialist
The Children's Hospital at Saint Francis
6161 S. Yale Ave
Tulsa, Oklahoma 74136

Whitney Leonard, PharmD
Clinical Pharmacist - Immunocompromised Service
Primary Children's Medical Center
100 N Mario Capecchi Dr.
Salt Lake City, Utah 84113

Jacob Johnsen, PharmD
Clinical Pharmacist- Immunocompromised Service
Primary Children's Medical Center
100 North Mario Capecchi Drive
Salt Lake City, Utah 84113

Erin McDade, PharmD, BCPS
Clinical Pharmacy Specialist – Pediatric Critical Care and Pulmonary Services
Texas Children's Hospital
6621 Fannin St. MC 2-2510
Houston, Texas 77030
Shannon Saldana, PharmD, MS, BCPP
Pharmacy Clinical Specialist, Psychiatry
Intermountain Primary Children’s Medical Center
5770 South 1500 West
Salt Lake City, Utah 84123

Jennifer Witten
Clinical Pharmacist, Pediatrics
University of Virginia Health System
PO Box 800674
Charlottesville, Virginia 22908

Marianne Tyson, PharmD
Pharmacist
Primary Children's Medical Center
3773 West 12600 South
Riverton, Utah 84065

Travis Hunt, PharmD
Pharmacist
Primary Children's Medical Center
100 N. Mario Capecchi Dr.
Salt Lake City, Utah 84113

Diane Alexander, PharmD
Director of Pharmacy
Children's Hospitals and Clinics of MN
2525 Chicago Ave. S
Minneapolis, Minnesota 55404

Laura Butkievich, PharmD, BCPP
System Pharmacy Clinical Coordinator
University of Missouri Health Care
One Hospital Dr.
Columbia, Missouri 65202

Michelle Steyer, PharmD, PGY1
PharmD
Women’s & Children's Hospital
404 Keene Street
Columbia, Missouri 65202

Jamie Cronin, PharmD, BCPS
Clinical Manager
Eastern Maine Medical Center
489 State Street
Bangor, Maine 04401

Leslie Briars, PharmD
Clinical Associate Professor/Pediatric Clinical
The University of Illinois at Chicago
833 S. Wood Street
Chicago, Illinois 60612

Alan Wellbaum, BS Pharm
Pharmacy Supervisor - Finance
Children's Hospital of Alabama
1601 5th Avenue South
Birmingham, Alabama 35233

Daniel Contreras, PharmD
Pharmacist Resident
Cook Children's Medical Center
801 7th Avenue
Fort Worth, Texas 76104

Rebecca Chhim, PharmD BCPS
Assistant Professor
University of Tennessee College of Pharmacy
881 Madison Ave, Suite 233
Memphis, Tennessee 38163

Jennifer Chow, PharmD
Pediatric Clinical Specialist
Children's Hospital of The King's Daughters
601 Children's Lane
Norfolk, Virginia 23507

Brooke Honey, PharmD, BCPS, AE-C
Assistant Professor
Univ of OK College of Pharm
4502 E 41st St 2H24
Tulsa, Oklahoma 74135

Jamie Miller, PharmD
Assistant Professor of Pharmacy Practice
University of Oklahoma College of Pharmacy
1110 N. Stonewall Avenue, CPB 206
Oklahoma City, Oklahoma 73117

Mary Worthington, PharmD, BCPS
Professor of Pharmacy Practice
McWhorter School of Pharmacy, Samford University
700 Lakeshore Dr
Birmingham, Alabama 35229
Rachel Langley, PharmD
Clinical Pharmacist Hematology/Oncology
St. Louis Children's Hospital
1 Children's Place
St. Louis, Missouri 63118

Kyle Gunter, PharmD, BCPS
Pediatric Clinical Pharmacy Specialist
Children's Hospital @ Summerlin Hospital Medical Center
657 Town Center Dr.
Las Vegas, Nevada 89144

Lyn Villanueva, PharmD
PGY2 Pediatric Pharmacy Resident
Shands at the University of Florida
1600 SW Archer Rd.
Gainesville, Florida

Kristin Fish, BCPS
Pharmacist
University of Missouri Women's and Children's Hospital
404 N Keene Street
Columbia, Missouri 65201

Chelsey Jensen, PharmD, BCPS
Clinical Pharmacy Specialist, Nephrology/Kidney Transplant
Children's Mercy Hospitals and Clinics
2401 Gillham Road
Kansas City, Missouri 64108

Erin Lammers, PharmD, BCPS
Pediatric Pharmacy Clinical Specialist
University of Oklahoma
Oklahoma City, OK

Lisa Thames, PharmD, BCPS
Chief, Pediatric Pharmacy Services
Shands Hospital at the University of Florida
1600 SW Archer Road
Gainesville, Florida 32611

Brian Kelly, PharmD, BCPS
Clinical Pharmacy Specialist - Pediatric Intensive Care
Shands Hospital for Children at the University of Florida
1600 SW Archer Road
Gainesville, Florida 32610

Jared Olson, PharmD, BCPS
Clinical Pharmacist
Primary Children's Medical Center
100 Mario Capeci
Salt Lake City, Utah 84113

Barnabas John, PharmD, BCPS
Clinical Assistant Professor
University of Oklahoma
4344 E 69th St.
Tulsa, Oklahoma 74136

Julie Kasap, PharmD
Children's Hospital of Illinois Pharmacy Supervisor
Children's Hospital of Illinois at OSF SFMC
530 NE Glen Oak Ave
Peoria, Illinois 61637

Donald Berry, BSPharm
Clinical Pharmacy Specialist
Children's Hospital of Pittsburgh of UPMC
4401 Penn Ave
Pittsburgh, Pennsylvania 15224

Mary Seideman, PharmD
NICU Clinical Pharmacist
Cardon Children's Medical Center
1400 S Dobson Rd.
Mesa, Arizona 85202

Helene Giannopoulos, PharmD
Pharmacy Clinical Manager
Children's Healthcare of Atlanta
1405 Clifton Road
Atlanta, Georgia 30033
Tammy Frank, RPh
Pharmacist, Clinical Informatics
Children's Mercy Hospital & Clinics
2401 Gillham Rd.
Kansas City, Missouri 64108

Christopher McPherson, PharmD
Neonatal ICU Clinical Pharmacist
St. Louis Children's Hospital
1 Children's Place
St. Louis, Missouri 63110

Michelle Guyder, PharmD
Pediatric Clinical Specialist
Carolinas Medical Center Northeast
920 Church St.
Concord, North Carolina 28027

Shannon Williams, PharmD
Neonatal Editor
Gold Standard
302 Knights Run Avenue, Suite 800
Tampa, Florida 33602

Deonne Dersch-Mills, BScPharm, ACPR, PharmD
Pharmacy Clinical Practice Leader, Pediatrics & Neonatology, Alberta Health Services
Alberta Children's Hospital
2888 Shaganappi Trail NW
Calgary, Canada T3B1M2

Crystal Gilbert, RPh
Clinical Pharmacy Coordinator
The Williamsport Regional Medical Center
700 High St.
Williamsport, Pennsylvania 17701

Andrew Clark, PharmD
Clinical Pharmacist
Children's Hospital Colorado
13123 E 16th
Aurora, Colorado 80230

Sabrina Boehme, PharmD, BCPS
Primary Children's Medical Center
100 N Mario Capecchi Dr
Salt Lake City, Utah 84113

Jennifer Thackray, PharmD, BCPS
Pediatric Hematology/Oncology Clinical Pharmacist
Memorial Sloan Kettering Cancer Center
1275 York Ave S722
New York, New York 10022

Karen Kovey, PharmD, BCPS
Pharmacy Clinical Specialist
Helen DeVos Children's Hospital
100 Michigan Street NE
Grand Rapids, Michigan 49503

Jessica Golden, PharmD, BCPS
CVICU/CCU Clinical Pharmacist
Children's Hospital of Alabama
1601 5th Ave S
Birmingham, Alabama 35223

Heather VandenBussche, PharmD
Professor of Pharmacy Practice
Ferris State University College of Pharmacy
Bronson Methodist Hospital
601 John Street, Box 56
Kalamazoo, Michigan 49007

Sherleen Drawdy, PharmD, BCPS
Clinical Content Editor, Pediatrics
Elsevier/Gold Standard
302 Knights Run Avenue, Suite 800
Tampa, Florida 33602

Elaine Simon, PharmD
Neonatal Clinical Specialist
Texas Health Presbyterian Hospital of Dallas
8200 Walnut Hill Lane
Dallas, Texas 75231

Katherine Hines, Doctor of Pharmacy
University of Minnesota Amplatz Children's Hospital
2450 Riverside Avenue
Minneapolis, Minnesota 55454
Fancy Manton, PharmD
Clinical Pharmacy Coordinator
Woman's Hospital
100 Woman’s Way
Baton Rouge, Louisiana 70817

Melissa Gervase, PharmD
Pediatrics Clinical Pharmacy Specialist
Monroe Carell Jr. Children's Hospital at Vanderbilt
2200 Children's Way
Nashville, Tennessee 37232

Stacy Roehrs, BS Pharm, PharmD
Clinical Coordinator
Dayton Children's
One Children's Plaza
Dayton, Ohio 45040

David Nash
PGY2, Pediatric Specialty Residency
Clinical Lead Pharmacist/Supervisor
Memorial Hospital for Children at Memorial Health System
1400 E Boulder
Colorado Springs, Colorado 80909

Deidra Schmidt, PharmD
Pediatric Ambulatory Care Pharmacist, Residency Program Director
Children's of Alabama
1600 7th Avenue South
Birmingham, Alabama 35233

Emily D’Anna, PharmD
Pediatric Clinical Pharmacy Specialist, Neurosciences
St. Louis Children's Hospital
One Children's Place
St. Louis, Missouri 63110

Angela Rollins, PharmD
Clinical Pharmacy Manager
Nemours Children's Hospital
13535 Nemours Parkway
Orlando, Florida 32827

Greg Krieger, R.Ph.
CarePoint Partners
4137 Boardman-Canfield Road
Canfield, Ohio 44512

Carolyn Romano, PharmD
Clinical Pharmacist
Children's Hospital and Medical Center
8200 Dodge Street
Omaha, Nebraska 68114

LeAnn McNamara, PharmD
PICU Clinical Pharmacist
Johns Hopkins Children’s Medical and Surgical Center
Baltimore, Maryland

Jennifer Girotto, PharmD
Clinical Assist Professor of Pharmacy Practice and Pediatrics
University of CT / CT Children's Med Center
282 Washington St.
Hartford, Connecticut 06106

Sok Hoon LIM, MPharm (Clin Pharm)
Principal Clinical Pharmacist
National University Hospital
5 Lower Kent Ridge Road
Singapore

Aaron Harthan, PharmD
Pediatric Clinical Pharmacist
Children's Hospital of Illinois
530 NE Glen Oak Ave
Peoria, Illinois 61637

Melissa Rees, PharmD
PGY1 Pharmacy Practice Resident
Seattle Children's Hospital
M/S R-3409, PO Box 5371
Seattle, Washington 98145-1990

Bradley McCrory, PharmD, BCPS
Clinical Pharmacy Specialist - Pulmonary Medicine
Cincinnati Children's Hospital Medical Center
3333 Burnet Avenue
Cincinnati, Ohio 45229
Jody Gibson, PharmD
OB/GYN/Pediatric/Neonatal Pharmacy Specialist
North MS Medical Center - Women's Hospital
4566 S. Eason Blvd.
Tupelo, Mississippi 38801

Jennifer Shenk, PharmD
Pediatric Pharmacy Clinical Specialist
Arnold Palmer Medical Center
92 W. Miller Street
Orlando, Florida 32806

Ann Ebert, PharmD
Perinatal Clinical Pharmacy Specialist
Meriter Hospital
202 S Park Street
Madison, Wisconsin 53715

Christina Hsu, PharmD
Clinical Pharmacy Specialist - Pediatric Hematology/Oncology
Nationwide Children’s Hospital
700 Children’s Drive
Columbus, Ohio 43205

Sarah Hale, PharmD
PGY2 Critical Care & Pediatrics Resident
Albany Medical Center
43 New Scotland Ave MC 85
Albany, New York 12208

Ashley Schappell, PharmD
Clinical Pharmacist
Children's National Medical Center
111 Michigan Avenue NW
Washington, Washington DC 20010

Michael Raschka, PharmD
Pharmacy Resident
Children's Hospitals and Clinics of Minnesota
345 N Smith Avenue
Saint Paul, Minnesota 55102

Lucy Johnson, BS Pharmacy Pharmacist
Children's Hospitals and Clinics of MN
345 North Smith Avenue
St. Paul, Minnesota 55102

Mary Firary, BS, RPh
Clinical Pharmacist, PGY2 Coordinator
Children's Hospital of Wisconsin
9000 W Wisconsin Ave
Milwaukee, Wisconsin 53212

Melissa Hunt, PharmD
Clinical Pharmacist
Hospiscript
110 Cedar Run Ln
Huntsville, Alabama 35811

Michelle Bustamante, PharmD
Pediatric Clinical Pharmacist
Joe DiMaggio Children's Hospital
Hollywood, Florida

Leigh Peek, PharmD
Pediatric Clinical / Staff Pharmacist
Wake Forest Baptist Medical Center, Brenner Children's Hospital
Winston-Salem, North Carolina 27103

Sarah Jacobson, PharmD
Clinical Pharmacist
Kosair Children's Hospital
231 East Chestnut St
Louisville, Kentucky 40202

Danielle Cassidy, PharmD
Doernbecher Children's Hospital at Oregon Health & Science University
707 S.W. Campus Drive
Portland, Oregon 97239

Lisa Derby, PharmD
Pediatric & Neonatal Clinical Pharmacy Specialist
CJW Medical Center
7101 Jahnke Road
Richmond, Virginia 23238
Gregory Dumas, RPh
Neonatal/Perinatal Clinical Pharmacist
Beth Israel Deaconess Medical Center
64 Robert St.
Roslindale, Massachusetts 02131

Linda Schiff, PharmD, BCPS
Clinical Pharmacist
Le Bonheur Children's Hospital
50 N Dunlap
Memphis, Tennessee 38103

Jeffery Zobell, PharmD
Clinical Pharmacy Team Lead--Pediatric General Medicine
Intermountain Primary Children's Medical Center
100 North Mario Capecchi Drive
Salt Lake City, Utah 84113

Julia Gibson, PharmD
Clinical Staff Pharmacist
University of Kentucky
800 Rose Street
Lexington, Kentucky 40536

Brent Hall, PharmD, BCPS
Clinical Coordinator, Pediatrics;
Pediatric Clinical Pharmacy Specialist
University of Arizona Health Network
1501 N. Campbell Ave.
Tucson, Arizona

Barbara Kaufman, BS, PharmD, RPh
Intensive Care Nursery Pharmacist
Pennsylvania Hospital
800 Spruce St.
Philadelphia, Pennsylvania 19107

Wesley Wells, PharmD, RPh
Clinical Pharmacist
Covenant Children's Hospital
4015 22nd Place
Lubbock, Texas 79410

April Yarbrough, PharmD, BCPS
Pediatric Infectious Disease Pharmacist
Children's of Alabama
1600 6th Ave South, CHB 308
Birmingham, Alabama 35233

Matthew Werling, PharmD
Pharmacy Manager
Cleveland Clinic
9500 Euclid Ave
Cleveland, Ohio 44195

Stephanie Helgeson, PharmD
Clinical Staff Pharmacist
Ministry Saint Joseph's Hospital
611 Saint Joseph Avenue
Marshfield, Wisconsin 54449

Amy Davies, PharmD
Pharmacist
Texas Children's Hospital
6621 Fannin Street
Houston, Texas 77005

Elaine Heidrich, BS Pharmacy, RPh
Pharmacist II
Cincinnati Children's Hospital Medical Center
3333 Burnet Ave
Cincinnati, Ohio 45229

Peter Johnson, PharmD
Associate Professor
University of Oklahoma College of Pharmacy
1110 N. Stonewall Avenue, CPB 206
Oklahoma City, OK 73120

Julie Pettitt, BSPharm, PharmD
Hematology/Oncology Clinical Pharmacist
Arkansas Children's Hospital
1 Children's Way
Little Rock, Arkansas 72202

Elisa Edwards, PharmD, BCPS
Pediatric Clinical Pharmacist
Wolfson Children's Hospital
800 Prudential Dr.
Jacksonville, Florida 32207
Gina Kwan, BSP
Clinical Pharmacist
Alberta Children's Hospital
2888 Shaganappi Trail NW
Calgary, Canada T3C 3G3

David Villeneuve, PharmD
Clinical Pharmacist
Seattle Children's Hospital
4800 Sand Point Way NE
Seattle, Washington 98105

Heather Donovan, PharmD, BCOP
Clinical Pharmacist
American Family Children's Hospital/University of Wisconsin Hospital and Clinics
600 Highland Ave, F6/133 - 1530
Madison, Wisconsin 53792

Hannah Dyk, PharmD, RPh
Pediatric Clinical Pharmacist
Cardon Children's Medical Center
1400 S Dobson St.
Mesa, Arizona 85202

Kerry Parsons, PharmD, BCOP
Pediatric Oncology Pharmacist
Children's of Alabama
1600 7th Ave South
Birmingham, Alabama 35233

Brian Winther, PharmD, BCPS
Clinical Pharmacist Lead NBICU
Primary Children's Medical Center
100 N. Mario Capecchi Dr.
Salt Lake City, Utah 84113

Alexis King, PharmD
Lead Pharmacist, Pediatrics
University of Virginia Health Systems
PO Box 800674
Charlottesville, Virginia 22908

Hanna Lukas, PharmD
Clinical Pharmacist
Grand Strand Regional Medical Center
809 82nd Parkway
Myrtle Beach, South Carolina 29588

Susan Villegas, PharmD
Clinical Pharmacy Manager of Pediatrics
The Children's Hospital at Montefiore
3415 Banbridge Avenue
Bronx, New York 10467

Michael Veltri, PharmD
Division Director and Clinical Pharmacist
The Johns Hopkins Children's Center
600 North Wolfe Street
Baltimore, Maryland 21287-6180

Dana Clark, PharmD
Hematology/Oncology Pharmacy Team Leader
Children's Healthcare of Atlanta
1001 Johnson Ferry Rd.
Atlanta, Georgia 30342

Jaclyn Moeller, PharmD
Quality Improvement Specialist - Pharmacy
Children's Hospital of Wisconsin
9000 W Wisconsin Ave.
Wauwatosa, Wisconsin

Tosha Egelund, PharmD
Pediatric Hem/Onc/BMT Pharmacist
Wolfson Children's Hospital
800 Prudential Drive
Jacksonville, Florida

Amy Holmes, BSPharm, PharmD
Neonatal Clinical Pharmacy Specialist
Forsyth Medical Center
3333 Silas Creek Pkwy
Winston Salem, North Carolina 27103

Nathan Gorney, PharmD
PGY2 Pediatric Hematology/Oncology Resident
St. Jude Children's Research Hospital
262 Danny Thomas Place
Memphis, Tennessee 28105

Anna Kissell, PharmD
Pharmacist
Children's Hospital of Wisconsin
9000 W. Wisconsin Ave
Milwaukee, Wisconsin 53226
Marie Rossique-Gonzalez, PharmD
Pediatric Specialty Residency
Pediatric Pharmacy Manager
Baptist Children's Hospital
8900 North Kendal Drive
Miami, Florida 33176

Angeline Pope, PharmD
Pediatric Critical Care Pharmacist
Children's Mercy Hospitals and Clinics
2401 Gillham Rd.
Kansas City, Missouri 64108

Robert Poole, PharmD, FPPAG, FCSHP, FASHP
Director of Pharmacy
Lucile Packard Children's Hospital at Stanford
725 Welch Road
Palo Alto, California 94304

Jason Kramer, BSPharm, PharmD
Pediatric Pharmacist
CoxHealth System
3801 S. National Ave.
Springfield, Missouri 65807

Patrick Newman, PharmD, BCPS
Clinical Pharmacy Specialist/ Neonatal and
Pediatric Intensive Care
Huntsville Hospital
245 Governor’s Dr
Huntsville, Alabama 35801

Jamie Hogerheide, PharmD, BS
Pediatric Clinical Pharmacist
Mission Health System, Mission Campus
509 Biltmore Ave
Asheville, North Carolina 28801

Susan Hopkins, PharmD
Pediatric Clinical Pharmacist
Banner Desert Medical Center/Cardon
Children's Hospital
1400 S. Dobson Rd.
Mesa, Arizona 85202

Andree Hest, RPh, MScPharm
Pediatric Clinical Specialist, Director of Pharmacy
California Pacific Medical Center
3700 California Street
San Francisco, California 94118

Michael Christensen, BCNSP
Professor
UTHSC
881 Madison Ave.
Memphis, Tennessee 38163

Colleen Sheehan, PharmD
Pharmacy Practice Resident
St. John’s Hospital
800 E Carpenter
Springfield, Illinois 62711

Jessica Rosson, PharmD, BCPS
Critical Care Clinical Pharmacist
LeBonheur Children's Hospital
50 N. Dunlap
Memphis, Tennessee

Susan Norman, PharmD
Clinical Specialist - Pediatric Intensive Care Unit
Arnold Palmer Hospital for Children
92 W Miller St
Orlando, Florida 32829

Amanda Williams, PharmD, BCPS
Clinical Pharmacy Specialist,
Pediatric Emergency Medicine
Huntsville Hospital for Women and Children
245 Governor’s Drive
Huntsville, Alabama 35801

Kimberly Raschke, PharmD
Interim Pharmacy Specialist-
Pediatrics/Women's Health
Nebraska Medical Center
981090 Nebraska Medical Center
Omaha, Nebraska 68198-1090
Lara Pape, PharmD
Clinical Pharmacist
Theda Clark Medical Center
130 Second Street
Neenah, Wisconsin 54914

Jessica Taylor, PharmD
Clinical Pharmacist
Children's Hospitals and Clinics of Minnesota
2525 Chicago Ave. S
Minneapolis, Minnesota 55404

Kelly Burch, PharmD
Pharmacy Specialist-Neonatology
Mercy Children's Hospital
621 South New Ballas Road
St. Louis, Missouri 63141

Robert Christensen, BSPharm
Clinical Research Pharmacist
St. Jude Children's Research Hospital
262 Danny Thomas Place
Memphis, Tennessee 38105

Tristan Murray, PharmD
PGY2 Pediatric Pharmacy Resident
Riley Hospital for Children
705 Riley Hospital Drive, Simon Family Tower
Indianapolis, Indiana 46202

Nicole Mollenkopf, PharmD, BCPS
Medication Safety Officer, Pediatrics
Johns Hopkins Children's Center
600 North Wolfe St
Baltimore, Maryland 21287

Tina Horsky, PharmD
Pediatric/Neonatal Clinical Pharmacist
Mt. Sinai Hospital
1500 S. California
Chicago, Illinois 60608

Renee Bellanger, PharmD, BCNSP
Associate Professor, Pharmacy Practice
University of the Incarnate Word
4301 Broadway CPO 99
San Antonio, Texas 78209

Karyn Taylor, PharmD
Pediatric Clinical Pharmacist
Memorial University Medical Center
4700 Waters Ave.
Savannah, Georgia 31404

Leslie Patatanian, BS, PharmD
Clinical Pharmacy Specialist, Pediatrics, PICU
Integris Health, Baptist Medical Center
3300 NW Expressway
Oklahoma City, Oklahoma 73162

Jared Cash, BS, PharmD, BCPS
Pharmacy Manager
Primary Children’s Medical Center
Intermountain Healthcare
100 N Mario Capecchi
Salt Lake City, Utah 84124

Elizabeth Boucher, PharmD, BCPS
Clinical Specialist - Pediatrics
Concord Hospital
250 Pleasant St.
Concord, New Hampshire 03304

Phee Huynh, PharmD
Pediatric Pharmacist
MultiCare Health System
315 Martin Luther King Jr. Way
Tacoma, Washington 98405

Christine Do, PharmD
Med/Surgical Pharmacist and
Pediatric/Oncology Pharmacist
Massachusetts General Hospital
55 Fruit Street
Boston, Massachusetts 02114

Amy Francis, PharmD
Pediatric Pharmacist
OSF Saint Francis Medical Center-Children's Hospital of Illinois
530 NE Glen Oak Ave
Peoria, Illinois 61637
Andrea Matthews, PharmD
Pediatric Clinical Specialist
Mary Washington Hospital
1001 Sam Perry Blvd.
Fredericksburg, Virginia 22401

Kelly Walls, PharmD
Pharmacist
Le Bonheur Children’s Hospital
50 N. Dunlap St.
Memphis, Tennessee 38103

BreAnn Taylor, PharmD, BCPS
Clinical Pharmacy Specialist - Cardiology
Cincinnati Children's Hospital
Cincinnati, Ohio

Laura Hall, PharmD
Pediatric Hematology/Oncology Clinical Pharmacist
Monroe Carell Jr. Children's Hospital at Vanderbilt
2200 Children’s Way Room 4508
Nashville, Tennessee 37232

Shannon Manzi, PharmD
Director, Clinical Pharmacogenomics Service
Boston Children’s Hospital
300 Longwood Ave.
Boston, Massachusetts 02115

Katie Bruce, PharmD
Pediatric Stem Cell Transplant Clinical Pharmacist
Monroe Carell Jr. Children's Hospital at Vanderbilt
2200 Children's Way
Nashville, Tennessee 37232

Jasjinder Cheema, PharmD, BCPS
Pediatric Clinical Pharmacist
Bakersfield Memorial Hospital
420 34th Street, Inpatient Pharmacy
Bakersfield, California 93309

Courtney Sweet, PharmD, BCPS
Clinical Specialist-Neonatal/Pediatrics
West Virginia University Hospitals
Medical Center Drive
Morgantown, West Virginia 26506

Jill Thompson, PharmD, BCPS
Coordinator, Pediatric Clinical Pharmacy Services
Medical University of South Carolina
150 Ashley Ave MSC584
Charleston, South Carolina 29425

David Hoff, Clinical Leader
Children's Hospitals and Clinics of Minnesota
2525 Chicago Ave S
Minneapolis, Minnesota 55404

Vanessa Holton, PharmD
Clinical Specialist, PICU/CVICU
Phoenix Children’s Hospital
1919 E Thomas Road
Phoenix, Arizona 85016

Allison Thompson, PharmD, BCPS
Clinical Pharmacist Specialist - PICU/CICU
University of Chicago Medicine Comer Children's Hospital
Chicago, Illinois 60637

Jennifer Morris, PharmD, BCPS
Clinical Pharmacy Specialist - Pediatric Critical Care
Riley Hospital for Children at IU Health
705 Riley Hospital Dr
Indianapolis, Indiana 46202

Sarah Thiel, PharmD
PGY-2 Pediatric Pharmacy Resident
The Johns Hopkins Hospital
600 North Wolfe Street
Baltimore, Maryland 21287

Monica Bogrncshutz, PharmD, BCPS
Clinical Pharmacist
University of Wisconsin Hospital and Clinics
600 Highland Ave F6/133 -1530
Madison, Wisconsin 53792
Emily Rowe, PharmD, BCPS
Senior Clinical Pharmacy Specialist - Pediatrics
The Floating Hospital for Children at Tufts Medical Center
800 Washington St Box 420
Boston, Massachusetts 02111

William Prescott, PharmD
Clinical Assistant Professor
University at Buffalo School of Pharmacy and Pharmaceutical Sciences
218 Kapoor Hall
Buffalo, New York 14214

Neli Attas, RPh, PharmD
Pediatric Clinical Pharmacist
St Joseph's Regional Medical Center
703 Main Street
Paterson, New Jersey 07503

Johanna Norman, PharmD
PGY2 Pharmacy Resident
Le Bonheur Children's Hospital
50 N. Dunlap
Memphis, Tennessee 38103

Melissa Ray, PharmD, BCPS
Clinical Pharmacy Specialist - Pediatrics/Neonatology
Lakeland Regional Medical Center
Lakeland, Florida

Lindsay Pelfrey, PharmD, BCPS
Clinical Pharmacist, Hematology/Oncology
Children's Medical Center
1935 Medical District Drive
Dallas, Texas 75287

Amy Mitchell, PharmD
Clinical Pharmacy Specialist, Women and Children's Services
Albany Medical Center
43 New Scotland Ave
Albany, New York 12054

Jessica Price, Pharm D
Clinical Pharmacy Specialist, Pediatric Hematology Oncology
Children's Hospital of The King's Daughters (CHKD)
601 Children's Lane
Norfolk, Virginia 23507

Stephanie Anderson, PharmD
Pediatric Clinical Pharmacist Specialist
Cottage Children's Hospital
Pueblo at Bath Streets
Santa Barbara, California 93102

Jenna Bognaski, PharmD
PGY-1 Pharmacy Resident
Vanderbilt Children's Hospital
2220 Children's Way
Nashville, Tennessee 37232

Valeria Bernardo, PharmD
Pediatric Hematology/Oncology Pharmacist
Saint Louis College of Pharmacy/Cardinal Glennon Children’s Medical Center
1465 South Grand Boulevard
St. Louis, Missouri 63110

Rivka Siden, PharmD, MSc
Clinical Specialist, Investigational Drug
University of Michigan
1500 E Med Ctr Dr.
Ann Arbor, Michigan 48109-5008

Danielle Britt, MA, PharmD
NICU/ Maternity Center Pharmacist
Providence Alaska Medical Center
3200 Providence Drive
Anchorage, Alaska

Jennifer Pauley, BSPharm, PharmD, BCPS, BCOP
Clinical Coordinator/Residency Program Director
St. Jude Children's Research Hospital
262 Danny Thomas Place MS 150
Memphis, Tennessee 38105
Susannah Koontz, PharmD, BCOP
Principal & Consultant
Koontz Oncology Consulting LLC
2617C W. Holcombe Blvd. #365
Houston, Texas 77025-1601

Joe Creek, BS, RPh
Pharmacist
Cook Children's Medical Center
801 W. 7th Avenue
Fort Worth, Texas 76104

Joe Creek, BS, RPh
Pharmacist
Cook Children's Medical Center
801 W. 7th Avenue
Fort Worth, Texas 76104

Ken Adams, RPh, MBA
Pharmacy Manager
Seattle Children’s Home Care Services
2525 220th St. SE, Suite 200
Bothell, Washington 98021

Kristin Klein, PharmD, FPPAG
Clinical Associate Professor and Clinical Pharmacy Specialist
University of Michigan College of Pharmacy and Health System
C.S. Mott Children's Hospital; Room 10-561F;
1540 E. Hospital Dr.
Ann Arbor, Michigan 48109-4225

Grace Lee, PharmD
Clinical Pharmacist, Critical Care
CHOC Children's Hospital
455 S Main Street
Orange, California 92835

Fred Smith, RPh
Pharmacy Informatics Specialist
Cook Children's Medical Center
801 Seventh Avenue
Ft. Worth, Texas 76104

Greg Wendel, Pharm D
Staff Pharmacist
Cook Children’s Hospital
801 Seventh Ave.
Fort Worth, Texas 76104

Ean Miller, PharmD
Pharmacist
Cook Children's Medical Center
801 7th Ave
Fort Worth, Texas 76104

Lisa Kwapniowski, PharmD
Pharmacy Director
Children's Hospital & Medical Center
8200 Dodge Street
Omaha, Nebraska 68114

Lardieri Allison, PharmD
PGY2 Pediatric Pharmacy Resident
University of Maryland School of Pharmacy/Medical Center
20 N. Pine St.
Baltimore, Maryland 21201

Chasity Shelton, PharmD, BCPS, BCNSP
Assistant Professor / Pediatric Parenteral Nutrition Clinical Pharmacy Specialist
University of Tennessee Health Science Center
881 Madison Ave., Room 343
Memphis, Tennessee 38163

Bradley Horn, PharmD
Pharmacist-In-Charge
Dodson Surgery Center
1500 Cooper Street
Ft. Worth, Texas 76104

Edward Bell, PharmD, BCPS
Professor of Pharmacy Practice
Drake University College of Pharmacy and Health Sciences
2507 University Ave
Des Moines, Iowa 50311

Lorrainea Williams, PharmD
Medication Safety Specialist
Cook Children’s Medical Center
801 7th Avenue
Fort Worth, Texas 76104
Hailey Collier, PharmD
Pharmacist
Le Bonheur Children's Hospital
50 N Dunlap St
Memphis, Tennessee 38103

Erika Clark, PharmD, BCPS
Lead Pharmacist, Children's Hospital
Palmetto Health Children's Hospital
7 Medical Park Dr.
Columbia, South Carolina 29229

Evan Horton, PharmD
Assistant Professor of Pharmacy Practice
MCPHS-W/M; Baystate Medical Center
19 Foster St.
Worcester, Massachusetts 01608

Leanne Svoboda, PharmD
Clinical Pharmacist, Pediatric
University of Virginia Health System
1215 Lee Street
Charlottesville, Virginia 22908

John Koepke, BS, PharmD, RPh
Clinical Pharmacy Specialist
Nationwide Children's Hospital
700 Children's Dr.
Columbus, Ohio 43205

Jennifer Peacock, PharmD, BCPS
Pediatric Clinical Specialist
Johns Hopkins Bayview Medical Center
4940 Eastern Avenue, Room AA119
Baltimore, Maryland 21224

Hetesh Patel, PharmD
Pharmacist
Children's of Alabama
1601 5th Ave South
Birmingham, Alabama 35233

Kendra Peters, RPh
Staff Pharmacist
Children's Home Infusion Pharmacy / Dayton
Children's Medical Center
18 Children's Plaza
Dayton, Ohio 45404

Steven Plogsted, PharmD, BCNSP, CNSC
Clinical Pharmacist Nutrition Support Service
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

Kitty Sum, PharmD, BCPS
Pharmacist
Cedars Sinai Medical Center
8700 Beverly Blvd.
Los Angeles, California 90048

Lacey Rodgers, PharmD
Staff Pharmacist
St Louis Children's Hospital
1 Children's Place
St Louis, Missouri 63110

Lesley Lukinovich, PharmD
Children's of Alabama
1600 7th Ave South
Birmingham, Alabama 35233

Tom Nelson, PharmD, RPh
Pharmacy Clinical Coordinator, Pharmacy Residency Program Director and IDS Pharmacist
Children's Hospital of Wisconsin
9000 W. Wisconsin Ave.
Milwaukee, Wisconsin 53226

Julia Ihlenfeldt, R.Ph.
Wheaton Franciscan Healthcare - St Joseph Campus
5000 W Chambers St.
Milwaukee, Wisconsin 53210

Margaret Heger, PharmD, BCPS
PGY2 Pediatric Residency Program Director, Pediatric Critical Care Pharmacist
Children's Hospital of Illinois
530 NE Glen Oak Ave.
Peoria, Illinois 61704
Christie Van Dyke, PharmD, BCPS
Clinical Pharmacy Specialist, Pediatric Antimicrobial Stewardship
Spectrum Health
100 Michigan Street
Grand Rapids, Michigan 49503

Karen Pontes, BCPS, PharmD
Naval Medical Center San Diego
34800 Bob Wilson Dr.
San Diego, California 92134

Marlene Hall, PharmD
Clinical Pediatric Pharmacy Specialist; PGY1
The Children's Hospital at Saint Francis
6161 S. Yale Ave.
Tulsa, Oklahoma 74136

Courtney Kain, PharmD, MS
PGY2 Pediatric Pharmacy Resident
Arnold Palmer Hospital for Children
92 West Miller St, MP 349
Orlando, Florida 32806

Sara Bork, PharmD, MBA
Clinical Pharmacy Specialist
Texas Children’s Hospital
6621 Fannin St. Suite WB 1-120
Houston, Texas 77030

Kathleen Gura, PharmD, BCNSP, FASHP, FPPAG
Clinical Pharmacy Specialist GI/Nutrition
Boston Children's Hospital
300 Longwood Ave
Boston, Massachusetts 02115

Amber Howard, PharmD, BCPS
Pediatric Clinical Pharmacy Specialist
Stormont Vail Healthcare
1500 SW 10th Ave.
Topeka, Kansas 66604

Malinda Parman, PharmD
Pediatric Clinical Pharmacist
Le Bonheur Children's Hospital
50 N Dunlap St.
Memphis, Tennessee 38103

Matt Maughan, PharmD
Director of Pharmacy
Rainbow Babies & Children's Hospital
11100 Euclid Ave. MCCO 5052
Cleveland, Ohio 44106

Sandra Benavides, PharmD
Associate Professor
Nova Southeastern University
3200 S University Drive
Fort Lauderdale, Florida 33328

Dayne Fujimoto, PharmD
Director of Pharmacy
Shriners Hospitals for Children
1310 Punahou Street
Honolulu, Hawaii 96826

Elizabeth Alford, PharmD
Pharmacist, Wake Forest Drug
Raleigh, North Carolina 27614

Sally Sims, PharmD
Medication Safety Coordinator
Children's of Alabama
1600 7th Avenue South
Birmingham, Alabama 35233

Kim Benner, PharmD, BCPS, FASHP
Professor of Pharmacy Practice
Samford University McWhorter School of Pharmacy
800 Lakeshore Drive
Birmingham, Alabama 35244

Lindsay Schray, PharmD
Pharmacy Clinical Specialist, NICU
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

Alana Arnold Boermeester, PharmD, BCPS, AQ-ID
Associate Director, Clinical Programs
Boston Children’s Hospital
Dept of Pharmacy, 300 Longwood Avenue
Boston, Massachusetts 02115
Mary Hendricks, RPh
Emergency Room Pharmacist
Children's Hospitals and Clinics of Minnesota
345 N Smith Ave.
St Paul, Minnesota 55103

Debora Castaneda, PharmD
Clinical Pharmacist - Emergency Department
Children's Medical Center Dallas
1935 Medical District Drive
Dallas, Texas 75235

Karen Brennan, PharmD
Pharmacy Director
Shriners Hospital
2211 N Oak Park
Chicago, Illinois 60707

Kalen Manasco, PharmD, BCPS, AE-C
Clinical Associate Professor
University of Georgia College of Pharmacy
1120 15th Street, HM 1200
Augusta, Georgia 30904

Ray Davis, MS, RPh, BCPS
Pediatric Clinical Pharmacist
Duke University Hospital
Durham, North Carolina 27710

Kevin Mulieri, B.S., PharmD
Clinical Pharmacy Specialist: Pediatric Hematology/Oncology
Penn State Hershey Medical Center
500 University Drive; Mail Code H079
Hershey, Pennsylvania 17033

Manar Lashkar, PharmD
Clinical Assistant II
University of Arizona
1501 N Campbell Avenue P.O.Box 245009
Tucson, Arizona 85716

Eric Hoie, PharmD
Associate Professor of Pharmacy Practice
Creighton University
2500 California Plaza
Omaha, Nebraska 68178

Lea Eiland, PharmD, BCPS, FASHP
Associate Clinical Professor and Associate Department Head
Auburn University Harrison School of Pharmacy
301 Governor’s Drive
Huntsville, Alabama 35803

Alexis Wold, PharmD
Pediatric Clinical Pharmacist
University of New Mexico Hospital
2211 Lomas Blvd NE
Albuquerque, New Mexico 87106

Sandra Bardas, RPh
Clinical Pharmacist, Emergency Medicine
Stanford Hospital & Clinics
300 Pasteur Drive
Stanford, California 94305

Kyle Mulloy, PharmD
MS/PGY1/PGY2 Resident, Health-System Pharmacy Administration
Nationwide Children's Hospital
700 Children's Drive
Columbus, Ohio 43205

Joshua Courtier, PharmD
Clinical Pharmacy Specialist
Cincinnati Children's Hospital Medical Center
3333 Burnet Ave
Cincinnati, Ohio 45229

Sarah Smith, PharmD
Associate Professor, Vice Chair of Clinical and Administrative Sciences
Sullivan University College of Pharmacy
2100 Gardiner Lane
Louisville, Kentucky 40205

Kimberly Graham, PharmD
Staff Pharmacist
Mercy Medical Center
1111 6th Ave
Des Moines, Iowa 50266
Sandra Garner, PharmD
Associate Professor
South Carolina College of Pharmacy
280 Calhoun Street
Charleston, South Carolina 29425

Tracy Hagemann, PharmD
Associate Professor, Pediatric Pharmacotherapy; Director PGY2 Pediatric Residency; Director of Clinical Affairs
University of Oklahoma College of Pharmacy
1110 N. Stonewall Avenue
Oklahoma City, Oklahoma 73117

Melissa Frank, PharmD
Clinical Coordinator
Northeast Georgia Medical Center
743 Spring Street NE
Gainesville, Georgia 30501

Scott Takahashi, PharmD, FCSHP
Pediatric Ambulatory Care Pharmacist
Kaiser Permanente, Los Angeles Medical Center
4700 W Sunset Blvd, 3B
Los Angeles, California 90027

John Clark, PharmD, MS, BCPS, FASHP
Director of Pharmacy Services
University of Michigan Hospitals and Health Centers
1500 E. Medical Center Dr.
Ann Arbor, Michigan 48109-5008

Lois Parker, B.S. Pharmacy
Clinical Lead, Pediatrics
Massachusetts General Hospital
55 Fruit Street
Boston, Massachusetts 02155

Melissa Meuler, PharmD
PGY-2 Pediatric Critical Care Resident
Children's Hospital of Wisconsin
MS 730, PO Box 1997
Milwaukee, Wisconsin 53201

Rebecca Pettit, PharmD, MBA, BCPS
Pediatric Pulmonary Clinical Pharmacy Specialist
Riley Hospital for Children, Indiana University Health
705 Riley Hospital Drive; Simon Family Tower
Indianapolis, Indiana 46202

Jonica Huntman, PharmD
Clinical Pharmacist
St Louis Children's Hospital
One Children's Place
St Louis, Missouri 63110

Weng Man Lam
Pediatric Clinical Specialist
Georgia Health Sciences Health System
Children's Medical Center
1120 15th Street. Bl-2101
Augusta, Georgia 30912

Marianne Miscioscia, PharmD
Pediatric Clinical Pharmacist
New Hampshire's Hospital for Children/Elliot Health System
1 Elliot Way
Manchester, New Hampshire 03103

Catherine Crill, PharmD, BCPS, BCNSP
Associate Professor of Clinical Pharmacy and Pediatrics
The University of Tennessee Health Science Center
881 Madison Avenue, Room 229
Memphis, Tennessee 38104

Alexandra Oschman, PharmD
Intensive Care Nursery Pharmacy Clinical Specialist
Children's Mercy Hospital and Clinics
2401 Gillham Road
Kansas City, Missouri 64108

Mary Winter, PharmD
Pediatric Pharmacist
Wake Forest Baptist Health
Medical Center Boulevard
Winston-Salem, North Carolina 27157
Joseph LaRochelle, Pharm D
Clinical Assistant Professor (Pediatrics) Xavier
University of Louisiana College of Pharmacy;
Clinical Assistant Professor of Pediatrics
Louisiana State University School of Medicine
Xavier University of Louisiana College of Pharmacy
1 Drexel Drive
New Orleans, Louisiana 70125

Rebecca Brannan, PharmD, BCPS
Clinical Coordinator/PGY1 Residency Director
Mercy Medical Center
1111 6th Ave
Des Moines, Iowa 50322

Michelle Rychalsky, PharmD
Pediatric Clinical Pharmacist
Yale-New Haven Hospital
20 York Street
New Haven, Connecticut 06510

Maria Whitmore, PharmD
Pediatric Clinical Pharmacist/Pediatric (PGY-2)
Pharmacy Residency Director
Peyton Manning Children's Hospital at St. Vincent
2001 W. 86th Street
Indianapolis, Indiana 46260

Megan Beagley, RD, PharmD
Children's Hospital of WI
Wauwatosa, Wisconsin

Gabrielle Hodson, PharmD
Clinical Pharmacy Specialist - Neonatology/Pediatrics
Westchester Medical Center
100 Woods Rd.
Valhalla, New York 10595

Emily Gish, PharmD, BCPS
Clinical Pharmacist-Pediatric Intensive Care
Primary Children's Medical Center
100 N. Mario Capecchi Dr.
Salt Lake City, Utah 84113

Ibis Lopez, PharmD, BCPS
Clinical Manager, Pediatric Oncology
NY Presbyterian
622 West 168th St.
NEW YORK, New York 10032

Sarah Erush, PharmD, BCPS
Clinical Pharmacy Manager
The Children's Hospital of Philadelphia
34th St. & Civic Center Blvd.
Philadelphia, Pennsylvania 19104

Anna Pisoni, PharmD
Pharmacy Clinical Coordinator
Cardinal Glennon Children's Medical Center
1465 S. Grand Blvd.
St. Louis, Missouri 63021

Nicholas Fusco, PharmD, BCPS
Assistant Professor, Pediatrics
University of Maryland School of Pharmacy
20 North Pine Street, Room S445
Baltimore, Maryland 21201

Richard Parrish, BSPharm, PhD, BCPS
Chief Pharmacist and Director, Pharmacy Services
St. Christopher's Hospital for Children / Tenet Healthcare
3601 A Street
Philadelphia, Pennsylvania 19134

Lisa Lubsch, PharmD, AE-C
Clinical Associate Professor
SIUE School of Pharmacy / Cardinal Glennon
Edwardsville, Illinois

Samantha Mumford, PharmD
Neonatal Clinical Pharmacist
Alfred I duPont Hospital for Children/Nemours
1600 Rockland Rd.
Wilmington, Delaware 19701

Andrea Zuckerman, PharmD
Pediatric Nursing Unit-Based Pharmacist
Cleveland Clinic
9500 Euclid Ave
Cleveland, Ohio 44195
Jason Arimura, PharmD, BCPS
Clinical Pharmacist - Pediatric Intensive Care
Ventura County Medical Center
3291 Loma Vista Road
Ventura, California 93003

Amanda Parker, PharmD, BCPS
Clinical Pharmacy Specialist, Drug Safety
Children's Mercy Hospitals
2401 Gillham Road
Kansas City, Missouri 64108

Maily Trieu, PharmD, BCPS
Staff pharmacist II
UC Davis Medical Center
2315 Stockton Blvd
Sacramento, California 95817

Tracy Sandritter, PharmD
Clinical Specialist
Children's Mercy Hospital
2401 Gillham Road
Kansas City, Missouri 64108

Russell Orr, PharmD
Pharmacy Clinical Director
Ann & Robert H Lurie Children's Hospital of Chicago
225 E Chicago Ave.
Chicago, Illinois 60611

Laura Bio, PharmD
Assistant Professor of Clinical Pharmacy, Pediatrics
Philadelphia College of Pharmacy
600 South 43rd St
Philadelphia, Pennsylvania 19104

Justin Cole, PharmD, BCPS
Pharmacy Educator, Clinical Pharmacist - Neurosciences
Nationwide Children's Hospital
700 Children's Dr.
Columbus, Ohio 43205

Julie Richardson, PharmD, BCPS
Clinical Research Pharmacist
St. Jude Children's Research Hospital
262 Danny Thomas Place
Memphis, Tennessee 38105

Franklin Huggins, PharmD, BCPS
Clinical Assistant Professor
West Virginia University School of Pharmacy
3110 MacCorkle Ave SE
Charleston, West Virginia 25304

Mary Petrea Cober, PharmD, BCNSP
Clinical Coordinator - NICU/Assistant Professor - Pharmacy Practice
Akron Children's Hospital/Northeast Ohio Medical University, College of Pharmacy
One Perkins Square
Akron, Ohio 44308

Emily Kelley, PharmD
Clinical Pharmacist
U of South Alabama Children's and Women's Hospital
1700 Center Street
Mobile, Alabama 36604

Robert Kuhn, PharmD
Professor of Pharmacy Practice and Science and Pediatrics
University of Kentucky
789 Limestone Room 233
Lexington, Kentucky 40356

Marcia Buck, PharmD
Clinical Coordinator, Pediatrics
University of Virginia Children's Hospital
Box 800674
Charlottesville, Virginia 22908

Carlton Lee, PharmD, MPH
Clinical Pharmacy Specialist, Pediatrics; Associate Professor, Pediatrics
Johns Hopkins Medical Institutions
200 North Wolfe Street
Baltimore, Maryland 21287
Martine Antell, PharmD
Amplatz Children's Hospital
Minneapolis, Minnesota

Chris Shaffer, PharmD, MS, BCPS
Coordinator, Personalized Pediatric Medicine Program
University of Nebraska Medical Center
986045 Nebraska Medical Center
Omaha, Nebraska 689198-6045

Kathryn Timberlake, PharmD
Clinical Pharmacy Specialist, Antimicrobial Stewardship
The Hospital for Sick Children
555 University Ave
Toronto, Canada

Ashley Reilly, PharmD
Clinical Pharmacy Specialist - NICU
University of Colorado Hospital
12605 East 16th Ave.
Aurora, Colorado 80045

Michelle Condren, PharmD, AE-C, CDE
Department Chair and Associate Professor
University of Oklahoma College of Pharmacy
4502 E 41st St.
Tulsa, Oklahoma 74135

Malgorzata Michalowska-Suterska, PharmD
Pediatric Clinical Pharmacy Specialist
Westchester Medical Center
100 Woods Rd.
Valhalla, New York 10595

Bernard Lee, PharmD, BCPS
PGY1 Residency Program Director
Mayo Eugenio Litta Children's Hospital
200 First Ave. SW
Rochester, Minnesota 55905

Erika Bergeron, PharmD
Pediatric Clinical Pharmacist
Harris County Hospital District
5656 Kelley St.

Houston, Texas 77026
Matthew Gentry, PharmD
Pediatric Infectious Diseases Pharmacist
CHOC Children’s Hospital
455 Main Street
Orange, California 92868

Lizbeth Hansen, PharmD, BCPS
Pediatric Clinical Pharmacist
University of MN Amplatz Children’s Hospital
2450 Riverside Avenue
Minneapolis, Minnesota 55454

Rachel Meyers, PharmD, BCPS
Clinical Assistant Professor
Ernest Mario School of Pharmacy, Rutgers University
160 Frelinghuysen Rd.
Piscataway, New Jersey 08854

Kay Green, RPh, BCPS
Clinical Specialist, NICU; PGY1 Residency Coordinator; CE Administrator
University Hospital
4502 Medical Drive
San Antonio, Texas 78220

Kelly Pulte, PharmD
ICU Clinical Pharmacist
Children’s Medical Center
1935 Medical District Drive
Dallas, Texas 75219

Elizabeth Beckman, PharmD, BCPS
Clinical Pharmacy Specialist
University of Michigan C.S. Mott Children's Hospital
1540 E Hospital Dr.
Ann Arbor, Michigan 48109

Kelli Crowley, PharmD, BCPS
Clinical Pharmacy Specialist, Pediatric Intensive Care
Children's Hospital of Pittsburgh of UPMC
4401 Penn Ave.
Pittsburgh, Pennsylvania 15224